
Toward the Synthesis of Constraint Solvers

Douglas R. Smith
Stephen J. Westfold

Kestrel Institute
Palo Alto, CA 94304

{smith,westfold}@kestrel.edu
2 November 2013

Abstract

We develop a basic mathematical framework for specifying and formally designing high-
performance constraint solving algorithms. The framework is based on concepts from ab-
stract interpretation which generalizes earlier work on a Galois Connection-based model of
Global Search algorithms. The main focus is on how to use the framework to automate
the calculations necessary to construct a correct, high-performance solver. We present here
the foundations for generating customized/native solvers for specified constraint satisfac-
tion problems. Our thesis is that a native solver can always be generated for a constraint
problem that outperforms a reduction to an existing solver.

1 Introduction

We take a deep look at constraint-solving algorithms from the point of view of synthesis technol-
ogy. We explore the concepts and techniques that would allow us to automate the calculations
necessary to construct a correct, high-performance solver. We present a basic mathemati-
cal framework for specifying and formally designing high-performance constraint solving algo-
rithms. The framework is based on concepts from abstract interpretation which generalizes
our previous work on a Galois Connection-based model of Global Search algorithms. The main
focus is how to use the framework to automate the calculations necessary to construct a correct,
high-performance solver. We lay the foundations for an automated synthesis system that can
generate a customized, native solver for a specified constraint-based problem.

It is common practice in the constraint-solving community to solve a new problem P by building
a reduction to a well-studied problem Q that has a well-engineered solver. For example, planning
and scheduling problems can be reduced to SAT problems and solved on a SAT solver. In other
cases, a scheduling problem might be reduced to a linear program and solved using a Simplex
algorithm. One problem with this approach is that the reduction of P to Q often loses some
key structure which cannot then be exploited by the Q-solver. Our thesis is that a native solver
can always be generated for a constraint problem that outperforms a reduction to an existing
solver (e.g. for SAT, SMT, Linear Programming, finite domain). Our larger goal then is to
demonstrate the technology to enable the synthesis of customized algorithms for a given problem
P that (1) incorporates all the best current algorithmic and data structuring technology, and
(2) outperforms a P-solver that invokes a Q-solver.

1

Constraint Satisfaction/Optimization Problems (CSP/COP) provide a framework for formu-
lating problems in terms of variables and constraints over the values that the variables can
take on. A solution to a CSP is an assignment of values to the variables that satisfy all given
constraints. Although there are important classes of CSP’s that admit efficient algorithmic
solutions (see Section 2.7), most interesting CSP’s are NP-hard, requiring search.

Modern understanding of constraint-solving is that search takes place on two levels

1. theory-level inference – use the constraints to infer extensions to the current partial model,
and to deductively infer new consequences of the constraints

2. model-level construction - extend or modify a partial assignment aiming to construct a
feasible solution

In this view there are two extreme strategies:

1. pure theory inference – e.g. theorem provers/MC, static analysis

2. pure model search – e.g. simple backtracking, game-tree search

In general though, current best practice is based on alternating between theory search and
model search, using models to guide the inference, and using inference to constrain model
search [8, 2].

Our goal in this paper is to lay out a standard pattern for the derivation of correct-by-
construction CSP solvers using the conflict-directed backjumping and learning paradigm. Our
emphasis is on formalizing a design theory for this class of solvers, which is necessarily inde-
pendent of the particulars of the constraint logic, and developing the calculations necessary to
apply the design theory to specified problems.

Our criteria for developing a mathematical framework, and formalizing design knowledge within
the framework are

1. the abstraction covers a broad range of useful problems,

2. allows simple calculations to generate best-practice code,

3. supports a direct generation of proofs of correctness for instances (for a formal assurance
case).

These criteria are often in tension, and the resolution of that tension is part of the art of
formalizing design knowledge.

The main results of this paper can be summarized as follows.

2

1. Algorithm theory – We developed and proved an algorithm theory for constraint solv-
ing with propagation, conflict detection and analysis, backjumping, and learning that is
parametric on the constraint logic.

2. Design Method for Constraint Propagation – We proved that Arc Consistency is a best-
possible constraint propagation mechanism for arbitrary CSPs, and then showed how
to calculate optimal code for propagation. From Arc Consistency formula schemes we
calculate simple Definite Constraints that can be instantiated into the optimal Definite
Constraint Solver scheme.

3. Theory of Conflict Analysis – We explored several mathematical formalisms for general-
izing conflict analysis to arbitrary logics. We discovered a general pattern for calculating
resolution rules in a given logic, and proved how resolution can be iterated to soundly
infer a new constraint for backjumping and learning purposes.

4. Logic-independent Charactization of Constraint Resolution – We explored several mathe-
matical formalisms for generalizing conflict analysis to arbitrary logics. We discovered a
general pattern for calculating resolution rules in a given logic, and proved how resolution
can be iterated to soundly infer a new constraint for backjumping and learning purposes.

2 Theory of Constraint Solvers

2.1 Constraint Satisfaction Problems

The task of a Constraint Solver is essentially to analyze a given boolean function for its satis-
fiability; i.e. to decide the existence of inputs that give it the value true.

