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ABSTRACT

A top-down method is presented for the derivation of algorithms from a formal specification of a problem.
This method has been implemented in a system called CYPRESS. The synthesis process involves the
top-down decomposition of the initial specification into a hierarchy of specifications for subproblems.
Synthesizing programs for each of these subproblems results in the composition of a hierarchically
structured program. The initial specification is allowed to be partial in that some or all of the input
conditions may be missing. CYPRESS completes the specification and produces a totally correct applicative
program. Much of CYPRESS’ knowledge comes in the form of ‘design strategies’ for various classes of
algorithms. The structure of a class of divide-and-conquer algorithms is explored and provides the basis
for several design strategies. Detailed derivations of mergesort and quicksort algorithms are presented.

1. Introduction

Program synthesis is the systematic derivation of a computer program from a
specification of the problem it is intended to solve. Our approach to program
synthesis is a form of top-down design, called problem reduction, that may be
described as a process with two phases—the top-down decomposition of
problem specifications and the bottom-up composition of programs. In practice
these phases are interleaved but it helps to understand them separately. Given
a specification, the first phase involves selecting and adapting a program
scheme, thereby deciding on an overall structure for the target program. A
procedure associated with each scheme, called a design strategy, is used to
derive subproblem specifications for the scheme operators. Next we apply
problem reduction to each of the subproblem specifications, and so on. This
process of deciding program structure and deriving subproblem specifications
terminates in primitive problem specifications that can be solved directly,
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without reduction to subproblems, The result is a tree of specifications with the
initial specification at the root and primitive problem specifications at the
leaves. The children of a node represent the subproblem specifications derived
as we create program structure. The second phase involves the bottom-up
composition of programs. Initially each primitive problem specification is
treated by a design strategy that directly produces a target fanguage expression.
Subsequently whenever programs have been obtained for all children of a node
representing specification [ they are assembled into a program for I by
instantiating the associated scheme.

One of the principal difficulties in top-down design is knowing how to
decompose a problem specification into subproblem specifications. At present
general knowledge of this kind (see for example [23]) is not in a form suitable
for automation. Rather than attempt to formalize this general knowledge we
focus on special techniques for decomposing a problem. In particular, we
explore the structure common to a class of algorithms and develop methods for
decomposing a problem with respect to that structure. In this paper the
structure of a class of divide-and-conquer algorithms is formalized and then
used as the basis for several design strategies.

The principle underlying divide-and-conguer algorithms can be simply
stated: if the problem posed by a given input is sufficiently simple we solve it
directly, otherwise we decompose it into subproblems, solve the subproblems,
then compose the resulting solutions. The process of decomposing the input
problem and solving the subproblems gives rise to the term ‘divide-and-
conquer’ although ‘decompose, solve, and compose’ would be more accurate.
Typically, some of the subproblems are of the same type as the input problem
thus divide-and-conquer algorithms are naturally expressed by recursive pro-
grams.

We chose to explore the synthesis of divide-and-conquer algorithms for
several reasons:

(1) Structural simplicity. Divide-and-conquer is perhaps the simplest pro-
gram-structuring technique which does not appear as an explicit control struc-
ture in current programming languages.

(2) Computational efficiency. Divide-and-conquer algorithms naturally sug-
gest implementation on parallel machines due to the independence of sub-
problems. Even on sequential machines algorithms of asymptotically optimal
complexity often arise from application of the divide-and-conquer principle to
a problem. In addition, fast approximate algorithms for NP-hard problems
frequently are based on the divide-and-conquer principle.

(3) Ubiquity in programming practice. Divide-and-conquer algorithms are
common in programming, especially when processing structured data objects
such as arrays, lists, and trees. Current textbooks on the design of algorithms
standardly present divide-and-conquer as a fundamental programming tech-
nique [1].
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In Section 2 we illustrate the synthesis method by deriving an algorithm for
finding the minimum element in a list. Sections 3 and 4 introduce basic
concepts of deduction and specification respectively. Section 5 contains several
basic design strategies. Special knowledge about the structure and design of
divide-and-conquer algorithms is presented in Sections 6 and 7. Detailed
derivations of mergesort and quicksort algorithms also appear in Section 7.
Discussion of related research, a semi-automatic implementation of the syn-
thesis method called cyeress, and other topics appear in Section 8.

2. A Simple Example

An informal derivation of an algorithm for finding the minimum in a list of
natural numbers is given in this section in order to develop some intuition
about the problem-reduction method. A formal specification for this minimiza-
tion problem is’

MIN:x = z such that x # nil => z€ Bag:x A z < Bag:x
where MIN: LIST(N) - N .

Here the problem is named MIN and it is defined to be a mapping from lists of
natural numbers (denoted LIST(N)) to natural numbers (N). Naming the input
variable x and the output variable z, the formula x s nil, called the inpus
condition, expresses any properties which inputs are expected to satisfy. The
formula z & Bag:x an z = Bag:x, called the output condition, expresses the
conditions under which z is an acceptable output with respect to input x. Here
z € Bag: x asserts that z is an element of the bag (multiset) of elements in x
and z = Bag: x asserts that z is less than or equal to each element in x.

Suppose that we decide to derive a divide-and-conquer algorithm for this
problem by instantiating the following functional program scheme

F.x=if
Primitive : x - Directly _Solve : x ]
— Primitive : x - Compose o (Id X F)o Decompose : x
fi

yielding the Min algorithm in Fig. 1. Here GoH, called the composition of G

UIn this paper f:x denotes the application of function f to x. As usual the colon is also used in
defining the domain and range of a mapping. It should be clear from context which use is intended.

2In this paper we use the following notational conventions: specification names are fully
capitalized and set in Roman, operators are indicated by capitalizing their first letter, and scheme
operators are further indicated by italics. Also, we use the list processing operators First, Rest,
Cons, FirstRest, Append, and Listsplit where First:(2,5,1,4)=2; Rest:(2,5,1,4)=(5,1,4);
Cons 1 (2,(5,1,4)) = (2,5,1,4);  FirstRest: (2,5,1,4) = (2,(5,1,4));  Append : {(2,5),(1,4)) = (2,5,1,4);
Listsplit: (2,5,1,4,3) = {((2,5), (1.4,3)). Id denotes the identity function on any data type.
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and H, denotes the function resulting from applying G to the result of applying
H to its argument. G x H, called the product of G and H, is defined by
GXH:(x, y)=(G:x, H:y) where (x, ..., x,) is an n-tuple.

Min exemplifies the structure of divide-and-conquer algorithms. When
Rest:x = nil then the problem is solved directly, otherwise the input is
decomposed via the operator FirstRest, recursively solved via the product
(Id X Min), and the results composed via Min2 (Min2 returns the minimum of
its two inputs). So for example:

Min:(2,5,1,4) = Min2e (Id X Min)e FirstRest : (2,5,1,4)
= Min2e (Id X Min): (2,(5,1,4))
= Min2:(2,1)
=1

where Min:(5,1,4) evaluates to 1 in a similar manner.

Our strategy for synthesizing Min is based on choosing a simple operator for
decomposing the input list. An obvious way to decompose an input list is into
its first element and the rest of the list using the operator FirstRest. Instantiat-
ing this choice into the scheme we have

Min : x =if
Primitive : x - Directly _Solve : x 1
— Primitive : x > Compose  (Id X Min)e FirstRest : x .
fi.

We can determine the control predicate Primitive as follows. In order to
guarantee that this recursive program terminates, the decomposition operator
FirstRest must pass to the recursive call to Min a value that satisfies Min’s
input condition. Thus we must have Rest:x # nil in order to meaningfully
execute the else branch of the program. Consequently, we let the control
predicate be Rest:x = nil.

The challenging part of the synthesis is constructing an operator that can be
instantiated for Compose. Observe that the composite function

Compose = (Id x Min)e FirstRest : x, (2.1
must satisfy the MIN specification. Introducing names for the intermediate

Min;x = if
Rest:x = nit— First:x 1l
Rest : x # nil-> Min2¢ (Id X Min) o FirstRest : x
fi

FiG. 1. Algorithm for finding the minimum element in a list.
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input and output values, let

FirstRest: x,= (x, x,),
Idix; =z,

Min:x, = z,,
Compose :{z, z,) = z

A specification for Compose is derived below. We attempt to verify that (2.1)
does satisfy MIN, but since Compose is unknown the attempt fails. That is, no
particular relation is assumed to exist between the variables z,, z,, and z, (the
input/output values of Compose) so the structure of (2.1) is too weak to allow
the verification to go through. Although the verification fails, the way in which
it fails can provide output conditions for Compose. In order to obtain such
output conditions we attempt to reduce the goal of satisfying MIN to a relation
over the variables z,, z, and z,. In particular, we attempt to show that the
output condition of MIN

zy€ Bag:x, A zy<Bag:x, (2.2)
holds assuming

FirstRest: x, = (x;, x,) (i.e. x; = First:x, A x, = Rest: x,),
Idix; =2z, (e x,=2z),
Min:x, =z, (i.e. z,€ Bag:x, A z,=Bag:x,).

We reason backwards from (2.2) to sufficient output conditions for Compose as
follows.

z, € Bag: x,
if zy=First:x, v z,€ Rest:x, (since x,# nil),
if zy=x, v z,€ x, (since x, = First: x; and x, = Rest: x,),
if zg=2z, v z;= 2z, (since x;= z; and z, € Bag:x,).

Le., if the expression z,= 2z, v z,= z, were to hold then we could show that
z, € Bag: x,. Consider now the other conjunct in (2.2):

z,= Bag:x,
if zo=<First: x, A zy <BagoRest:x, (since x,+# nil),
if zy=<x, nzy,<Bag:x, (since x,= First:x,and x,= Rest:x,),
if zy<z nzy<z, (since x; = z; and z, < Bag:x,).

Le., if the expression z,=< 2z, A z,= z, were to hold then we could show that
= Bag: x,.
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We take the two derived relations
Zy= 2, Vv Zp= 2z, and  zp=z) A Zy= 2,

as the output conditions of Compose exactly because establishing these rela-
tions enables us to verify the else branch of the scheme. Thus we create the
specification

COMPOSE :(z,, z,) = z,
such that (z,= 2z, vV 2,7 2,) A 242, A 2% 2,
where COMPOSE N X N-—>N.

The derivation of a simple conditional program
Min2:(x, yy=ifx<y—x Ul y=sx->yfi

satisfying COMPOSE is relatively straightforward. A derivation of MinZ may be
found in [27] as part of a study of design strategies for conditional programs.
Strategies for synthesizing certain classes of conditional programs are presented
in later sections.

The Min algorithm now has the form

Rest: x = nil—> Directly _Solve :x [
Rest:x # nil— MinZo (Id X Min}o FirstRest: x .
fi

The scheme operator Directly _Solve must satisfy the input and ocutput con-
ditions of MIN but it need only do so when the input also satisfies Rest: x = nil,
so we set up the specification

DIRECTLY_SOILVE : x = z
such that Rest:x = nil A x # nil
> z&Bag:x A z=<Bag:x
where DIRECTLY _SOLVE  LIST(N)—»N.

The operator First can be shown to satisfy this specification. To do so we first
assume z = First:x, Rest:x = nil, and x # nil, then verify that z € Bag:x and
7 = Bag:x hold. Informally, z € Bag:x holds since z = First:x and certainly
the first element of x is one of the elements in x. z = Bag:x holds since x has
only one element, in particular First:x.

After instantiating the operator First into the scheme we finally obtain the
algorithm shown in Fig. 1. Termination of Min on all non-nil inputs follows
from the fact that FirstRest decomposes lists into strictly smaller lists. Note also
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that we have in effect produced a proof of correctness since in the construction
of Min we used correctness considerations as constraints on the way that
specifications for subalgorithms were created.

To recapitulate, we started with a formal specification for a problem (MIN)
and hypothesized that a divide-and-conquer algorithm could be constructed for
it. We began the process of instantiating a divide-and-conquer program scheme
by choosing a simple decomposition operator (FirstRest). From this choice we
were able to derive the control predicate (Rest: x = nil) and a specification for
the composition operator. The synthesis process was then applied (recursively)
to this derived specification resulting in the synthesis of the composition
operator (Min2). Finally we set up a specification for the primitive operator and
applied the synthesis process to it. Synthesis consisted of verifying that a known
operator satisfied the specification. In the remainder of this paper we formalize
those aspects of the above derivation that have been presented informally and
illustrate the formalism with more complex examples.