A Constraint Satisfaction Problem (CSP) is classically specified by the following components.
Given

1. Variables – a finite set of variables V

2. Domains – for each variable vi ∈ V , a domain Di of possible values for vi

3. Constraints - predicates that constrain the joint values that variables can take on

4. Objective Function (optional) - to express preferences over solutions.

Find: an assignment of values to variables; i.e. a map V → ΠDi that satisfies all the constraints

We present several examples by giving an informal interpretation of CSP components:

Problem 7→ k Queens
Input 7→ k ≥ 1
V ariables 7→ {column1, .., columnk}
Domains 7→ {1, .., k} for each columni
Constraints 7→ no two queens in the same row, column, or diagonal

3

Problem 7→ SAT
Input 7→ clauses c1, ...ck
V ariables 7→ proposition letters that occur in the constraints
Domains 7→ {true, false}
Constraints 7→ each constraint is a clause (disjunction of literals)

Problem 7→ Linear Pseudo-Boolean
Input 7→ integers a1, ...ak, b1, ..., bk
V ariables 7→ binary variables{x1, ...xk}
Domains 7→ {0, 1}
Constraints 7→ Σk

i=1ai · xi ≤ bi for integers a1, ...ak, b1, ..., bk

Problem 7→ Scheduling
Input 7→ tasks tsk1, ...tskk resourcesr1, ..., rl
V ariables 7→ tasks
Domains 7→ Resources× Time
Constraints 7→ temporal constraints, resource capacity constraints, task/resource suitability,...

Problem 7→ Program Analysis: Static Generation of Program Invariants
V ariables 7→ code locations {`1, ...`k} of program P
Domains 7→ State Information
Constraints 7→ relations between code locations that reflect instruction semantics

Problem 7→ Constructing a Specification Morphism in Program Synthesis
V ariables 7→ symbols of an algorithm/design theory
Domains 7→ expressions of the specification language
Constraints 7→ axioms of the algorithm theory

2.2 Specifying Constraint Problems

A specification of a constraint satisfaction problem (CSP) depends on a theory of constraints,
which builds up the vocabulary for specifying CSP problems and for reasoning about them. In
this section we give highlights of a CSP domain theory. Various CSP’s are mainly differentiated
by their logic; that is, by a satisfaction relation between a language for constraint expressions
and a semantic domain. Below we introduce each component of a CSP in subsections.

2.3 CSP Semantics

In CSP’s the semantics domain is modeled by finite maps from a given domain of variables and
domain(s) of values V aluation = map(Var, Val). Furthermore, we will be interested in sets of
such maps V aluations = Set(map(Var, Val)). In the following, we give a specification of CSP
concepts expressed in the Metaslang language of Kestrel’s Specware system [4].

4

type Variable

type Value

type Valuation = Map(Variable, Value)

op ValuationVars (v:Valuation): Set Variable = domain(v)

2.4 Syntax: Constraints

Next we specify the type of Constraints and various constructors and observations of Con-
straints.

type Constraint

op varsOf: Constraint -> Set Variable

Details of constraints for particular problems will be specified by interpretation of Constraint;
e.g. a problem that has first-order constraints would extend Constraint with additional struc-
ture:

type FOConstraint

op varsOf: FOConstraint -> Set Variable

op mkTrue : FOConstraint

op mkFalse: FOConstraint

op mkNegation: FOConstraint -> FOConstraint -> FOConstraint

op mkConjunction: FOConstraint -> FOConstraint -> FOConstraint

op mkDisjunction: FOConstraint -> FOConstraint -> FOConstraint

op mkExistential: Variable -> FOConstraint -> FOConstraint

op mkUniversal: Variable -> FOConstraint -> FOConstraint

5

2.5 Logic

We assign meaning to constraints by means of an interpreter, satisfiesC, that evaluates the
representation for a given valuation of the variables. When convenient we use the nonASCII
symbol m |= C to express that valuation (or assignment) m satisfies constraint C.

op satisfiesC : Constraint -> Valuation -> Boolean

op satisfiable : Constraint -> Boolean

axiom def_of_satisfiable is

fa(p:Constraint) satisfiable(p) =

(ex(vm:Valuation)(varsOf(p)=domain(vm) && satisfiesC p vm))

Given the essential logical notion of satisfaction, we can begin to build up notions of logical
inference. The Resolve operator is discussed in detail in Section 3.3.

op Entails: Constraint -> Constraint -> Boolean

axiom def_of_Entails is

fa(C1:Constraint,C2:Constraint)

(Entails C1 C2) = (fa(V:Valuation)(satisfiesC C1 V => satisfiesC C2 V))

op Equivalent: Constraint -> Constraint -> Boolean

axiom def_of_Equivalent is

fa(C1:Constraint,C2:Constraint)

(Equivalent C1 C2) = (Entails C1 C2 && Entails C2 C1)

op Simplify: Constraint -> Valuation -> Constraint

axiom Simplify_is_partial_eval is

fa(C:Constraint,val:Valuation)(Equivalent C (Simplify C val))

op Resolve(C1:Constraint)(C2:Constraint)

(v:Variable| v in? (varsOf C1) && v in? (varsOf C2)):

{C:Constraint | % ‘C iff ex(v)(C1 && C2)’

Equivalent C (mkExistential v (mkConjunction C1 C2))

}

2.6 CSP specification

To specify a CSP, we must provide an interpretation of each of the concepts above, which in
Specware is expressed as a specification morphism.

6

The CSP problem is expressed as a function, from a set of Constraints to a Valuation, if one
exists. Rather than supply a definition, we specify CSP by means of an input/output predicate
(output condition) that provides the minimal constraints on acceptable implementations.

Type Option a = | None | Some a

op Solve (Cs: Set Constraint):

{ov: Option Valuation |

case ov of

| None -> ~(satisfiableCs Cs)

| Some vm -> satisfiesCs Cs vm}

Let P = 〈V ar, {Di}, Cs, obj〉 be a CSP. A valuation m is feasible if it satisfies Cs. A feasible
valuation m that optimizes the objective function obj is called optimal. The set of models of
a constraint set Cs is mod(Cs) and the set of countermodels of cmod(Cs). 1 Clearly, a set of
constraints Cs is unsatisfiable exactly when mod(Cs) is empty and exactly when cmod(Cs) is
all valuations.

2.7 Special Classes of Constraint Solving

There are several well-known classes of CSP that admit polynomial-time algorithms. We list a
few prominent ones; see [1] for others.

1. Acyclic constraint networks – Constraints define the (hyper)arcs of a graph (aka the
constraint network) and variables define the nodes Some properties of CSP can be gleaned
from analyzing the topology of the constraint network. A tree-like network or a DAG can
be solved directly solvable by constraint propagation, i.e. without backtracking.

2. Linear Programming – Variables are real-valued and the constraints are linear inequalities
(or equalities). This class has a variety of efficient solvers including the Simplex algorithms
and interior point methods. More generally, real convex optimization problems can be
solved efficiently by interior point methods.

3. Definite Constraint systems – This class of CSPs is a solvable in linear time under certain
assumptions [10].

The last class, of definite constraints, is especially important here since it underlies all constraint
propagation algorithms known to us.

Let 〈P,≤〉 be a poset. A definite constraint C over P has the form

τ [V] ≤ A
1Any valuation that does not satisfy the constraints is a countermodel.

7

where τ is a monotone function on P over the variables V , and A is a constant or variable.
Horn clauses are an important special case: Consider the bounded semilattice 〈Boolean, =⇒
, ∧ , true, false〉 where definite constraints have the form x ∧ y ∧ z =⇒ w; i.e. Horn clauses.
A least fixpoint algorithm provides an efficient means for solving a set of definite constraints.

The generic Definite Constraint Solver algorithm for solving a set of definite constraints [10] can
be derived via fixpoint iteration and the use of Finite Differencing to incrementally compute
the workset that controls the iteration.

The dual formulation of definite constraints is also useful:

A ≤ τ [V]

where the monotone function τ now provides an upper bound on atom A. A greatest fixpoint
algorithm provides an efficient means for solving a set of dual definite constraints. We will use
both forms in subsequent text.

Applications of definite constraint solving include many problems in program analysis (type in-
ference usage count, dataflow, binding time, strictness), Horn-SAT, and constraint propagation
algorithms in CSP.

2.8 Galois Connections

The mathematical concept of Galois Connection (GC) is often used to define the relationship
between a domain of interest (a collection of entities) and a domain of abstract representations
of them. The need for GC arises when we want (1) to focus on and reason about key features of
entities, without all their detail, and (2) to work efficiently with a compact, finite representation
of infinite entities. A Galois Connection provides a way to reason about a complex domain in
terms of a simpler abstraction, trading precision for efficiency.

In CSP the concrete domain of interest is sets of valuations. We are especially interested in
knowing if the set of models for a constraint set is empty, and if not, to find a witness/model.
The powerset of the set of valuations is 2n

n
for n binary variables. The value of a Galois

Connection is providing an abstract domain that allows sound reasoning about such a large set.

abstract domain:
representation of sets of solutions

concrete domain:
sets of candidate solutions

concretization abstraction Galois
Connection

Figure 1: Galois Connection

8

Formally, a Galois Connection between “concrete” poset C = 〈C,≤〉 and “abstract” poset
A = 〈A,�〉 is given by a pair of monotone functions α : C → A (the abstraction function) and
γ : A → C (the concretization function). Moreover, the monotone functions must satisfy the
Galois Connection condition:

a ≤ α(c) ≡ γ(a) � c.
Intuitively, α maps a concrete entity to the best possible abstraction in A. Conversely, γ gives
the best concrete denotation of an abstract value.

We specify Galois Connections in Metaslang in a way that is specialized to the purposes of
constraint solving:

import Constraint#Valuation

import translate /Library/Math/Semilattice#BoundedJoinSemilattice by

{A +-> Rhat,

<= +-> RefinesTo,

bot +-> RhatBot,

join +-> RhatJoin}

op concretize: Rhat -> Set Valuation % gamma

op abstract : Set Valuation -> Rhat % alpha

op beta : Valuation -> Rhat % beta

axiom Galois-Connection-Condition is

fa(S:Set Valuation,rhat:Rhat)

rhat RefinesTo (abstract S) = S subset (concretize rhat)

theorem Overapprox-Galois-Connection-C is

fa(S:Set Valuation) S subset (concretize (abstract S))

theorem Overapprox-Galois-Connection-A is % typically this is equality

fa(rhat:Rhat) rhat RefinesTo (abstract (concretize rhat))

axiom RhatBot-is-comprehensive is % i.e. R = concretize RhatBot

fa(z:Valuation)(z in? concretize RhatBot)

axiom beta-isomorphism is % gamma beta z = {z}

fa(z:Valuation,y:Valuation)(y in (gamma beta z) = (y=z))

The extra function beta is useful in specifications since it maps a concrete element to an
abstract element with the same meaning. In addition, the CW library includes several standard
Galois Connections that are used in constraint solving, represented by morphism from this
specification. These are discussed below.