3. Perived Antecedents

The informal derivation presented in the previous section involved a
verification attempt that failed. However, we were able to use the subgoals
generated during the deduction in a useful way. In this section we generalize
and formally state the deductive problem exemplified in this derivation. A
formal system introduced in Section 3.2 will be used for several different
purposes in the synthesis method described later.

3.1. The antecedent-derivation problem
The traditional problem of deduction has been to establish the validity of a
given formula in some theory. A more general problem involves deriving a
formula, called a derived antecedent, that satisfies a certain constraint and
logically entails a given goal formula G. The constraint we are concerned with
simply checks whether the free variables of a formula are a subset of some
fixed set that depends on G. If G happens to be a valid formula in the current
theory then the antecedent true should be derived——thus ordinary theorem
proving is a special case of deriving antecedents.

For example, consider the following formulas.

VieNVje N[’ <% 3.1
YieEN[i=0 > VjeEN[i*=s/%] (3.2)

The first is invalid, the second valid. The only difference between them is that
(3.2) has a sufficient condition, i = 0, on the matrix i*< ;% in (3.1). We call i = 0
an {ij-antecedent of (3.1) because i is the only variable which is free in it and
if we were to include it as an additional hypothesis in (3.1) we would obtain a
valid statement.
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Vx, - V¥x,Vx, - - Vx,G (3.3)
be a closed formula.® A {x,, ..., x;}-antecedent of (3.3) is a formula P whose
free variables are a subset of {x,, ..., x;} such that

Vx, - - Vx[P 2 Vx,,  Vx,G]
is valid. P is a weakest {x,, ..., x;}-antecedent if
Vx, - V[P & Vx,, Vx,G]

is valid. For example, consider formula (3.1) again:
(a) false is a { }-antecedent of (3.1) since

false = YieNVjeN[i*< /%]

holds;
(b) i =0 is a {i}-antecedent of (3.1) since

ViEN[i=0 = VjEN[i*< /]

holds;
(c) i=jis a {i, j}-antecedent of (3.1) since

ViENVjEN[isj>i* <7

holds.

Furthermore, note that each of the above antecedents are in fact weakest
antecedents since the implication signs can each be replaced by equivalence
signs without affecting validity.

In general a formula may have many antecedents. Characteristics of a useful
antecedent seem to depend on the application domain. For program synthetic
purposes, desirable antecedents are (a) in as simple a form as possible, and (b)
as weak as possible. (Criterion (b) prevents the Boolean constant false from
being an acceptable antecedent for all formulas.) Clearly there is a tradeof
between these criteria. Our implemented system for deriving antecedents,
called raINBOW, measures each criterion by a separate heuristic function,
then combines the results to form a net measure of the simplicity and weakness
of an antecedent. RaINBOW seecks to maximize this measure over all ante-

*In this paper our attention is restricted to formulas involving only universally quantified
variables. Hence quantifiers will be omitted whenever possible.
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cedents. For example, suppose that we want a useful {i, j}-antecedent of (3.1).
Three candidates come to mind: false, i’ <j?, and i <j. false is certainly simple
in form but it is not very weak. Both i*<j? and i < are weakest antecedents,
however i=j is the simpler of the two. Thus i=j is the most desirable
{i, /}-antecedent.

The generality of the antecedent-derivation problem allows us to define
several well-known problems as special cases. Formula simplification involves
transforming a given formula into an equivalent but simpler form. Formula
simplification can be viewed as the problem of finding a weakest {x,, ..., x,}-
antecedent of a given formula Vx, ---Vx,G. For example, we found i< to
be a result of simplifying i* < j%. Theorem proving involves showing that a given
formula is valid in a theory by finding a proof of the formula. In terms of
antecedents, theorem proving is reducible to the task of finding a weakest
{ }-antecedent of a given formula. An antecedent in no variables is one of the
two propositional constants frue or false. Formula simplification and theorem
proving are opposite extremes in the spectrum of uses of derived antecedents
since one involves deriving a weakest antecedent in all variables, and the other
involves deriving a weakest antecedent in no variables. Between these
extremes lies a use of antecedents which is crucial to the synthesis method
described later.

Consider again the derivation of Min in the previous section. We reasoned
backwards from the output condition of MIN (formula (2.2)) to an output
condition for the unknown composition operator. Technically, we derived a
{zy, 2}, z,}-antecedent of

x; = First: xo A x,=Rest:x, A x;, = z; A z,E Bag:x, A z,<Bag:x,
> zyEBag:x, A z,<Bag: x,

where the goal is just (2.2) and the hypotheses are the output conditions of the
operators in (2.1). This formula is an instance of a formula scheme, called
SPRP, that is generic to divide-and-conquer algorithms (see Section 6). It will
be seen in Sections 5 and 7 that a key step in all of the design strategies
presented in this paper involves deriving an antecedent over some but not all
variables of an instance of SPRP.

While the antecedent problem is in a sense more general than that of
theorem proving, we will see in the next section that actually deriving ante-
cedents is much like theorem proving.

3.2. A formal system for deriving antecedents

RAINBOW uses a problem-reduction approach to deriving antecedents that
may be described by a two-phase process. In the first phase, reduction rules are
repeatedly applied to goals reducing them to subgoals. A primitive rule is
applied whenever possible. The result of this reduction process can be
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envisioned as a goal tree in which (1) nodes represent goals/subgoals, (2) arcs
represent reduction-rule applications, and (3) leaf nodes represent goals to
which a primitive rule has been applied. The second phase involves the
bottom-up composition of antecedents. Initially each application of a primitive
rule to a subgoal yields an antecedent. Subsequently whenever an antecedent has
been found for each subgoal of a goal G then an antecedent is composed for &
according to the reduction rule employed.

A portion of a formal system for deriving antecedents is presented here. As
mentioned above, all formulas in this paper are assumed to be universally
guantified. Consequently, formulas are prepared by dropping quantifiers and
treating all variables as constants. In presenting a set of rules which allow us to
derive antecedents we use the notation j; as an abbreviation of the formula
hynhon- ah > A where H=1{h,h, ..., h,}. Substitutions do not play
an important role in the examples of this paper so for simplicity we omit them
(sec however |24, 27]). Only those rules required by our examples are presen-
ted. A more complete presentation may be found in [24].

The first reduction rule, R1, applies a transformation rule to a goal. Trans-
formation rules are expressed as conditional rewriting rules

r—+g if C

or simply r-»s when C is frue. By convention we treat an axiom A as a
transformation rule A -> frue. This allows rule R1 to apply axioms at any time
to subformulas of the current goal. Also any hypothesis of the form r=s is
interpreted by R1 as a transformation r—> s All transformation rules are
equivalence-preserving,

R1, Reduction by a transformation rule. 1f the goal has the form (,(,” and there is
a transformation rule r— s if C and C can be verified without much effort then
generate subgoal 91t A is a derived antecedent of the subgoal then return A

. G
as a derived antecedent of 4.

. . . . . i BAaC
R2. Reduction of conjunctive goals. If the goal formula has the form 4 then
B o I . ¢ B &
generate subgoals 5, and ¢ If P and Q are derived antecedents of ; and

. . BAC
respectively, then return P A Q as a derived antecedent of ;
I H

. .. . A i} 3
P1. Primitive rule. 1f the goal is 7 and we seek an {x,, ..., x,}-antecedent and A
and H' depend only on the variables x,,...,x, where H' has the form
Ay and (b Yo, G H, then generate the antecedent H' = A,
I li v -

The above rules have been presented in terms of ground instances of the
relevant term and formulas. RAINBOW uses a unification algorithm to match a
subterm or subformula of the goal with an expression. The rules presented above
are representative of the rules actually used in RAINBOW.
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Suppose that we wish to derive a {z,, z,, z,}-antecedent of

Length:x,; = Length: x,div2 A Length:x,= (1 + Length: x,) div2 A
Append:x, = (x,, x,) A Bag:x, = Bag:z, n Ordered: z,
A Bag:x,= Bag:z, » Ordered: z,

= Bag:x,= Bag:z, n Ordered: z,.

This antecedent problem is taken from the synthesis of a mergesort algorithm
in Section 7.1. A goal tree representing a formal derivation of the antecedent

Ordered: z, A Ordered: z,
= Union:(Bag: z,, Bag: z,) = Bag:z, n Ordered: z, (3.4

is given in Fig. 2. In this example and all that follow we apply rule R2
immediately and treat each conjunct in the goal separately. The arcs of a goal
tree are annotated with the name of the rule and known theorem or hypothesis
used. The leaves of a goal tree are annotated with the primitive rule used. The
axioms and transformation rules needed for the examples are listed in Ap-

Hypotheses: h1. xp = Append:(xy, X2)
h2. Length: xy = Length:x, div 2
h3. Length:x; = (1 + Length 1 xp) div 2
h4. Bag:xy = Bag:z,
h5. Ordered : 2,
h6. Bag:x, = Bag:z;
h7. Ordered : z,

Variables: {2, 21, 22}

Goal 1: (Q) Bag:x, = Bag:z

[R1+ht

(@) Bag:Append:{(xq, xo) = Bag:2,
|R1+L5

(Qy Union:(Bag x4, Bag:x,) = Bag:z,
|R1+4h4, Rt +h6

(@) Union:(Bag:zy, Bag:z,) = Bag:zo
P1

where Q is
Ordered:zy » Ordered:z;=> Union:(Bag:zy, Bag:z,) = Bag:z,

Goal 2: (Ordered:z; A Ordered :z,=> Ordered : zp) Ordered 1z,
P1

FiG. 2. Derivation of output conditions for Merge.
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pendix A. To the left of each goal in the tree will be its derived antecedent in
angle brackets.
In this example the given goal

Bag:x, = Bag:z, n Ordered: z,

is reduced by application of the rule R2 (reduction of a conjunctive goal)
to Goal 1 and Goal 2. Goal 1, Bag:x,=Bag:z, is reduced to
Bag: Append:{x,, x,) = Bag: z, by replacing x, by Append :{x,, x,). This is done
by applying rule R1 and hypothesis h1. The resulting subgoal is further reduced
by rule R1 together with the transformation rule

Bag o Append:{(x,, x,) > Union: (Bag: x,, Bag: x,)
(called L5 in Appendix A) to the subgoal
Union:{Bag: x,, Bag:x,)= Bag:z,.
Hypotheses h4 and h6 can now be applied (by rule R1) to generate the subgoal
Union:{Bag:z,, Bag:z,) = Bag:z,.
At this point no obvious progress can be made in reducing this goal. Note
however that it is expressed in terms of the variables z,, z,, and z,. Primitive
rule P1 is applied and we obtain the derived antecedent
Ordered: z, A Ordered: z,= Union:(Bag:z;, Bag:z,) = Bag: z,.
This antecedent is then returned upwards as the derived antecedent of the
successive subgoals of Goal 1.

Goal 2 has no obvious reductions that can be applied to it but since it
depends on one of the antecedent variables we can apply primitive rule P1
yielding the derived antecedent

Ordered: z; A Ordered: z,=> Ordered: z;.
In the composition phase of the derivation the antecedents generated by the
primitive rules are passed up the goal tree and composed. The antecedent of
the initial goal (3.4) is the.simplified conjunction of the antecedents derived for

its two subgoals:

Ordered: z; A Ordered: z,
= Union:{Bag: z,, Bag: z,) = Bag: z, n Ordered: z, .
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In Fig. 2 and all subsequent figures we record only the simplified form of a
composed antecedent.

RAINBOW derives an antecedent by means of a depth-first search with a
few pruning and ordering heuristics. The object of the search is to find an
antecedent that maximizes a heuristic measure of syntactic simplicity and
semantic weakness. Some of the pruning and ordering heuristics motivate the
search towards subgoals that are expressed entirely in terms of the antecedent
variables. For example, if there is a transformation rule that replaces non-
antecedent variables in the goal with some antecedent variables then all other
applicable reductions of the current goal are ignored. Other heuristics serve to
avoid unnecessary search. RAINBow spends a considerable amount of time
minimizing the number of reductions applicable to a goal, thus keeping the
search tree relatively small. A common difficulty arises when several potential
transformations of the goal are independent in the sense that the application of
one does not affect the applicability of the others. When this situation occurs
the order of applying the transformations is irrelevant and a naive system can
end up doing much redundant search. RAINBOW attempts to detect such sets
of independent transformations and discard all but one representative member
of each set. A backup approach (only partially implemented in RAINBOW)
invokes checking whether the current goal has been generated and/or solved
already. The pruning heuristics employed by ramnsow are such that the
derivation presented in Fig. 2 represents all but one node of the entire search
tree (Goal 2 has one subgoal that proves fruitless).