A simple example of a GC is the relationship between finite sets of integers and their abstraction
as bounding intervals. A set, such as {1,3,5} is abstracted to the interval 〈1, 5〉, given by the
least and greatest elements of the set. The denotation, or concretization, of an interval 〈1, 5〉 is
the full set of elements in the interval, {1,2,3,4,5} in this case:

α({1, 3, 5}) = 〈1, 5〉

9

γ(〈1, 5〉) = {1, 2, 3, 4, 5}.

Note that α and γ are not inverses of one another, since the abstraction loses information: here
the fact that 2 and 4 are not in the set. Intuitively then, when we abstract a set and then
concretize, we end up with a superset:

γ(α({1, 3, 5})) = {1, 2, 3, 4, 5} ⊇ {1, 3, 5}.

However, we would usually expect that abstracting the concretization of an interval set would
return the interval:

α(γ(〈1, 5〉)) = α({1, 2, 3, 4, 5}) = 〈1, 5〉.

For purposes of this report, we will always take the concrete domain to be sets of valuations
(e.g. a typical element being the models for a given constraint set). For example, consider a
SAT problem with three binary variables x, y, z, and constraint

C = (x ∨ ¬y ∨ z) ∧ (¬x ∨ y).

We have

mod(C) = {000, 001, 011, 110, 111}
cmod(C) = {010, 100, 101}

One example of a standard abstract domain is the domain of value-set assignments, which are
finite maps from Variables to sets of Values:

type VSA = Map(Variable, Set Value)

To simplify the presentation, let m(a) denote the application of a map m to a domain element
a, where m(a) returns ⊥ if a is not in the domain of m, and the value associated to a otherwise.

op RefinesTo(pv:PValuation, qv:PValuation): Boolean

axiom RefinesTo-def is

fa(pv,qv)(RefinesTo(pv,qv) = fa(v:Variable)(pv(v) superset qv(v)))

For brevity in the text, we will usually write pv v qv for RefinesTo(pv,qv).

The abstract domain of value-set assignments is depicted in Figure 2 where unassigned values
are indicated by the top symbol > (i.e. all possible values are available). For example, the
partial assignment 0>> assigns 0 to variable x and has all possible values for y and z. The
downward arrows are the v relation; e.g. 0>> v 01>.

The concretization function maps each abstract domain element (i.e. partial assignment) to a
set of (total) assignments; e.g.

γ(0>>) = {000, 001, 010, 011}.

10

abstract domain:
represent a set of

solutions by a pattern

concrete domain: sets
of candidate solutions

concretization

⊤⊤⊤

0⊤⊤ 1⊤⊤

00⊤ 01⊤ 10⊤ 11⊤

000 001 010 011 100 101 110 111

Figure 2: Concretization of Partial Assignments

Note that the abstract domain loses precision because it cannot represent all subsets of assign-
ments: there are 33 = 27 abstract objects versus 28 = 256 subsets of assignments. Since each
of the 256 subsets of assignments will be the models of some constraint, an algorithm must
be able to reason about any subset. The abstract domain can only approximate the concrete
domain, the Galois Connection conditions support the notion of finding a best approximation
to any subset. For example, we have

α({010, 011, 111}) = >1>

but notice that this is an overgeneralization in the sense that

γ(>1>) = {010, 011, 110, 111}

which is a superset of {010, 011, 111}. Generally, an overapproximating domain is characterized
by the laws

asgs ⊆ γ · α(asgs)

and
α · γ(pv) v pv

essentially because α yields a least abstraction domain value that concretizes to a superset.
Dually, γ(pv) yields a greatest set of assignments that abstracts to a lower bound on pv.

Formally we have a Galois Connection between 〈2V aluation,⊆〉 and
〈V SA = map(V ariable, Set V alue),v〉 given by the monotone functions

α(asgs) = {v 7→ ∪{asg(v) | asg ∈ asgs} | v ∈ V ariables}

γ(pv) = {asg | pv v βasg}.

Since we have
asgs ⊆ γ · α(asgs)

and
α · γ(pv) v pv,

11

the abstract domain is overapproximating 2. If the signs are reversed as in

γ · α(asgs) ⊆ asgs

and
pv v α · γ(pv)

we have an underapproximating domain.

Further examples: the models listed above are not the concretization of any partial assignment,
but

α(mod(C)) = α({000, 001, 011, 110, 111}) = >>>

α(cmod(C)) = α({010, 100, 101}) = >>>

There are many other abstract domains that are possible for the concrete domain of sets of
Valuations. For the SAT problem (and other 0/1 problems), it is common to use a version of
the value-set domain consisting of values ⊥, false, true, and >.

2.9 Abstract Interpretation and Constraint Solving

A Galois Connection (GC) provides an abstract approximation to the concrete semantics of a
CSP, but the real problem is to extract a feasible/optimal solution or to show that none exists.
How does a GC help? Given a set of valuations S, we are interested in the subset of S that are
models of our given constraints. We can formalize this as a concrete operation

modθ(S) = {m | m ∈ S ∧ m |= θ}

and its complement
cmodθ(S) = {m | m ∈ S ∧ m 2 θ}.

Unsatisfiability is just that modθ(S) = {}, and satisfiability is producing a witness from
modθ(S). modθ is a useful concrete operation, but it is typically not readily computable;
in other words, it is useful for specification purposes, but not directly useful for computation.
What we want is a way to approximate the effect of concrete operations. The idea of abstract
interpretation is to use a Galois Connection to specify an abstract operation that reflects the
effect of a concrete operation, particularly mod and cmod.

Figure 3 shows two characterizations of abstract operations that approximate concrete op-
erations. The general case is shown on the right and defines the notion of a sound over-
approximation fA to the concrete operation fC :

fC · γ(a) ≤ γ · fA(a).

2Here we actually have the stronger property α · γ(pv) = pv, in which case the Galois Connection is known
as a Galois Insertion.

12

The figure on the left shows the ideal special case. A best abstract operator returns the maximal
amount of information possible within the abstract domain. These characterizations are useful
for specification purposes. Even though the characterization of a best abstract operator provides
an equation, it is not finitely computable since the intermediate sets are typically extremely large
or infinite. The purpose of the abstraction is to sacrifice some precision to gain performance.

a

best abstract operator:
fA(a) = 𝛼 ⋅ fC ⋅ 𝛾(a)

𝛼 𝛾

a’

c c’
fC

fA
a

sound abstract operator:
fC⋅ 𝛾(a) ≼ 𝛾⋅fA(a)

𝛾 𝛾

a’

c c’
fC

fA

Figure 3: Abstract Operations

2.10 Abstract Operators: Constraint Propagation

We can now tie together two previously introduced topics: definite constraint systems and
abstract operators. The result is the first general method for generating sound propagation
operators for CSPs over arbitrary logics.

In CSP theory [1] the most basic sound abstract operator is known as Arc-Consistency (AC)
(where “arc” refers to the arcs of a binary constraint network). Let C(x, y) be a binary con-
straint over variables x and y, and let vs denote the current value-set assignment, so vs(x) is
the set of possible values for var x, i.e. the current value set for x.

A binary constraint C(x, y) is arc-consistent if

1. for every x value in vs(x), there is a y value in vs(y) that satisfies C

2. for every y value in vs(y), there is a x value in vs(x) that satisfies C

These two conditions can be expressed concisely using relational calculus operations:

πx · (vs(y) ./ C) ⊇ vs(x)

πy · (vs(x) ./ C) ⊇ vs(y)

where we treat the binary constraint C as a binary relation, ./ is the relational join operator,
and πz projects a relation along variable z. Note that these are definite constraints over the
domains vs(v): the lhs is a monotone function of the current value sets and provides a bound
on a variable’s value set.

13

We can automatically generate these AC constraints from the given constraint set, yielding a
set of definite constraints that can be solved using the Definite Constraint Solver algorithm
discussed in Section 2.7. Note that the iteration will compute a greatest fixpoint of the variable
value sets, iterating downward from the top of the value set lattice.

Arc consistency can be readily generalized to n-ary constraints; e.g. for a ternary constraint
C(x, y, z),

πx · (vs(y)× vs(z) ./ C) ⊇ vs(x).

We prove next that AC provides a best abstract operator for the concrete operation of filtering
out models of a given constraint C.

Theorem 2.1 Arc Consistency defines a best abstract transformer for modC for any constraint
C in any logic.

Proof: Without loss of generality, consider a binary constraint C(x, y). The proof is similar for
arbitrary n-ary constraints. Let vs(x) and vs(y) be the current value sets for variables x and y
respectively. Arc consistency defines two definite constraints

πx · (vs(y) ./ C) ⊇ vs(x)

πy · (vs(x) ./ C) ⊇ vs(y)

and the Definite Constraint Solver algorithm effectively iterates the following monotone func-
tion:

AC(vs, C) = if eval(vs, C) = False

then >
else vs(x)← vs(x)

⋂
πx(vs(y) ./ C);

vs(y) ← vs(y)
⋂
πy(vs(x) ./ C).

where eval(vs, C) is a necessary test for the satifiability of C given the partial valuation vs:

∃z(z ∈ γ(vs) ∧ C(z)) =⇒ eval(vs, C)

so that eval(vs, C) = False implies that C is unsatisfiable under any refinement to vs. Typically
this test is implemented by simplifying C after performing the instantiations defined in vs.

Our goal is to prove that AC(vs, C) = α ·modC · γ(vs); i.e. that AC computes a best abstract
operator for modC . We proceed by cases. First, when eval(vs, C) = False, then modC · γ(vs)
is empty, and then α({}) is >. At the same time, AC(vs, C) evaluates to >. Second, when
eval(vs, C) 6= False:

(α ·modC · γ(vs))(x)
= α({m | m ∈ γ(vs) ∧ m |= C})(x) by definition of modC(X)

= ∪ {m(x) | m ∈ γ(vs) ∧ m |= C} using the definition of α applied to x

= ∪ {m(x) | m ∈ γ(vs)} ∩ ∪ {m(x) | m ∈ γ(vs) ∧ m |= C} rearranging terms

= vs(x) ∩ πx(vs(y) ./ C) simplifying

= AC(vs, C)(x). by definition

14

A similar calculation applies to y. �

We show below that the Unit Rule in SAT, temporal propagation in scheduling, linear resolution
in ILP are instances of AC. In fact, all sound propagation operators known to us are instances
of AC. The theorem asserts the optimality of these operators in that they reflect the maximum
possible information from the concrete constraints to the abstract domain representation.

From Arc Consistency to Definite Constraints Since the AC condition characterizes
best abstract operators in CSP, we want to use those conditions as a generic (logic-independent)
starting point for calculating propagation rules. The relational calculus form of the AC is too
complex for computation, since it involves large or infinite sets. However, we can often transform
the logical formulation of AC into simply implementable definite constraints as follows. The
logical formulation of arc-consistency for a binary constraint C over variables x and y is:

∀xv(xv ∈ vs(x) =⇒ ∃yv(yv ∈ vs(y) ∧ C(xv, yv)))

∀yv(yv ∈ vs(y) =⇒ ∃xv(xv ∈ vs(x) ∧ C(xv, yv))).