4. Specifications

Specifications are a precise notation for describing a problem without neces-
sarily indicating how to solve it. Generally, a problem specification (or simply a
specification) II has the form

II:x=zsuchthatI: x> O:{x, z)
where IT:D—-R.

Here the input and output domains are D and R respectively. The input
condition 1 expresses any properties we can expect of inputs to the desired
program. Inputs satisfying the input condition will be called legal inputs. For
inputs that do not satisfy the input condition any program behavior is accept-
able. If the input condition is frue then it will usually be omitted. The output
condition O expresses the properties that an output should satisfy. Any output
value z such that O:(x, z) holds will be called a feasible output with respect to
input x. More formally, a specification II is a 4-tuple (D, R, 1, O) where:

D is a set called the input domain,

R is a set called the output domain,
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1is a relation on D called the input condition, and

O is a relation on D X R called the output condition.

Program F satisfies problem specification If = (D, R, I, O) if for any legal input
x F terminates with a feasible output.* A specification is total if for all legal
inputs there is at least one feasible output. Otherwise, a specification is partial.
That is, a specification is partial if for some legal inputs there does not exist a
feasible output. A specification {1 = (D, R, 1, O) is unsatisfiable if for each legal
input there is no feasible output.

The definition of ‘satisfies’ can be weakened slightly with the following ideas
in mind., For several reasons we may not know what the input condition for a
problem should be. Most importantly, the class of inputs for which there exist
feasible outputs may not be known or easily described. Also, within the
computational or competence limits of a synthesis system it may not be
possible to find a program which works on all legal inputs. In both cases we
would like the synthesis system to do the best it can and construct a program F
together with an input condition under which F is guaranteed to terminate with
a feasible output. These considerations lead to the following definition: Pro-
gram F satisfies specification I = (D, R, 1, O) with derived input condition 1" if
for all inputs satisfying both T and I, F terminates with a feasible output.

In these terms the program synthesis problem addressed in this paper (and
used in the cypress system) is stated as follows: Given a specification /7 find a
program F and predicate 1’ such that F satisfies /T with derived input condition
I'. A byproduct of the synthesis process is a way to convert the partial
specification to a total specification. The reader may notice a parallel between
the notions of derived input conditions and derived antecedents. We digress

may be viewed a posing a theorem to be proved; in particular
Yxe DIz e R x 2 0 {x 2)] 4.1

which states that [/ is a total specification. Deriving a program F that satisfies
11 corresponds to finding a constructive proof of (4.1). Our definition of the
program synthesis problem is slightly more general. Deriving a program ¥ that
satisfies I7 with derived input condition I’ corresponds to constructively deriv-
ing a {x}-antecedent of (4.1). The resulting antecedent is the derived input
condition. 50 there is a good analogy between the way that antecedent
derivation generalizes theorem proving and the way that we generalize the
usual notion of program synthesis.

Note that a synthesis system employing this weaker concept of satisfaction
can always generate a correct output; if the given problem is too hard it can
always return a do-nothing program with the Boolean constant false as derived

41t is assurned in this paper that all predicates involved in a specification are fotal.,
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input condition. However, as we shall see, this concept of a derived input
condition plays a more serious and integral role in our method. In particular,
they are used to characterize the conditions under which a synthesized sub-
program can be used. Of course the synthesis of a program involves trying to
make the derived input condition as weak as possible. We also note that a
system based on this definition of satisfaction allows the user to ignore input
conditions when formulating a specification. However, deriving an input con-
dition requires additional computation which could be saved if the user
supplies a correct or nearly correct input condition.
For example, consider the specification

PARTITION : x, = (x,, xp)
such that Length:x,> Length: x, A
Length:x,> Length:x, A
Bag:x, = Bag:x, A
Bag:x,= Union:(Bag: x,, Bag:x,)
where PARTITION : LIST(N) - LIST(N) x LIST(N) .

This specifies the problem of partitioning a list of numbers into two shorter
sublists such that each element of the first sublist is less than or equal than each
element of the second sublist. This specification is partial in that for inputs of
length zero or one the problem has no feasible output. cypress can construct a
program called Partition that satisfies PARTITION with derived input con-
dition x # nil A Rest:x # nil (see Section 7.3). This predicate is used as a gnard
on the invocation of Partition.

5. Design Strategies for Simple Algorithms

A basic operation of the problem-reduction approach to synthesis involves
treating specifications that can be satisfied by simple expressions. Two cases
arise regarding such specifications. First, a specification I7 may have the same
domain and range as a known operator. In this case we derive the conditions
under which the known operator satisfies the given specification. Alternatively,
IT may have a more complex domain and/or range than any known operators.
In this case we form a structure of known operators such that the structure
(viewed as a function) has the correct domain and range, and derive conditions
under which the structure satisfies the given specification. If there are alternative
ways to structure the same known operators then a conditional program may
arise. The strategies used by a cvpress system for handling these cases are
described below in Sections 5.1 and 5.2 respectively.

5.1. Matching an operator against a specification

In this section we present a strategy (and its formal! basis) for handling
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specifications that can be satisfied by a single known operator. As an example,
the specification

MSORT_DECOMPOSE: y, = (v, y»)
such that Length: y,> Length:y, A
Length:y,>Length:y,
where MSORT_DECOMPOSE : LIST(N) - LIST(N) x LIST(N)

arises during the synthesis of a mergesort algorithm (see Section 7.2). The
MSORT_DECOMPOSE problem involves mapping a list into a 2-tuple of
shorter lists. Suppose that we have an operator, called Listsplit, that splits a list
roughly in half. It is specified as follows:

LISTSPLIT: x, = {x;, x»
such that x, = Append: (x,, x,) A
Length:x, = Length:x,div2 A
Length:x,= (1+ Length:x,) div2
where LISTSPLIT : LIST(N)— LIST(N) X LIST(N) .

By x div k we mean integer division of x by k (e.g. 5 div 2 = 2). Listsplit might
satisfy MSORT_DECOMPOSE since their input and output types match and
neither has an input condition. To be sure though, we need to verify that if
Listsplit is used to split some list y, into {y,, y,) then y,, y,, and y, satisfy the
output condition of MSORT_DECOMPOSE. Technically, this involves show-
ing that the output condition of LISTSPLIT implies the output condition of
MSORT_DECOMPOSE.

The following theorem provides the basis for deriving the conditions under
which an operator satisfies a specification. It is helpful in this theorem to think
of II, as a specification for a known operator (such as Listsplit) and /1 as a
given specification (such as MSORT_DECOMPOSE).

Theorem 5.1. Ler II, = (D,,R,,1,,0,) and 1I,=(D_ R, 1,0,) be specifica-
tions. If

(a) Ds = Dk7

(b) R, =R,

(©) J is an {x}-antecedent of

VxeD,L:x=>1,:x],
(d) K is an {x}-antecedent of
VxeD,VzeR([L:x A O, :(x,2)> O, :(x, 2)],

then any operator satisfying Il, also satisfies 11 with derived input condition
J A K.
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Proof. Let F be any operator that satisfies IT,, thus

VyxeDL:x> 0, :{x,F:x)]
holds. We must show

VxeD[L:x A Jix n Kix= O, :(x,F:x)]

where J and K are antecedents satisfying conditions (c) and (d) respectively.
Let x& D, and assume [ :x A J:x A K:x. By conditions (a) and (c) we can
infer I, : x. Since F satisfies II, we obtain O, :(x, F:x). We have F:x € R;, and
by condition (b) we get F:x € R. From an instance of condition (d)

Kix alixn O (x5, Fix)> O, :(x, F:x),

we infer O, :(x, F:x). Since x was taken as an arbitrary element of D it follows
that

VxeD[J:x n Kix Al x> 0,:{(x, F:x)]
i.e., F satisfies I, with derived input condition J A K. [

cypress employs a strategy called OPERATOR_MATCH based on
Theorem 5.1. Given a specification, OPERATOR MATCH finds all known
operators with the same input/output types. For each such operator, it then sets
up and solves the antecedent-derivation problems from conditions (c) and (d).
Finally that operator with the weakest derived input condition is returned as
the synthesized algorithm.

Given the specification MSORT_DECOMPOSE, OPERATOR_MATCH
would find the operator Listsplit and match them as follows. The antecedent-
derivation problems in conditions (c) and (d) in Theorem 5.1 are set up using
the following substitutions:

LIST(N) replaces D,, R,, D, and R,

true replaces I, and I

the output condition of LISTSPLIT replaces O,, and

the output condition of MSORT_DECOMPOSE replaces O,.
Condition (c) becomes

true = true

and we trivially obtain the derived antecedent frue. Condition (d) becomes the
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problem of deriving a {y,}-antecedent of

vo = Append:{(y,, y,) A
Length:y, = Length:y,div2 A Length:y,= (1 + Length:y,)div2
= Length:y, > Length:y, A Length: y,>> Length: y, .

The derivation presented in Fig. 3 yields the antecedent Lengih:y,>0 A
Length:y,> 1 which simplifies to Length:y,> 1. Thus according to Theorem
5.1 Listsplit satisfies the specification MSORT_DECOMPOSE with derived
input condition Length:y,> 1. Consequently we can use the operator Listsplit
for the problem MSORT_DECOMPOSE provided that it is never passed an
argument of length zero or one.

In applying Theorem 5.1 we assume that a specification exists for all known
operators. This may seem problematic due to the need to specify the primitives
in the target programming language. However, we let a primitive operator
specify itself. For example, the list operator Cons is specified in CYPRESS’
knowledge base by

CONS:{a, y)= x
such that x = Cons:{a, y)
where CONS:N x LIST(N)~ LIST(N) .

When this specification is used, transformations are called into play that
explicate the meaning of Cons in interaction with other operators and relations.

Hypotheses: h1. yo = Append:(ys, ¥2)
h2. Length:y; = Length: y, div 2
h3. Length:ys = (1 + Length:yo) div 2

Variables: {yo}

Goal 1: (@) Length:yo> Length:y,

|R1 +h2

(@) Length:yo> Length:y, div 2
|R1+ N2

(Q) Length:y,+ Length:y, > Length:yo
|RT + N1

(@) Length:y, >0
P1

where Q is Length:y; >0

Goal 2: (Length:y, > 1) Length:yo > Length:y»
derivation analogous to that for Goal 1

F16. 3. Matching the specification of MSORT_DECOMPOSE with the specification of Listsplit.
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See, for example, L1, L2, and L3 in Appendix A. The knowledge base provides
a context that extends the meaning of CONS and other specifications.

5.2. Strategies for simple algorithms on composite data types

If specification IT has a complex domain and/or range, then it may be that II can
be satisfied by some simple structure of known operators. For example, consider
the specification

PARTITION_COMPOSE: (b, {z,, z)) = {2y, 2}
such that Bag: z, =< Bag: z]
= Add: (b, Union:(Bag: z;, Bag: z{)) = Union:(Bag: z,, Bag:z{)
Bag:z,<Bag:z
where PARTITION_COMPOSE : N X (LIST(N) x LIST(N))
— LIST(N) X LIST(N)

which (in slightly stronger form) arises during the synthesis of a partition
operator for a quicksort (see Section 7.3). Intuitively, this specifies the problem
of adding a number b to one of two lists while preserving the property that
each element in the first list is less than or equal to each element in the second
list. cypress has a design strategy, called STRUCTURE, that creates a list of
structures of known operators that satisfy the domain and range of the given
specification. For example, this strategy would suggest the structure

(Cons: (b, z,), z})

and many others that are not as reasonable. Each structure in turn is matched
against the given specification and the one with the weakest derived input
condition is returned.

More intelligent strategies emerge from concentrating on special classes of
problems. For example, the divide-and-conquer design strategies described in
Section 7 require the construction of simple decomposition and composition
operators. Intuitively, a decomposition operator on some data type maps a
larger element of the type into smaller elements of the type (with respect to a
suitable well-founded ordering). Correspondingly, a composition operator is
used to construct larger elements of a type out of smaller ones. Each known
data type (such as N and LIST(N)) has associated with it a collection of
standard decomposition and composition operators which are used by the
divide-and-conquer design strategies. For example, for LIST(N) cypress has
the standard composition operators Cons and Append, and the standard
decomposition operators FirstRest and Listsplit. However, on composite data
types there may be no such operators known. cypress has a design strategy,
called COND, for constructing composite decomposition/composition opera-
tors out of known decomposition/composition operators.