For a ternary constraint C(x, y, x), we can generate the form

∀xv(xv ∈ vs(x) =⇒ ∃yv∃zv(yv ∈ vs(y) ∧ zv ∈ vs(z) ∧ C(xv, yv, zv))).

and so on.

To calculate a useful form for these definite constraints, we need (1) a representation of the
variable domain types vs(v), and (2) a representation of the constraint C. We apply quanti-
fier elimination laws from the underlying constraint logic to derive definite constraints on the
abstract value-set domain. See Appendix A for a list of the quantifier elimination laws used.

Examples

Each n-ary concrete constraint gives rise to n definite constraints on the abstract domain.
Collecting these definite constraints from all concrete constraints defines a CSP for propagation
that can be solved by fixpoint iteration. The result is a maximally refined abstract value that
reflects the concrete semantics of modC. We apply the above method to the following examples:
scheduling, SAT, and Linear pseudo-Boolean.

Example: Temporal Propagation in Scheduling

The start time of a task (concrete domain) is often represented by a time window in the
abstract domain: 〈earliestStartT ime, latestStartT ime〉, abbreviated 〈est, lst〉. That is, if sti
is the (concrete, unknown) start time of task i, then let esti ≤ sti ≤ lsti be the (abstraction
domain) bounds on sti.

A typical constraint expresses that task i must finish before task i+ 1 can start:

sti + durationi ≤ sti+1.

This binary constraint gives rise to two AC forms. We instantiate and simplify one of them:

15

∀st1(est1 ≤ st1 ≤ lst1 =⇒ ∃st2(est2 ≤ st2 ≤ lst2 ∧ st1 + duration ≤ st2))

= { Quantifier Elimination law 2.1 on monotone st2 }

∀st1(est1 ≤ st1 ≤ lst1 =⇒ (est2 ≤ lst2 ∧ st1 + duration ≤ lst2))

= { Quantifier Elimination law -2.1 on antitone st1, simplify }

est1 ≤ lst1 =⇒ lst1 + duration ≤ lst2

= { simplify }

lst1 + duration ≤ lst2.

Focusing on the other AC form produces a corresponding definite constraint: est1 +duration ≤
est2. The calculation yields simple definite constraints that can be used to propagate the effect of
decisions on time windows, ensuring that the current partial valuation is temporally consistent.

Example: Unit Rule in SAT

A typical SAT constraint is x ∨ y ∨ ¬z. This constraint has three variables, so we instantiate
the ternary AC forms; e.g.

∀x(x ∈ vs(x) =⇒ ∃y∃z(y ∈ vs(y) ∧ z ∈ vs(z) ∧ C(x, y, z)))

where vs(x) is the current value set for variable x, Here we chose to represent the value set
for a variable x by a lower/upper bound pair 〈xl, xu〉, which is initially 〈False, True〉, with
implication as the partial order. The instantiated AC constraint is:

∀x(xl ≤ x ≤ xu =⇒ ∃y∃z(yl ≤ y ≤ yu ∧ zl ≤ z ≤ zu ∧ (x ∨ y ∨ ¬z)))

= { QE law 2.1 applied to y }

∀x(xl ≤ x ≤ xu =⇒ ∃z(yl ≤ yu ∧ zl ≤ z ≤ zu ∧ (x ∨ yu ∨ ¬z)))

= { QE law -2.1 applied to z, simplify }

∀x(xl ≤ x ≤ xu =⇒ (zl ≤ zu ∧ (x ∨ yu ∨ ¬zl)))

= { QE law 2.2 applied to x, simplify }

xl ∨ yu ∨ ¬zl

= { convert to definite form: xl has positive polarity, ¬zl and yu have negative polarity }

16

¬yu ∧ zl =⇒ xl.

The instances of the other AC forms produce the other Unit Rules for this clause.

Example: Propagation in 0,1-ILP

A constraint in 0,1-Integer Linear Programming (0,1-ILP) has the form

a1 · x1 + a2 · x2 + + an · xn ≥ b

where for i = 1, 2, n, xi is a literal, and b, ai are positive constants.

If consider the example
5 · x2 + 4 · ¬x3 + 2 · x4 + x5 ≥ 9

and bounds xil ≤ xi ≤ xiu for i = 2, 3, 4, 5 and focus on variable x2, then using the same
calculation style the Arc Consistency instance simplifies to

9(4 · ¬x3l + 2 · x4u + x5u)/5 ≤ x2l

which forces x2l up when x3l increases, x4u decreases, and x5u decreases.

Analogous definite constraints result from instantiating the other 3 AC forms.

A fully realized synthesis system would automatically (1) lift concrete constraints to abstract
definite constraints and (2) construct a custom instance of the Definite Constraint Solver al-
gorithm, resulting in an optimal constraint propagation algorithm. Note again that the entire
derivation is specified in a logic-dependent way.

3 Algorithm Development

3.1 Algorithm Theory

We present the current version of our algorithm theory for Global Search with Conflict-Directed
Backjumping and Learning applied to Constraint Satisfaction Problems. Any algorithm theory
is expressed as a parametric specification where the parameter specification is interpreted via a
classification morphism into the application domain specification. We instantiate the algorithm
theory by taking a pushout of the classification morphism and the parameter injection.

GS CDBL theory is parametric on an overapproximating abstract domain for search and propa-
gation. The concrete domain is fixed as (Set Valuation). The algorithm theory specification is
intended to provide enough detail to support an abstract proof of correctness of the algorithm
theory.

17

GS_CDBL_Theory = spec

import ProblemTheoryC#CSP, % constraint satisfaction problem thy

GS_Galois_Connection, % Rhat: overapproximating abstract domain

/Library/DataStructures/StructuredTypes

type State % problem-solving state

type InferenceStack

type RefinementReason % sum type

op input : State -> D

op constraints : State -> Set Constraint

op currentDepth : State -> Nat

op currentRhat : State -> Rhat

op currentInferences : State -> InferenceStack

op bindingDepth : State -> Map(Variable, Nat)

op stk : State -> Map(Nat, Rhat*InferenceStack)

op initialVariables : D -> Set Variable

op phi : D*Rhat -> Bool

axiom characterization_of_necessary_pruning_test_phi is

fa(x:D,z:R,st:State)(z in? (concretize (currentRhat st)) && (O x z)

=> phi (input st,currentRhat st))

op psi : Rhat -> Rhat % necessary propagator

op [a] monotone? (f:a->a, le:a*a->Bool):Bool % needs axiom, not def

axiom characterization_of_necessary_propagator_psi is

monotone?(psi, RefinesTo) &&

(fa(x:D,r:Rhat,z:R)(z in? (concretize r) && (O x z)

=> (z in? concretize (psi r))))

op xi : Rhat -> Rhat % consistent refinement

axiom characterization_of_consistent_refinement_xi is

monotone?(xi, RefinesTo) &&

(fa(x:D,r:Rhat) (ex(z:R)(z in? (concretize r) && (O x z))

= (ex(z:R)(z in? (concretize (xi r)) && (O x z)))))

end-spec

State is introduced to package up the local state of the solver, including the stack of subspaces
and the record of the chain of inferences performed by propagation.

phi is a pruning test. It is a necessary condition on existence of a feasible solution in the current
subspace. For CSPs in which constraints are given as input data, this test is simply that no
constraint fails under the current partial assignment.

18

psi is a monotone function on spaces that adds necessary constraints to the current space. By
construction it preserves all feasible solutions. This spec for psi is equivalent to the Abstract
Interpretation characterization of a sound abstract operator (for the concrete operator that
filters for models). Monotonicity allows us to iterate it to a fixpoint. We can generate psi
by a standard procedure to formulate and simplify arc-consistency variants of each constraint,
yielding a definite constraint system.

xi is a monotone function that generates a consistent refinement of a space. By construction it
preserves the existence of feasible solutions.

GS_CDBL = spec

import GS_CDBL_Theory

op InitialState(x:D):{st:State |

input st = x

&& constraints st = initialConstraints x

&& currentDepth st = 0

&& currentInferences st = empty_stack

&& stk st = empty_map}

type PropagateFailInfo = Constraint

type PropagateResult = | Ok State | Fail State*PropagateFailInfo

op Propagate (st:State | phi (input st,currentRhat st)):

{pr:PropagateResult |

(case pr of

| Ok st’ -> RefinesTo(currentRhat st, currentRhat st’)

&& input st’ = input st

&& currentDepth st’ = currentDepth st

&& psi(currentRhat st’) = currentRhat st’

&& xi(currentRhat st’) = currentRhat st’

&& phi(input st, currentRhat st’)

| Fail (st’,cc) ->

RefinesTo(currentRhat st, currentRhat st’)

&& input st’ = input st

&& currentDepth st’ = currentDepth st

&& ~(phi(input st’,currentRhat st’))

&& cc in? constraints st’

&& ~(satisfiesRhat (currentRhat st’) cc)

)

}

op AnalyzeForCompleteness(st:State | phi (input st,currentRhat st)):

{er:AFCResult |

let rhat = (currentRhat st) in

19

case er of

| Answer z -> (O (input st) z)

| Extrapolate (vr,vl) ->

RefinesTo(rhat, RhatJoin(rhat,beta (singletonMap vr vl)))

&& phi((input st),RhatJoin(rhat,beta (singletonMap vr vl)))

| Fail lc ->

(fa(shat)(RefinesTo(rhat,shat) => ~(phi(input st,shat))))

&& ~(satisfiesRhat rhat lc)

&& (entailsCs (constraints st) lc)}

type AFCResult = | Answer R | Fail Constraint | Extrapolate ExtrapolateInfo

type PEResult = | Answer R | Fail (State*PropagateFailInfo)

type ExtrapolateInfo = Variable*Value

op incorporateE(rhat:Rhat)((vr,vl):ExtrapolateInfo): Rhat

= RhatJoin(rhat, beta(singletonMap vr vl))

type Inference = {assignee:Variable, depth:Nat, reason:RefinementReason}

type InferenceStack = Stack Inference

op EnforceE(st :State)((vr,vl):ExtrapolateInfo)

:{st’:State | currentRhat st’ = incorporateE(currentRhat st)(vr,vl)

&& currentDepth st’ = (currentDepth st) + 1

&& currentInferences st’ = empty_stack

&& bindingDepth st’ = update (bindingDepth st) vr

(1 + currentDepth st)

&& stk st’ = (update (stk st) (currentDepth st)

(currentRhat st, currentInferences st))}

op satisfiesRhat(rhat:Rhat)(c:Constraint):Bool % abstractSatisfies?