62 D. R. SMITH

COND handles PARTITION_COMPOSE as follows. A composition opera-
tor is required on the data type LIST(N) x LIST(N). This type may occur often
enough that it is worth having prestored composition operators available for
it, but let us assume that none are available so that we must construct one
out of known composition operators on LIST(N). On the data type LIST(N)
cyprEss has the two known composition operators Cons and Append.
COND first attempts to create structures in which a known com-
position operator is applied once and the identity operator is applied to the
remaining input variables. The operator Append is discarded because Append
and Id cannot be structured to have the same input/output type as PAR-
TITION_COMPOSE. However, using Cons, COND generates the structures:

(Cons (b, zp), Id: z () 5.1
and
{Id: zy, Cons: (b, z{)) (5.2)

and matches these structures against PARTITION_COMPOSE. If one struc-
ture happens to satisfty PARTITION_COMPOSE (that is, if its derived input
condition is frue) then it is returned as the composition operator. If neither
structure satisfies PARTITION_COMPOSE then COND forms a conditional
using the derived input conditions as the guards.

A specification for a structure is easily created from the specifications of its
component operators. For example, structure (5.1) is specified by

STRUCTURES.1:4{b, (z;, 1)) = {24, 2¢)
such that zy= Cons: (b, z) A z{ = 2}
where STRUCTURES.1:N x (LIST(N) x LIST(N))
- LIST(N) X LIST(N) .

Theorem 5.1 is used to match STRUCTURES.1 against PARTITION_
COMPOSE as follows. Conditions (a) and (b) were satisfied by the way that
COND constructed (5.1). Satisfying condition (c¢) yields derived antecedent frue
since the input condition of (5.1) is frue. Satisfying condition (d) involves
deriving a {b, z,, z,}-antecedent of

Bag:z, < Bag:zj r zy= Cons:(b, 2,) A 25 1
= Add: (b, Union:(Bag: z,, Bag: z{)) = Union: (Bag: z,, Bag: zg) A
Bag:z,<Bag:z,.

In Fig. 4 the antecedent b < Bag: z/ is derived. Thus (5.1) above can be used to
satisfy PARTITION_COMPOSE with derived input condition b =< Bag:z). An
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Hypotheses: h1. Bag:z,=Bag:z;
h2. zp = Cons: (b, zy)
h3. z§{= 2}

Variables: {b, z,2{}

Goal 1: (true) Union:(Bag:z,, Bag: z§)
= Add:(b, Union:(Bag:z, Bag:zi))
[R1+h2, Ry+h3
{true) Union:{(Bag:Cons:{b, z1), Bag: z1)
= Add:({b, Union:(Bag:z,, Bag:zi))
IR1+ L1
(true) Union:{(Add:(b, Bag:zy), Bag:z})
= Add :(b, Union :(Bag:zy, Bag:z{)
IR1+B4
({true) Add:({b, Union:(Bag:z;, Bag:zi))
= Add :(b, Union :(Bag:z, Bag:z1))
|R1+B1
(true) true
P1

Goal 2: (Q) Bag:zo=Bag:z}
|R1+h2, R1+h3
(Q) Bag:Cons:{b, zy) < Bag: z{
[R1+ L1
(Q) Add: (b, Bag:zy)<Bag:zi
R1+ B5, R2

(Q)y b=Bag:z{ (true) Bag:z,<Bag:z}
P1 [R1+h1
{true) true

where Q is b < Bag:z}

Fic. 4. Matching STRUCTURES.1 against PARTITION_COMPOSE.

analogous derivation for the structure (5.2) results in the derived input con-
dition b= Bag: z,. Since neither structure satisfies PARTITION_COMPOSE
by itself COND combines these two results into the conditional

Partition_Compose: (b, z, z')) =
if
b=Bag:z' - {(Cons:(b, z),z"y U
b= Bag:z-(z,Cons: (b, 2'))
fi

which satisfies PARTITION_COMPOSE.
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6. The Form and Function of Divide-and-Conquer Algorithms

For simplicity of exposition we will restrict our attention to the class of
divide-and-conquer algorithms which have the form

F:x=if
Primitive : x = Directly _Solve : x U
— Primitive : x = Compose o (G X F)o Decompose : X .
fi

where G may be an arbitrary function but typically is either F or the identity
function Id. A more general scheme is presented in [26]. Decompose, G,
Compose, and Directly _Solve are referred to as the decomposition, auxiliary,
composition, and primitive operators respectively. Primitive is referred to as
the control predicate.

Our design strategies for this scheme are based on Theorem 6.1 below. The
theorem is useful because it states how the functionality of the whole (in-
stantiated scheme) follows from the functionalities of its parts and how these
parts are constrained to work together. We use the theorem to reason back-
wards from the intended functionality of the whole scheme to the func-
tionalities of the parts. Conditions (1), (2), (3), and (4) provide generic
specifications for the decomposition, auxiliary, composition, and primitive
operators respectively. Condition (1) states that the decomposition operator
must not only satisfy its main output condition O p,pmmes but must also
preserve a well-founded ordering and satisfy the input conditions to (G X F).
The derived input condition obtained in achieving condition (1) will be used to
form the control predicate in the target algorithm. Since the primitive operator
is only invoked when the control predicate holds, its generic specification in
condition (4) is the same as the specification for the whole algorithm with the
additional input condition Primitive:x. Condition (5), the Strong Problem
Reduction Principle, provides the key constraint that relates the functionality
of the whole divide-and-conquer algorithm to the functionalities of its subal-
gorithms. In words it states that if input x, decomposes into subinputs x; and
x,, and z, and z, are feasible outputs with respect to these subinputs respec-
tively, and z, and z, compose to form z,, then z, is a feasible solution to input
x,- Loosely put, feasible outputs compose to form feasible outputs.

Theorem 6.1. Let Il = (D, R, 1,0 and II;=(Dg Rg, 15 Oy) denote
specifications, let O goppose ANA O pyepppos, denote relations on Ry X Rg X Ry and
D, X D X Dy respectively, and let > be a well-founded ordering on Dp. If
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(1) Decompose satisfies the specification

DECOMPOSE : x, = {x,, Xp)
such that I xp=> Igix A Ipix,
A Xy xy A Op Xy, X, Xy)
where DECOMPOSE : D, - D, X D,

with derived input condition — Primitive : x,;
(2) G satisfies the specification I1,; = (D, R, 1 Op);
(3) Compose satisfies the specification

COMPOSE :{z,, z,) = z,
such that O ¢yppe {20y 215 22)
where COMPOSE R, X R = Ry ;

(4) Directly_Solve satisfies the specification

DIRECTLY_SOLVE:x = z
such that Primitive:x A 1.:x = O :(x, 2)
where DIRECTLY_SOLVE: D, - Ry ;

(5) the following Strong Problem Reduction Principle (SPRP) holds

V(xp, X1, ) EDp X Dy, X DpV(z, 2y, 2,0 € Rp X R; X R,

[ODecompose : <x()’ xl’ X2> A OG :<X1, Zl> A

Op 14Xz 22) A O compose 1$20» 215 25)

= O :(xg, 29)] 5
then the divide-and-conquer program

F:x=if
Primitive : x - Directly_Solve: x []
— Primitive: x - Compose ¢ (G X F)e Decompose : x
fi

satisfies specification 11 = (D, R, 1, Op).

65
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Proof. To show that F satisfies Il = (D, Ry, 1, O) we show by structural
induction’ on D;. that for all x € D, I :x = O :(x, F: x) holds.

Let x, be an object in D, such that I : x, holds and assume (inductively) that
I.:y= O :({y F:y) holds for any y € D, such that x,> y. There are two cases
to constder:

Primitive: x,= frue and — Primitive:x, = true.

If Primitive:x, = true then F:x,= Directly_Solve:x, by construction of F.
Furthermore according to condition (4) we have

I,:x, A Primitive: x,= O :(x,, Directly_Solve : x,)
from which we infer
Oy :{(x,, Directly_Solve : xy)

or equivalently Oy :(x,, F:x,).
If — Primitive: x, = true then

F:x,= Compose e (F x F)o Decompose : x, 6.1)

by construction of F. We will show that Op:{xy, F:x,) holds by using the
inductive assumption and modus ponens on the Strong Problem Reduction
Principle. This amounts to showing that (6.1) computes a feasible output with
respect to input x, Since I.:x, holds and — Primitive:x, holds then
Decompose : x, is defined so let Decompose:x, = (x,, x,). By condition (1)
Decompose satisfies its specification, so we have

ODemmpoxe : <x0’ X1 x2> (62)

and I,:x, and I.:x, Consider x,. By condition (2) we have
I;:x,> O :(x;, G:x}) so we can infer

Og:{x;, Gixy) (6.3)

5Structural induction on a well-founded set (W, >) is a form of mathematical induction
described by

YxeE WIVye Wix>y2>Q:y] 2 Q:x]lo>Vxe WQ:x

i.e., if Q:x can be shown to follow from the assumption that Q:y holds for each y such that x >y,
then we can conclude that Q:x holds for all x.
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by modus ponens. Consider x,. By condition (1) we have x,> x,, thus the
inductive assumption

Ii:x,2 Op :{x,, Fixy)
holds. From this we infer

Op 1 (x,, Frxy . 6.4)
Next, by condition (3) we have

O {(Compose :{G:x,, F:x), G:x, Fixy),

Compose
or simply,

0] (Fixy, Gix, Fixy). 6.5)

Compose

By condition (5) we have the instance

ODe('ompose : <x()7 xl’ x2> A O(: :<X1, G : xl> A
Op 1 (x2 Frxp) A O 1 {F1x5, Gix,, Fixy)
2 O {xg, Frixy) . (6.6)

From (6.2), (6.3), (6.4), (6.5), and (6.6) we infer Op:(x,, F:xy). [

Notice that in Theorem 6.1 the forms of the subalgorithms Decompose,
Compose, and F are not relevant. All that matters is that they satisfy their
respective specifications. In other words, their function and not their form
matters with respect to the correctness of the whole divide-and-conquer
algorithm.

Theorem 6.1 actually treats the special case in which the auxiliary operator G
is distinct from F. A more general version of this theorem appears
in [26]. The principal difference is that when the auxiliary operator is F
then we must include the expression x,> x, in the output condition of
DECOMPOSE in condition (1).

7. Design Strategies for Divide-and-Conquer Algorithms

Given a problem specification /] a design strategy derives specifications for
subproblems in such a way that solutions for the subproblems can be assembled
(via a program scheme) into a solution for I1. Note that a strategy does not
solve the derived specifications, it merely creates them.
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Three design strategies emerge naturally from the structure of divide-and-
conquer algorithms. Each attempts to derive specifications for subalgorithms
that satisfy the conditions of Theorem 6.1. If successful then any operators
which satisfy these derived specifications can be assembled into a divide-and-
conquer algorithm satisfying the given specification. The design strategies differ
mainly in their approach to satisfying the key constraint of Theorem 6.1—the
Strong Problem Reduction Principle (SPRP).

The first design strategy, called DS1, can be summarized as follows.

DS1. First construct a simple decomposition operator on the input domain and
construct the auxiliary operator, then use the Strong Problem Reduction
Principle to set up a specification for the composition operator on the output
domain. Finally derive a specification for the primitive operator.

The derivation of the Min program in Section 2 was controlled by this
strategy. We chose a simple decomposition operator on the input domain
(FirstRest) then derived output conditions for the composition operator (Min2).
The assumptions used during this derivation are just those given us by the
Strong Problem Reduction Principle. Also from the choice of decomposition
operator we derived the control predicate (Rest: x = nil) and used it to set up a
specification for the primitive operator.

To see how we derive a specification for the composition operator, suppose
that the given problem is IT = (D, R, 1, O), we have selected a decomposition
operator Decompose, and we have chosen an auxiliary operator G. The output
conditions for Compose can be derived as follows. First, the formula

ODecompose : <X0, xl’ X2> A OG :<X1, Zl> A
Op 1 {xy, 20> Op : {xy, 20 (7.1)

is set up. (7.1) is the same as the Strong Problem Reduction Principle of
Theorem 6.1 except that the hypothesis O g0 : (20, 215 25) 1s missing. We know
that O, 18 @ relation on the variables z,, z;, and z, so we derive a
{2y, z,, z,}-antecedent of (7.1). If Q:(z,, z,, z,) is such an antecedent then

ODecompose : <X0, xl’ X2> A OG :<x1’ Zl> A
Or :{x,, ) A Q :{zg, 21, 2) > O 1(x, 2

is valid and we can take Q as the output condition O, since the Strong
Problem Reduction Principle is satisfied by this choice of O, Once we
have the output condition it is a simple matter to create a specification for the
composition operator.

To put it another way, the SPRP can be likened to an equation in four
unknowns—O p,conooses Oy O and O, The “locus’ of the ‘equation’
is the set of correct instances of the divide-and-conquer scheme. In design
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strategy DS1 we are given O, we construct O pecompose and O fairly
directly, leaving us with ‘values’ for three of the ‘unknowns’. Antecedent
derivation in effect allows us to ‘solve for’ the remaining unknown—O0 ¢, 0 -
The other design strategies simply attempt to satisfy the SPRP by ‘plugging in
values’ for a different subset of the unknowns then solving for the remaining
one.

The other two design strategies are variations on DS1.

DS2. First construct a simple composition operator on the output domain and
construct an auxiliary operator, then use the Strong Problem Reduction
Principle to derive a specification for the decomposition operator on the input
domain. Finally, set up a specification for the primitive operator.

DS3. Construct a simple decomposition operator on the input domain and
construct a simple composition operator on the output domain, then use the
Strong Problem Reduction Principle to derive a specification for the auxiliary
operator. Finally, set up a specification for the primitive operator.

In each of these design strategies we must find a suitable well-founded
ordering on the input domain in order to ensure program termination. We now
describe design strategies DS1 and DS2 more formally. Design strategy DS3 is
discussed more fully in [26]. Section 7.1 presents DS1 and illustrates it with the
derivation of a mergesort algorithm. Design strategy DS2 is presented in
Section 7.2 and is illustrated by the derivation of an algorithm for merging two
sorted lists. In Section 7.3 we derive a quicksort algorithm which illustrates how
the design strategies handle partial specifications.

7.1. Design strategy DS1 and the synthesis of a mergesort algorithm

Each of the steps in design strategy DS1 are described below in terms of a
given specification Il = (D, Ry, I, Og). The generic description of a step is
presented first, followed by its application to the problem of sorting a list of
numbers.

The problem of sorting a list of natural numbers may be specified as follows

SORT: x = z such that Bag:x = Bag: z A Ordered: z
where SORT: LIST(N)— LIST(N) .

Here Bag: x = Bag: y asserts that the multiset (bag) of elements in the list y is
the same as the multiset of elements in x. Ordered:y holds exactly when the
elements of list y are in nondecreasing order.

Design strategy DS1 stems from the construction of a simple decomposition
operator.

(DS1)(1) Construct a simple decomposition operator Decompose and a well-
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founded ordering > on the input domain D. Intuitively a decomposition
operator decomposes an object x into smaller objects out of which x can be
composed. It is assumed that standard decomposition operators are available
on various data types. If no standard decomposition operator is available for
I1. then a structure or simple conditional is constructed, as described in
Section 5.2.

Example. The input domain of the SORT problem is LIST(N). One way of
decomposing a list is to split it into roughly equal length halves via the operator
Listsplit. Another way is to decompose it into its first element and the
remainder via FirstRest. The choice of Listsplit here leads to a mergesort
algorithm, and the latter choice leads to an insertion sort [25]. An appropriate
well-founded ordering on the domain LIST(N) is

x>y iff Length:x>Length:y.

A method for constructing well-founded orderings on a given domain may be
found in [26].

(DS1)(2) Construct the auxiliary operator G. The choice of decomposition
operator determines the input domain D; of G. It is sufficient to let G be Fif
D, is D, and let G be the identity function Id otherwise, although other
alternatives are possible. Let II; denote the specification of G.

Example. Since our target algorithm is to decompose its input list into two
sublists it is appropriate to let the auxiliary operator be a recursive call to the
sort algorithm, which we will call Msort. At this point Msort has the (partially
instantiated) form

Msort : x =if
Primitive : x — Directly_Solve : x [
—. Primitive : x — Compose © (Msort X Msort)e Listsplit : x
fi

where Directly_Solve and Compose remain to be specified.

(DS1)(3) Verify the decomposition operator. The decomposition operator
assumes the burden of preserving the well-founded ordering on the input
domain and ensuring that its outputs satisfy the input conditions of (G X F).
Consequently it is necessary to verify that our choice of decomposition opera-
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tor Decompose satisfies the specification

DECOMPOSE : x, = (x,, x,)
suchthat I :xy > I ix, Alpix, A x> X,
where DECOMPOSE : D — D, X D,..

The derived input condition is taken to be — Primitive: x,. If the auxiliary
operator G is F then the formula x,>x, must be added to the output
condition. Note that this step ensures that Decompose satisfies condition (1) of
Theorem 6.1.

Example. Since the input condition of SORT is #rue and the auxiliary operator
is Msort we can instantiate the generic verification specification as follows

DECOMPOSE : x, = {x,, x,)
such that true=> true A true a
Length:x,> Length: x, » Length: x,> Length : x,
where DECOMPOSE : LIST(N)— LIST(N) X LIST(N)

or simply

DECOMPOSE : x, = {x,, x,)
such that Length: x, > Length : x,
A Length:x,> Length: x,
where DECOMPOSE : LIST(N)— LIST(N) x LIST(N) .

In Section 3 we showed that Listsplit satisfies this specification with derived
input condition Length:x,>1. Again this means that we should only apply
Listsplit to lists of length 2 or greater. Consequently we use Length:x,<1 as
the control predicate (Primitive) in Msort which now has the form

Msort : x = if
Length: x < 1— Directly Solve : x [
Length: x > 1— Composec (Msort X Msort)o Listsplit: x
fi.

(DS1)(4) Construct the composition operator. Our choice of decomposition and
auxiliary operators in previous steps places strong constraints on the func-
tionality of the composition operator. In particular, the output condition of the
composition operator O, must satisfy the Strong Problem Reduction

Principle. In this step an expression for O, is derived by finding a
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{zy, 2y, zy}-antecedent of

O pecompose * (xg, X1, X) A Og i {xy, 2)) A

O (x5, 220> Op i (xy, 2g) -
Next the specification

COMPOSE :{z,, z,) = z,
such that O 00 (20> 215 22)
where COMPOSE R, X R — R

is set up. Recall that the task of a design strategy is to reduce a given
specification to specifications for subproblems, not to actually solve the sub-
problems. The synthesis process will be recursively applied to the specifications
generated by the design strategy.

Example. Instantiating the formula scheme above with the output conditions,
input domains, and output domains of Listsplit and Msort yields

Length:x, = Lengthx,div2a

Length:x,= (1+ Length:x,)div2a Append:x,= (x;, xp) A

Bag: x, = Bag: z, n Ordered: z, n Bag:x, = Bag: z, n Ordered: z,
2 Bag:x,= Bag:z,a Ordered: z,.

The {z,, z,, z,}-antecedent

Ordered: z; A Ordered: z,
= Union:{(Bag: z,, Bag: z,) = Bag:z, A Ordered: z,

was derived earlier in Fig. 2. Using this antecedent we create the following
specification which describes the well-known problem of merging two sorted
lists.

COMPOSE :(z,, z,) = 2,
such that Ordered: z, A Ordered: z,
= Union:(Bag: z,, Bag: z,) = Bag: z, A Ordered: z,
where COMPOSE : LIST(N) x LIST(N) - LIST(N) .

In Section 7.2 we derive a program called Merge that satisfies this specification.
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(DS1)(5) Construct the primitive operator. From condition (4) of Theorem 6.1
the primitive operator has the generic specification

DIRECTLY_SOLVE :x =z
such that Ip:x A Primitive: x> O : (x, z)
where DIRECTLY_SOLVE:D.— R.

Example. Instantiating the generic specification with the parts of the SORT
specification and the control predicate from step (3) we obtain

DIRECTLY_SOLVE :x = z
such that Length:x =1
= Bag:x = Bag:x A Ordered: 2z
where DIRECTLY_SOLVE: LIST(N)— LIST(N) .

The identity operator Id is easily shown to satisfy this specification using the
strategy OPERATOR_MATCH described in Section 5.1.

(DS1)(6) Construct a new input condition. 1f the synthesis process cannot
construct an algorithm that satisfies the specification DIRECTLY_SOLVE
then we need to revise the input condition I, and redo some earlier steps. We
postpone discussion of this possibility until it arises in Section 7.3.

(DS1)(7) Assemble the divide-and-conquer algorithm. The operators derived
in previous steps are instantiated in the divide-and-conquer scheme and then
the algorithm and the current input condition I,. are returned as the results of
applying the design strategy.

Example. The final form of the mergesort algorithm is

Msort : x =if
Length:x<1-1Id:x 0
Length:x > 1— Merge e (Msort) o Listsplit : x
fi.

The derived input condition on Msort is true. At this point we would apply
various program transformations to obtain simpler and more efficient code.
7.2. Design strategy DS2 and the synthesis of a merge operator

In this section we describe design strategy DS2 in terms of a generic
specification Il = (Dy Ry I Op) and apply it to the COMPOSE problem
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(here renamed MERGE) derived in the previous section:

MERGE : {xy, x3) = 2,
such that Ordered: x, A Ordered x;
= Union:{Bag: x,, Bag: x{) = Bag: z, »n Ordered: z,
where MERGE: LIST(N) X LIST(N)—LIST(N) .

Design strategy DS2 stems from the construction of a simple composition
operator on the output domain.

(DS2)(1) Construct a simple composition operator. Intuitively, a composition
operator is capable of generating the whole of its output domain by repeated
application to some primitive objects, previously generated objects, and per-
haps objects from an auxiliary set. It is assumed that standard composition
operators are known for various common data types. If no standard com-
position operator is available for I, then a structure of simple conditional is
constructed, as described in Section 5.2.

Example. The output domain of MERGE, LIST(N), has several standard
composition operators: Cons and Append. If we choose Cons then the form of
our target algorithm becomes

Merge : (x,, X{) =
if
Primitive : {x,, x;) — Directly_Solve : {x,, x;) U
— Primitive :{x,, x;)—> Cons o (G X Merge) ° Decompose :{x,, x{)
fi

where it remains to determine specifications for G, Decompose, and Directly_
Solve.

(DS2)(2) Construct the auxiliary function. The choice of composition opera-
tor determines the output domain R, of G. Again it is sufficient to let G be F
if R, is Ry and let G be the identity function Id otherwise, although other
alternatives are possible. Let I1; denote the specification of G.

Example. Since the output domain of the auxiliary operator G is N which
differs from the output domain of F (LIST(N)) we simply choose the identity
function Id for G.

(DS2)(3) Construct a well-founded ordering on the input domain.

Example. Our input domain is LIST(N) X LIST(N) on which we can construct
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the well-founded ordering defined by

(xgs X0) > (x5 XD
iff Length X Length:(x,, x;) >, Length x Length: (x,, x})
where (a, b)>,{c, dyifa>cor(a=carb>d).

(DS2)(4) Construct the decomposition operator. First, an output condition for
the decomposition operator is found by deriving a {x,, x,, x,}-antecedent of

Og i {xy, 2z A Opi{xy, z) A
OCnmpo.w : <Z()’ Zl’ 22> $ OF : <X0, ZO> .

Again, this formula is just the Strong Problem Reduction Principle with the
antecedent O p,pmpo : (Xo» X, X,) missing. The derived antecedent is used in
forming the specification

DECOMPOSE : x, = (x,, x,)
such that Ir 1 xg = T 12 A Tp 125 A X0 > X5 A O pppnase  (X0> X5 X3
where DECOMPOSE : D — D X Dp..

If the auxiliary operator G is F then the formula x,> x, must be added to the
output condition. Let Decompose be a program satisfying DECOMPOSE with
derived input condition — Primitive.

Example. Before proceeding we name the intermediate data values in the
Merge algorithm as in the following diagram:
Merge

(Xgo X)) o 7

Decompose Cons

Id X Merge
<aa <X1, x;>>_..___%><b’ Zl>

To obtain output conditions for the decomposition operator we derive a
{xy, x4, a, x;, x{}-antecedent of

a=bna
Union :(Bag: x,, Bag: x{) = Bag: z, A Ordered: z; A
Cons: (b, z,) = z,

= Union:(Bag: x,, Bag:x() = Bag: z, A Ordered: z;.

The derivation in Fig. 5 yields the antecedent
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Hypotheses ht. b=a
h2. Bag:z, = Union:(Bag:xy, Bag:xi)
h3. Ordered: z;
h4. z,=Cons:b, z;)

Variables: {xy, x4, a, x1, Xi}

Goal 1:  (Q) Union:(Bag:xp, Bag:x4) = Bag:z,

|[R1+h4

(Q) Union:(Bag:xo, Bag:xs) = Bag: Cons: (b, z,)
|R1+ L1

(Q)y Union:(Bag:xo, Bag:x¢) = Add: (b, Bag:z)
[R1+h1,R1+h2

(@) Union:(Bag: xp, Bag:x4) = Add:{a, Union:(Bag:xy, Bag: x}))
P1

where Q is

Union :(Bag: xq, Bag: x¢) = Add:{(a, Union:(Bag:x,, Bag:x1))

Goal 2: (@) Ordered:z;
|R1-+h4
(@) Ordered:Cons:(a, z1)

IR1+ 12, R2

(Q) a =Bag:z ({true) Ordered:z;
{R1+h2 IR1+h3
(@) a < Union:(Bag:x}) {true) true

P\w P

(a<Bag:x) a=<Bag:x; {(a=Bag:xi)a=Bag:x]
P1 P1
where Q is a < Bag:x: » a <Bag:x}

FI1G. 5. Deriving an output condition for the decomposition operator in Merge.

Union : (Bag: x,, Bag: x;) = Add:(a, Union: (Bag:x,, Bag: x{))
a <Bag:x, na<Bag:x|.

Instantiating the generic specification for DECOMPOSE above with the input

domains, output domains, and output conditions of Cons, Id, and MERGE
yields

MERGE_DECOMPOSE : (x,, x) = (a, {x;, x1))
such that Ordered: x, A Ordered: x|,
2 Ordered : x, A Ordered: x| A
Length X Length (x,, x{) >, Length X Length (x, x|} A
Union :(Bag: x,, Bag: x;) = Add:(a, Union:(Bag: x,, Bag; x)) A
a=Bag:x, r a=Bag:x;
where MERGE_DECOMPOSE : LIST(N) x LIST(N)
— N x (LIST(N) X LIST(N)).
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This specifies the problem of extracting the smallest element from two ordered
lists and returning it with the remainder of the lists. The following simple
conditional program can be derived using the COND strategy described in
Section 5.2.

Merge_Decompose : (x, x) =
if
First: x < First: x'— (First : x, (Rest:x, x')) U
First: x" < First: x — (First : x’, {(x, Rest : x'))
ﬁ .

The derived input condition is x;# nil A x; # nil. The control predicate in
Merge can now be taken to be x, = nil v x; = nil.

(DS2)(5) Construct the primitive operator. As in design strategy DS1, the
primitive operator has generic specification

DIRECTLY_SOLVE:x = z
such that I : x A Primitive: x
> O :{x, 2)
where DIRECTLY_SOLVE :D.— R,.

Example. Instantiating the generic specification we obtain

DIRECTLY_SOLVE: (x,, x;) = 2,
such that Ordered: x, A Ordered: xy A (x, = nil v x; = nil)
where DIRECTLY_SOLVE: LIST(N) X LIST(N)—LIST(N) .

The conditional function
ifx,=nil>x;, U x\=nil—>x,fi

satisfies DIRECTLY_SOLVE and is easily synthesized. The strategy used by
cypress is described in [27] and is applicable when the input condition of a
specification I1 involves a disjunction. IT is split into several subspecifications,
each the same as I] except that one of the disjuncts replaces the disjunction in
the input condition. The algorithms and derived input conditions synthesized
for these subspecifications are used to create the branches of a conditional
program,

(DS2)(6) Create new input conditions. This step is unnecessary in the current
derivation. Discussion is postponed until Section 7.3.
(DS2)(7) Assemble the divide-and-conquer algorithm.
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Example. The operators derived above are instantiated into the divide-and-
conquer scheme yielding the algorithm

Merge: {x, x") =
if
=nilvx' =nil—ifx=nil>x" 0 x'=nil—>xfi 0
x # nil Ax’ # nil— Conse (Id x Merge) e Merge_Decompose :{x, x')
fi

with derived input condition frue. This version of Merge can be transformed
into the simpler form

Merge: (x, x') =
if
x=nil>x" U
x' =nil->x [
x # nil A x’ # nil = Conse (Id X Merge) e Merge_Decompose : (x, x')
fi.

The complete mergesort program is given in Fig. 6.

7.3. Synthesis from incomplete specifications

For various reasons a specification may be partial in the sense that the input
condition does not completely characterize the conditions under which the

Msort : x =
if
Length:x <1-»>1d: x| 0
Length : x > 1> Merge ° (Msort X Msort) o Listsplit : x
fi.

Merge : (X, X') =
if
x = nil—x’ 0
x =nil>x [
x # nil A X' # nil — Cons (Id x Merge) »Merge_Decompose :(x, X")
fi

Merge_Decompose (X, x') =
if
First:x < First:x' — (First:x, (Rest:x, x'» ]
First : x' < First : x —>(First:x’, {x, Rest: x'))
fi

FI1G. 6. Complete mergesort algorithm.
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output condition can be achieved. In this section we show how this possibility
can arise during the synthesis process and how a completed specification plus
algorithm can be derived from a partial specification. Another purpose of this
section is to show how a different factorization of the SORT problem into
subproblems can be achieved.

7.3.1. Synthesis of a quicksort algorithm

Consider again the specification for the SORT problem

SORT:x = z such that Bag: x = Bag: z A Ordered: z
where SORT: LIST(N)—LIST(N) .

Suppose that we apply design strategy DS2 to SORT. If Cons is chosen as a
simple composition operator a selection sort algorithm will result [25, 27]. The
choice of Append results in a quicksort algorithm, called Qsort, as follows. The
auxiliary operator is Qsort because both inputs to Append are lists. In order to
obtain an output condition for the decomposition operator we seek a {x,, a, x;}-
antecedent of

Bag:x, = Bag:z, A Ordered: z, A
Bag:x,=Bag:x, n Ordered: z, A
Append:{z, z,) = z,

= Bag:x,= Bag:z,A Ordered: z, .

In Fig. 7 the antecedent
Bag: x, = Bag:x, A Bag:x,= Union:(Bag:x, Bag:x,)

is derived. Using this antecedent a specification for the decomposition operator
is set up:

DECOMPOSE : x, = {x;, x,)
such that Length: x,> Length:x; A
Length: x,> Length: x; A
Bag:x, = Bag: x, n Bag:x, = Union:(Bag:x,, Bag:x,)
where DECOMPOSE : LIST(N)— LIST(N) X LIST(N) .

In Section 7.3.2 we derive a program, called Partition, which satisfies this
specification with derived input condition x,# nil A Rest:x,# nil. Setting up a
specification for the primitive operator we obtain

DIRECTLY_SOLVE : x;= z,
such that Length: x,=< 1
= Bag:x,= Bag: z, A Ordered: z,
where DIRECTLY_SOLVE : LIST(N)—LIST(N)
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which is satisfied by the identity operator. Finally, putting together all of the
operators derived above, we obtain the following quicksort program:

Qsort: x =
if
xo = nil v Rest:x,= nil—1d:x []

x, # nil A Rest: x, # nil— Append e (Qsort X Qsort)e Partition: x.
fi.

The derived input condition on Qsort is frue.

7.3.2. Synthesis of Partition

In the previous section we set up the specification

Hypotheses: h1. Bag:zy = Bag:x
h2. Ordered:z;
h3. Bag:x. = Bag:x2
h4. Ordered:z;
h5. zp = Append:(zi, z2)
Variables: {xs, X3, Xa}

Goal1: (Q1) Bag:xo=Bag:z

|R1+h5

(Q1) Bag:x, = Bag:Append :(zi, 22)
IR1+ L5

(@1) Bag:x, = Union:(Bag:zy, Bag:z»)
|[R1+h1, R1+h3

(Q1) Bag:x, = Union:(Bag:x1, Bag:x2)
P1

where Q1 is Bag: x, = Union :(Bag : x1, Bag : x2)

Goal2: (@Q2) Ordered:z,
IR1+h5
{Q2) Ordered:Append:(zy, z2)

— R1+L6, R2
—

.

\ \
(true) Ordered : z, (Q2) Bag:zy=Bag:z, (true) Ordered .z,
|R1+h2 |[R1+h1, R1+h3 [R1+h4
(true) true (Q2) Bag:x;=Bag:x, (true) true
P1 P1 P1

where Q2 is Bag: x; <Bag: x»

FI1G. 7. Derivation of an output condition for the decomposition operator of Qsort.
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PARTITION : x, = (x,, x,)
such that Length : x, > Length : x; A
Length:x,> Length:x, A
Bag:x, = Bag:x, n Bag: x,= Union:(Bag:x,, Bag: x,)
where PARTITION : LIST(N)— LIST(N) x LIST(N)

which has been renamed PARTITION. This specifies the problem of partition-
ing a list of numbers into two shorter sublists such that each element of the first
sublist is less than or equal than each element of the second sublist. Note that
for inputs of length zero or one the problem has no feasible output. The
synthesis process will in effect analyze the problem and construct an algorithm,
called Partition, that satisfies PARTITION with derived input condition
X, # nil A Rest: x, # nil. We will derive a divide-and-conquer algorithm that is
different from the usual partition algorithm. Intuitively, it works on input list x
by recursively partitioning the Rest of x, then adding the First of x to the
appropriate sublist. It is an unusual partitioning algorithm in that it does not
make use of a partitioning element. A partitioning element can however be
discovered as an optimizing refinement after the algorithm has been syn-
thesized. The synthesis of Partition is based on design strategy DS1 and
proceeds as follows.

(DS1)(1-2). Construct a simple decomposition operator, well-founded ordering,
and auxiliary operator. The input type is LIST(N) and we choose the decom-
position operator FirstRest. Again we choose the well-founded ordering used
in Qsort. Let the auxiliary operator be Id since the input domain of G (N)
differs from the input domain of Partition. The choice of FirstRest as decom-
position operator means that we intend to construct a divide-and-conquer
algorithm of the form

Partition : x =
if
Primitive : x — Directly_Solve : x [
— Primitive : x — Composeo (1d X Partition) e FirstRest : x
fi.

(DS1)(3) Verify the decomposition operator. Using Theorem 5.1 it can be
shown that FirstRest satisfies the specification

DECOMPOSE : x, = (a, x;)
such that Length: x, > Length: x,
where DECOMPOSE : LIST(N)—N x LIST(N)

with derived input condition x, # nil.
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(DS1)(4) Construct the composition operator. Before proceeding we name the
intermediate data values in the Partition algorithm as in the following diagram:

Partition ,
Xo (2, Zp)
FirstRest

Partition_Compose

1d X Partition
<a7 x1> I <b9 <217 Z;>>

An output condition for the composition operator is obtained by deriving an
{b, z,, z1, 24 z{}-antecedent of

FirstRest: x, = {(a, x;) A
a=bn
Bag:z, < Bag:z; A Bag:x; = Union:(Bag: z,, Bag:z{) A
Length:x, > Length:z, A x; > Length: z]
= Bag:z,< Bag:z{ A Bag:x,= Union:(Bag: zy, Bag:z¢) A
Length : x,> Length: z, A Length : x,> Length : z

The following antecedent is derived in Figs. 8(a) and 8(b):

Hypotheses: ht. FirstRest:xo = (a, X1)
h2. a=b
h3. Bag:zy<Bag:z{
h4. Bag:x; = Union:(Bag:z;, Bag:z%)
h5. Length:x; > Length:z;
h8. Length:x; > Length:z{

Variables: {b, z1, z}, 2o, Zb}

Goal1: (Q1) Bag:zo<Bag:z¢
P1
where Q1isBag:z; < Bag:zi=> Bag:zo<Bag:z

Goal2: (Q2) Bag:xo = Union:(Bag:z,, Bag:z¢)

|R1+ L4+ ht

(Q2) Bag:Cons:(a, x;) = Union :(Bag:2zo, Bag:z¢)
[R1+ L1

{Q2) Add:(a, Bag:x;) = Union:(Bag:zy, Bag:z})
|R1+ h4

(Q2) Add: (b, Union:(Bag:z1, Bag:z1)) = Union:(Bag:z,, Bag:zp
P1

where Q2is

Bag:z; = Bag:z{

= Add: (b, Union:(Bag:zy, Bag:z})) = Union:(Bag:z,, Bag:z})

FIG. 8(a). Deriving an output condition for the composition operator in Partition.
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Goal 3: (@3) Length:xo > Length:z,

|R1+ L4+ hi

(Q3) Length:Cons:(a, x;) > Length:z,
Rt + L3

(Q3) 1+ Length:x; > Length:z,
(R1+L18+h4

(Q3) 1+ CardeUnion:(Bag:z, Bag:zi) > Length:zo
IR1+ B3

(Q3) 1+ CardoBag:z;+ CardeBag:z;> Length:z,
|R1+L7

(Q3) 1+ Length:z,+ Length:z; > Length:zy
P1

where Q3 is

Bag:zy<Bag:z{=> 1+ Length:z; + Length:zi > Length: 2,

Goal4: (Q4) Length:x, > Length:z}
(Derivation similar to that for Goal 3)
where Q4is
Bag:zy = Bag:zi=> 1 + Length:z; + Length:z{ > Length:z}

FI16. 8(b). Deriving an output condition for the composition operator in Partition.

Bag: z,=<Bag:z)a

Add: (b, Union:(Bag: z;, Bag: z})) = Union: (Bag: z,, Bag: z;) A
1+ Length:z,+ Length:z; > Length: z, A

1+ Length:z,+ Length: z;>Length: z,.

It is then used in setting up the specification

PARTITION_COMPOSE :({b,{z,, 1)) = {z¢, 2§)
such that Bag:z, < Bag: z]
=> Bag:z,=Bag:z/A
Add: (b, Union:(Bag: z,, Bag:2,)) = Union:(Bag: z,, Bag: z() A
1+ Length:z,+ Length:z; > Length: z; A
1+ Length:z,+ Length: z{ > Length: z;
where PARTITION_COMPOSE : N X (LIST(N) x LIST(N))
— LIST(N) X LIST(N) .

In Section 5.2 we showed how design strategy COND constructs a conditional
program called Partition_Compose that satisfies this specification:

Partition_Compose : (b, (z, z')) =
if
b=Bag:z'—{(Cons: (b, z), 2"y U
b=Bag:z—{(z,Cons:b, z')
fi.
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(DS1)(5) Construct the primitive operator. The specification of the primitive
operator is

DIRECTLY_SOLVE:x ={(z, z)
such that x = nil=> Bag:z,<Bag:z{A
Bag:x = Union:(Bag:z Bag:z') A
Length:x > Length:z A Length:x > Length: z’
where DIRECTLY_SOLVE: LIST(N) — LIST(N) X LIST(N)

which is unsatisfiable. The derived input condition is set to false.

(DS1)(6) Construction of a new input condition. We may need to revise the
input condition for either or both of the following reasons:

(1) if Primitive:x is undefined for some legal input x then the program we
are constructing will also be undefined on x;

(2) if the derived input condition I ;g on Directly_Solve is not frue then there
are legal inputs x satisfying

I.:x APrimitive:x A — g1 x
for which we are unable to compute a feasible output. It is necessary then to
revise the input condition I and go back and rederive the operators Decom-
pose, Compose, and Directly_Solve. The new input condition is obtained by
noting that the synthesis process to this point suggests that feasible solutions
exist for inputs satisfying

I.:x A —Primitive : x

using the else branch of the divide-and-conquer algorithm. Furthermore, the
previous step assures us that feasible solutions exist for inputs satisfying

I :x A Primitive :x A ITpg:x.
Consequently, the formula

(I : x A —Primitive: x) v (I : x A Primitive: x A I')pg:x) (7.1)
approximately describes the set of inputs which we know to have feasible
outputs in problem I1. We simplify (7.1) and if it differs from I, then we take it

as the new input condition and return to step 4.

Example. In the previous step the specification DIRECTLY_SOLVE proved
unsatisfiable. In other words an operator could only satisfy DIRECTLY_
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SOLVE with derived input condition false. We revise the input condition I by
letting I'g be false and instantiate (7.1) yielding

(true A —(xy = nil)) v (true A x,= nil A false)

which simplifies to x,# nil. In effect we exclude nil as a legal input to Partition
and return to an earlier stage in the synthesis and rederive Decompose,
Compose, and Directly_Solve. In the following we retrace some of the previous
steps.

(DS1)(3") Verify the decomposition operator. The input condition I,.:x, is
redefined to be x,# nil. Thus we need to verify that FirstRest satisfies the
specification

DECOMPOSE : x; = (a, x,)
such that x, # nil= Length: x, > Length:x; A x; # nil
where DECOMPOSE : LIST(N)—N X LIST(N) .

which it does with derived input condition Rest: x, # nil.

(DS1)(@). Construct the composition operator. This step does not involve the
input condition so the composition operator need not be rederived.

(DS1)(5") Construct the primitive operator. The new specification for the
primitive operator is

DIRECTLY_SOLVE :x,=(z, z')
such that Rest:x = nil=> Bag:z, < Bag:z{A
Bag:x = Union:(Bag: z, Bag:z") A
Length:x > Length:z A Length:x > Length: z’
where DIRECTLY_SOLVE : LIST(N)— LIST(N) x LIST(N)

and again this is unsatisfiable. Thus we will need to find a new input condition
and return to Step 4.

(DS1)(6') Derive a new input condition. The new input condition is found by
simplifying

(x # nil A Rest:x # nil) v (x # nil A Rest:x = nil A false)

to x # nil A Rest:x # nil. We return again to Step 4, letting the current input
condition be x # nil A Rest: x # nil.

(DS1)(3"y Verify the decomposition operator. The new specification for
DECOMPOSE is

DECOMPOSE: x, = {a, x,)
such that x, # nil A Rest: x, # nil
> x, # nil A Rest:x; # nil A Length: x;, > Length: x,
where DECOMPOSE : LIST(N)—LIST(N) x LIST(N) .
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FirstRest  satisfies this specification with  derived input condition
RestoRest: x, # nil.

(DSH(A") Construct the composition operator. Again the previously derived
composition operator is still valid, so this step is skipped.

(DS1)(5") Construct the primitive operator. The primitive operator has
specification

DIRECTLY_SOLVE:x = {(z, z")
such that ResteRest:x = nil=> Bag:z =<Bag:z' A
Bag:x = Union:(Bag:z, Bag:z") A
Length:x >Length:z A Length:x > Length: 2’
where DIRECTLY_SOLVE : LIST(N)— LIST(N) x LIST(N) .

A simple conditional program can be constructed to satisfy this specification:

Partition_Directly_Solve: x =
if
First: x =< FirstoRest: x
— (ListoFirst: x, Listo FirstoRest: x) []
First: x = Firsto Rest : x
—» (List o First o Rest : x, List o First: x)
fi.
cypreEss has a design strategy for forming conditional algorithms when the
inputs can be characterized as small explicit structures. For example, here the
strategy would rewrite the input condition as

x = List :{First: x, FirstoRest : x) .

Then the constraint Bag:x = Union:(Bag:z, Bag:z’) is used to form several
alternate expressions for the output variables z and z'. Each such expression is
matched against the given specification and the derived input condition is used
to guard the execution of the expression in a conditional (unless the derived
input condition is false). If the derived input conditions on all expressions are
false then the problem is unsatisfiable. This strategy was used to determine that
DIRECTLY_SOLVE was unsatisfiable in earlier Steps (5 and 5').

(DS1)(6") Construct a new input condition. Since an operator was constructed
that satisfies DIRECTLY_SOLVE we can bypass this step.

(DS1)(7") Assembly of the divide-and-conquer program. Putting together all
of the operators derived above we obtain

Partition : x =
if
Rest o Rest : x = nil— Partition_Directly_Solve : x [
RestoRest: x # nil
— Partition_Compose o (Id X Partition)e FirstRest : x .
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Qsort ; x =
if
Xo=nil v Rest:xo = nil— Id:x  [J
Xo # nil A Rest: xo # nil— Append - (Qsort x Qsort) » Partition : x
fi

Partition : x =
if
RestoRest:x = nil— Partition_Directly_Solve : x 0
Rest e Rest: x # nil— Partition.Compose - (Id x Partition) - FirstRest : x .
fi

Partition_Compose : (b, (z, z')) =
if
b <Bag:z'— (Cons:(b, 2%, 2"y L]
b =Bag:z-—(z, Cons : (b, 2'))
fi

Partition_Directly..Solve : x =
if
First: x =< Firsto Rest: x — (Listo First: x, List e Firsto Rest: x) 0
First:x = Firste Rest: x — (List » Firsto Rest : x, List o First: x)
fi
F1G. 9. Complete quicksort algorithm.

The derived input condition on Partition is x # nil A Rest: x # nil. The com-
plete quicksort program synthesized in this section is listed in Fig. 9.

8. Concluding remarks
8.1. Correctness of the design strategies

The correctness of design strategies DS1 and DS2 follow from Theorem 6.1.
For DSI, Steps 1 and 3 establish condition (1), Step 2 establishes condition (2),
Step 4 establishes conditions (3) and (5), and Step 5 establishes condition (4) if
the derived input condition on Directly_Solve is true. Once all five conditions of
Theorem 6.1 are established it follows that the divide-and-conquer algorithm
assembled in Step 7 satisfies the current specification. If the derived input
condition on the primitive operator in Step 5 is not true then the design
strategy enters a loop attempting to find an appropriate input condition for the
given problem. As we have not investigated conditions under which the loop
terminates, the design strategy DS1 can only be said to be partially correct.
Analogous remarks hold for DS2.

8.2, Complexity analysis

An algorithm synthesized by means of a scheme can also be analyzed by means of
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a scheme. In particular, the complexity of the divide-and-conquer program
scheme can be expressed by a schematic recurrence relation. If design strategy
DS1 is followed then the construction of a simple decomposition operator
typically results in an operator requiring O(1) time. Also the primitive operator
often requires only constant time. If furthermore the result of decomposition is
two subproblems half the size of the input then the recurrence scheme
simplifies to

Tocllx]) = O1) if Primitive : x
Tocllx]) = T compose (1, 1) + 2T56(1x|/2) if — Primitive : x,

where |x| is the size of the input x, m is the size of the largest output possible
from an input of size |x|/2, and T, denotes the worst-case time complexity of
algorithm H as a function of input size. For the SORT problem we use
|x| = Length:x and m is just Length:x/2. For Msort, the complexity of Merge
is just the sum of the lengths of its inputs so the recurrence relation becomes

TMsmt(n) = O(l) if n=1
TMsor((n) = "1/2 + n/2 + 2TMson(n/2) 11 n> ]

where n = Length: x. This has solution T y,.{n)= O(nIn n).

cypress could be extended to include complexity analysis as an integral part
of its method. This would require extending each design strategy with a
schematic complexity formula for its associated program scheme plus whatever
operations are required to instantiate, simplify, and solve the resulting for-
mulas. Each strategy would then return not only an algorithm plus derived input
condition, but also a derived complexity analysis. One difficulty that arises is
determining a suitable measurement of inputs. Some measurements will be
standard, such as measuring lists by their length. Other measurements, such as
m above, may require deep reasoning about a particular problem.

8.3. CYPRESS

CYPRESS i$ a semi-automatic implementation of the formalisms presented in this
paper. It is semi-automatic in that the user supplies the key high-level decisions
regarding the overall form of the target algorithm and cyprgss carries out the
formal manipulations. cypress includes design strategies DS1 and DS2, several
strategies for constructing conditional programs, and strategy OPERA-
TOR_MATCH. DS1 and DS2 allow further user interaction in the choice of
decomposition (resp. composition) operator and well-founded ordering. At
each choice point cypress first generates and presents a list of alternatives. The
user is then allowed to choose from this list or to enter a new choice.
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Running interpreted rFranziisp on a VAX 11/750, synthesis times range from
a few minutes for Min2 to ninety minutes for the complete quicksort algorithm.
Almost all of this time is spent deriving antecedents so great payofl would
result from speeding up the inference mechanism. RAINBOW was built more for
conceptual clarity than efliciency. Consequently, it operates at the slow rate of
about one inference per 5-10 seconds.

cyprEss has been used to synthesize dozens of algorithms including the four
sorting algorithms mentioned earlier and the top level of two convex hull
algorithms (that is, a divide-and-conquer algorithm was created with
specifications derived for the subalgorithms). Each of the sorting algorithms
required the decomposition of the initial specification into a hierarchy of
specifications that was four levels deep. While the user decided on which design
strategies to apply, the derivation of each specification except the initial one
was completely automatic. The main difficulty experienced in synthesizing
these algorithms lay in formulating the abstract data types needed to state and
reason about the problem and in formulating how various operators and
relations interact. For example, just to state the problem of finding the convex
hull of a finite set of planar points requires formulating abstract data types
representing points, line segments, and convex polygons, and axiomatizing the
relations convex_polygon_contains_point and convex_polygon_contains_point_
set. For the problems we dealt with there was significant overlap between the
data types and axiomatic knowledge built up for one problem and that required
for related problems. For example, once we had built up cyprress’ knowledge
about lists and bags so that a sorting algorithm could be constructed it was easy
to state and synthesize related problems such as MIN and (binary) search of an
ordered list.

In order to gain more experience with the cyprESs approach to program
synthesis it will be necessary to develop and experiment with design strategies
for many more classes of algorithms. Based on our current work the following
methodology seems to be emerging regarding how to construct design strate-
gies. First, a class of algorithms is defined and its common features abstracted
into a program scheme. Second, a theorem relating the functionality of the
whole to its form and the functionalities of its parts is developed. Finally,
heuristic methods for proceduralizing the theorem are coded into a design
strategy for the class.

8.4. Software development systems

CYPRESS has been used to explore a powerful class of tools useful in the design
phase of the software lifecycle. As such cypress forms just one component of a
more comprehensive software engineering environment such as the proposed
knowledge-based software assistant [18]. Below we critically examine the
CYPRESS system with respect to how it might be integrated with and provide
support to other aspects of the software development process.
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It is clear that in practice there is not a clear separation between formulating
specifications and designing algorithms [28]. These two activities are subsumed
under the more general activity of problem understanding. Design strategies
can be used to gain insight into the nature of the specified problem in several
ways. We first discuss the insight gained when a design strategy succeeds and
returns an algorithm plus derived input condition. We then discuss the insight
gained when a design strategy fails for various reasons.

A problem specification is partial if there are legal inputs which have no
feasible output. In other words, a specification is partial if the output condition
is overconstrained. A derived input condition characterizes a class of inputs
that either have no feasible outputs or for which the system cannot construct
code to compute a feasible output. Consequently, when cypPREss derives an
input condition the user (or software development system) may wish to
reexamine the specification to see if it really corresponds to his/her intentions.
cypress' ability to detect partial specifications depends however on clean
termination of its design strategies.

A design strategy may fail on a particular problem for any of several reasons.

(1) Inapplicability of the program scheme. It may be that there is no natural
way to instantiate a scheme for a particular problem. For example, during the
synthesis of a mergesort-like convex-hull algorithm we were unable to develop
(either with cyprEss or by hand) a divide-and-conquer algorithm for the merge
step. In a strict sense it can probably be shown that any arbitrary scheme S can
be instantiated to obtain an algorithm satisfying an arbitrary solvable problem
P. For example, any problem can be satisfied by an instance of the divide-and-
conquer scheme by letting Primitive be true and letting Direcily_Solve do all
the work. However there is a more intuitive and natural sense of the notion
of an instance of a scheme in which the problems corresponding to the scheme
operators are of lesser complexity than that solved by the whole algorithm. In
this sense it may be that no natural instance of the chosen program scheme
solves a given problem.

For example, we will argue that there is probably no natural divide-and-
conquer algorithm for the traveling salesman problem (TSP). All known
algorithms for finding optimal solutions to the TSP run in O(c") time for some
constant ¢ where n is the number of cities (TSP is NP-hard). One divide-and-
conquer approach to TSP would seek to divide the n cities into two groups of
n/2 cities, find optimal routes for each group, then compose the resulting
routes. The recurrence relation for such an algorithm would be

Trgp(n) = 2Tygp(n/2) + Ty, (1)
where Tp,c(n) denotes the combined complexity of the decomposition and

composition operators. If Typ(n) is ¢" then Ty, o(n) is ¢ — 2¢"?. But this
means that the subproblems of the algorithm have substantially the same
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complexity as TSP itself. Thus according to our informal definition, this would not
be a natural divide-and-conquer algorithm. Other approaches have the same
difficulty.

(2) Incompleteness of the design strategy. A design strategy will not in general
be able to construct all instances of a scheme. So a given problem may be
solvable by an instance of the scheme yet not by instances which a given
design strategy can construct. If it is known that the scheme is applicable then
failure of this kind suggests trying an alternate design strategy for the same
scheme (e.g. DS2 vice DS1 for the divide-and-conquer scheme). If no other
alternative design strategies are available then the specified problem may be of
use to the system designer in devising a new design strategy or extending an old
design strategy.

(3) Poor choices. Although a design strategy may be able to produce a
solution to a given problem some choices in its application (e.g. the choice of
decomposition operator in DS1) may lead to deadends. Failures of this kind
suggest backing up and trying alternative choices.

(4) Incomplete knowledge. A design strategy can fail if there is not enough
knowledge available concerning the problem domain. Ideally in such a case the
system would be able to characterize the kind of knowledge which seems to be
missing. Consider an example from this paper. Much of the data-structure
knowledge used in our examples (see Appendix A) is either definitional or

expresses how various operators and relations interact. If the transformation
LS

Bage Append:(y,, y,)— Bag:y, UBag:y,
were not available then the derivation in Fig. 2 would fail at the subgoal
Bageo Append:(x,, x,) = Bag: z, .

An appropriate characterization of the difficulty would be that not enough is
known about the interaction of the Bag and Append operators. Given such a
characterization the user (or automated mathematical discovery system) might
attempt to discover properties that fill the gap and then add them to the
knowledge base.

(5) Computational resource limitations. 1f all the above difficulties are not
present then failure can still occur because of limits on the amount of
computational resource (e.g. time or space) that can be expended on the
problem. For example, rRaINBOW was occasionally unable to derive a good
antecedent because of the default depth bound placed on its depth-first search.
At the depth bound, ramnsow returns the antecedent false if P1 is not
applicable.

It is the difficulty in distinguishing these and knowing how to deal with them
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that suggests leaving the user in overall control of the synthesis process. The
shape and direction of the synthesis process depends on the user’s choices and
the user’s judgement of what a given failure signifies and what action to take in
response.

cyprEss was intended as an experiment in the use of schemes and design
strategies to produce high-level well-structured algorithms. Our view is that the
resulting algorithms will be subjected to transformation that refine their
high-level constructs and introduce optimizations. For example, the sorting
algorithms are expressed in terms of the abstract data type LIST(N). It would
be consistent and useful to refine LISTs into arrays so that the Listsplit and
Append operations can be executed in constant time. As an example of an
optimizing transformation, the control predicate Length:x <1 in Msort can be
usefully specialized to x = nil v Rest:x = nil. As another example, the Partition
algorithm derived in Section 7.3.2 is unnecessarily slow because the guards in
Partition_Compose are computationally expensive. A way proceed is to main-
tain the assertion

dc[Bagz<c A ¢<Bag:z'|

throughout Partition. Either of the two numbers in the input to Partition_
Directly_Solve can be used as a value for ¢. If the assertion can be maintained
then Partition_Compose can be refined into the constant time algorithm

Partition Compose : (b, (z, z)) =
if
b=c—{(Cons:b, z),z’y U
b=c—>{(z,Cons:(b, z'))
fi.

The variable ¢ is just the usual partitioning element.

An issue we have only begun to look at is how cypress could be extended to
help with the problem of modifying and enhancing software. One major
advantage of automated program synthesis is that any bugs in the synthesized
program are traceable to either the system’s knowledge or, more likely, to the
initial specification. The software maintenance problem then involves modify-
ing an old specification followed by resynthesizing code for it. Many of the
synthesis decisions made for the modified specification will be the same or
similar to decisions made for the old specification. The resynthesis process can
be considerably shortened by using a summary of the old synthesis decisions
for guidance. Such an approach could have a significant impact on the problem
of modifying and enhancing software by allowing the user/programmer to
maintain specifications (problem descriptions) rather than code.
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8.5. Related work

A number of efforts have been made to systematize the derivation of al-
gorithms from specifications. Perhaps the most basic is the theorem-proving
approach [16, 21, 22]. Given a specification /I = (D,R,1,0), the theorem-prov-
ing approach secks to extract a program F from a constructive proof of the
theorem

VxeED JzeR[L:x=> O:{x, 2)]. 8.1

Theorem-proving techniques, more or less adapted to the special demands of
program synthesis, are used to prove the theorem constructively. As explained
earlier, cyprEss is based on the slightly more general problem of extracting a
program F from a constructive derivation of an {x}-antecedent of (8.1). The
resulting antecedent is the derived input condition on F. The design strategies
in cypress can be viewed as complex special-purpose inference rules which
actively seek out special structure in the specified problem in order to construct
an instance of an algorithm scheme. By using larger ‘chunks’ of knowledge
about programming and by using problem decomposition we hope to reduce the
complexity of the theorem proving/program synthesis process, and enable the
construction of larger well-structured programs.

Dershowitz and Manna [11] have also explored the formalization of top-
down programming. They present several strategies for designing program
sequences, if-then-else statements, and loops. In addition they exploit rules for
transforming specifications into a stronger or equivalent form. Laaser [19]
describes a system called recsuiLp that incorporates a strategy like DSI.
RECBUILD was able to construct two sorting algorithms, a convex-hull algorithm,
and several others. rREcBUILD works by constructing various code fragments
then deriving conditions under which they achieve the given output condition.
Complementary code fragments are then composed to form a conditional.
Follett [13] describes a system called prosyn that produces nonapplicative
algorithms, including an insertion-sort and a quicksort. PROSYN incorporates a
strategy for inserting primitive operators into partially constructed programs
and strategies for forming conditionals and recursive programs. Particular
emphasis is placed on the analysis of constructed code in order to obtain a
description of its side-effects. This analysis aids in the formulation of sub-
programs.

A style of programming based on instantiating program schemes is reported
in [12, 14, 15]. The concern in these papers however is with instantiating the
scheme operators with code rather than deriving specifications for them.

Transformation rules provide a complementary paradigm for mapping
specifications to programs. Transformation rules are used in [5, 7, 20] to rewrite
a specification into a target language program. CYPREss’ design strategies can be
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viewed as complex rules that transform a specification into a mixture of
program structure and specifications for subprograms. Transformation rules
can also be used to transform high-level algorithms into more efficient code
[2,3,8]. Barstow [4] discusses the need to incorporate theorem-proving
mechanisms into the transformational approach. Manna and Waldinger [21]
incorporate both transformation rules and a generalized form of resolution
theorem proving into a single framework.

The sorting problem has been a popular target for program synthesis
methods partly due to its usefulness, simplicity of problem statement, and
diversity of solutions. Some of the knowledge needed to synthesize a variety of
sorting algorithms is surveyed in [17]. Darlington [10] transforms a high-level
generate-and-test sort algorithm into six common sorting programs. Clark and
Darlington [9] use transformation rules to derive sorting algorithms from a
common specification in a top-down manner.

8.6. Summary

In this paper we have presented a problem-reduction approach to program
synthesis and its implementation in the cypress system. The main distinguish-
ing feature of our approach is the use of design strategies for various classes of
algorithms. Each design strategy encodes knowledge about a class of al-
gorithms in terms of a generic form (represented by a program scheme), and a
generic method for instantiating the scheme for a particular problem. In effect
each design strategy provides a specialized technique for decomposing a
complex problem into simpler subproblems, each described by an automatically
derived specification. Another distinguishing feature of this approach is its
ability to handle partial specifications. The input conditions derived by cYPREss
have many uses including the formation of guards in conditionals and providing
feedback on the nature of the specified problem.

Appendix A

Listed below are all of the axioms and transformations used in the examples of this
paper. Let i and j vary over N, let x and y vary over LIST(N), and let w vary over
BAGS(N).

N1 i+j>j—i>0.
N2, i>(jdiv2)—i+i>]

L1. BageCons:{i, x)— Add: (i, Bag: x).

L2. OrderedeCons:{i, x)— i <Bag:x A Ordered: x.
L.3. LengtheCons:{i, x)— 1+ Length:x.

L4, x— Cons:{i,y) if FirstRest:x = (i, y).

L5, Bage Append:{x,, x,y— Union:(Bag:x,, Bag:x,).

—
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L6. Ordered e Append:(y,, y,)

-> Ordered: y, A Ordered: y, A Bag:y,<Bag:y,.
L7. CardeBag:x— Length: x.
L8. Length:x— Card:w if Bag: x = w.

Bl. w=w.
B2. i = Union:{(w, w))—> i< w Ai=w,
B3. CardeUnion:{w w,)— Card: w + Card:w,.
B4. Union:{Add:{i, w,), w,)
— Add: (i, Union: {(w,, w,)).
B3, Add: (i, w)=w,— i <w,nw <w,
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