axiom satisfiesRhat-def is

fa(rhat:Rhat,c:Constraint)

ex(z:Valuation)(z in? (concretize rhat) && (satisfiesC c z))

type ConflictConstraint = Constraint

op refinable(st:State)(pc:ConflictConstraint)(bjd:Nat):Bool

op AnalyzeConflict(st:State)

(cc:PropagateFailInfo | cc in? constraints st

&& ~(satisfiesRhat(currentRhat st) cc)):

{opcc:Option (ConflictConstraint*Nat)

| case opcc of

| Some (lc,bjd) -> (entailsCs (constraints st) lc)

&& ~(satisfiesRhat(currentRhat st) lc)

20

&& (refinable st lc bjd)

| None -> ~(ex(lc:ConflictConstraint,d:Nat)

(refinable st lc d))}

op EnforceC(st :State)(bjd:Nat)

(lc:ConflictConstraint | ~(lc in? (constraints st))):

{st’:State | currentDepth st’ = bjd

&& constraints st’ = set_insert_new(lc, constraints st)

&& currentRhat st’ = (TMApply(stk st, bjd)).1

&& currentInferences st’ = (TMApply(stk st, bjd)).2

&& bindingDepth st’ = bindingDepth st

}

op PropagateExtrapolate(st:State | phi (input st,currentRhat st)):

{per:PEResult |

‘ case per of

| Answer z -> (O (input st) z)

| Fail (st’,cc) -> RefinesTo(currentRhat st, currentRhat st’)

&& input st’ = input st

&& currentDepth st’ >= currentDepth st

&& ~(phi (input st’, currentRhat st’))

&& (entailsCs (constraints st) cc)

&& ~(satisfiesRhat (currentRhat st’) cc)}

= case Propagate st of

| Ok st1 -> (case AnalyzeForCompleteness st1 of % extract a solution?

| Answer z -> Answer z % if so, we’re done

| Extrapolate (vr,vl) ->

let st2 = EnforceE st1 (vr,vl) in

PropagateExtrapolate st2

| Fail cc -> Fail (st1,cc))

| Fail stcc -> Fail stcc

def GS (st:State | phi (input st,currentRhat st)):

{ov:Option R | feasible (input st) ov } =

case PropagateExtrapolate st of % propagate; complete?

| Answer z -> Some z % if success, we’re done

| Fail (st1, cc) -> % constraint cc fails

(case AnalyzeConflict st1 cc of % analyze failure

| Some (lc,bjd) -> GS (EnforceC st1 bjd lc) % learn lc, backjump

| None -> None) % no solutions

op feasible(x:D)(ov: Option R): Bool =

case ov of

| None -> ~(ex(z)(O x z))

| Some z -> (O x z)

21

def Solve (x:D): {ov: Option R | feasible x ov } =

let is = InitialState x in

if phi(x, currentRhat is) then (GS is) else None

end-spec

Propagate computes a refinement of the current space by iterating psi and xi to a (least) fixpoint.
The properties of psi and xi are preserved under iteration. At each iteration, propagate applies
phi to test for emptiness. Key enablers are that psi and xi are monotone functions of rhat, and
phi is antitone.

Propagate iterates abstract operators psi and xi until either (Ok case) a fixpoint it reached, or
(Fail case) we have that the current partial assignment (rhat) does not satisfy some constraint.

AnalyzeForCompleteness attempts to extract a feasible solution from rhat and return it as the
answer. Otherwise, analyze the reason for the failure of extract (typically as a disjunction) and
use it to pick a disjunct from the alternatives and refine currentRhat by enforcing the disjunct.
If there is no feasible refinement of rhat then prune it (i.e. fail).

AnalyzeConflict analyzes the reason for the failure of the current partial solution; return a new
constraint and backjump depth if there is a depth at which a proper propagation refinement can
occur (satisfying phi), else return None signifying unsatisfiability (i.e. false is a consequence
of the current constraints). The learned constraint satisfies: (1) it is a consequence of the
current constraints, (2) it fails the conflict constraint, and (3) it allows propagation inference
at an earlier depth. The backjump depth bjd should be the least depth at which a propagation
step could be made (although more generally, it should be the least depth at which the search
would take a different direction than if the lc were not learned; e.g. if a heuristic would make
a different choice. This is effectively restarting.

3.2 Correctness of the Algorithm Theory

We proceed top-down. We first show that the definition of Solve satisfies the theorem if GS
satisfies its specification. Then we show that the definition of GS satisfies its spec if its sub-
functions satisfy their specs, and so on until we ground out in subfunctions with specs but no
defs. We have proofs for Solve, GS, and PropagateExtrapolate. The remaining functions are
given problem-specific specifications (i.e. pre/post-conditions) after composition of CDBL with
the problem domain theory, and the derivation must then synthesize definitions to satisfy those
specifications.

Theorem 3.1. The definition of Solve satisfies its specification, if GS

satisfies its spec.

22

op feasible(x:D)(ov: Option R): Bool =

case ov of

| None -> ~(ex(z)(O x z))

| Some z -> (O x z)

def Solve (x:D): {ov: Option R | feasible x ov } =

let is = InitialState x in

if (phi (currentRhat is)) then (GS is) else None

Proof: Let x:D. We show that the definition of Solve satisfies its

postcondition.

feasible x (Solve x)

= { unfold Solve, and let ‘is’ denote the value InitialState x }

feasible x (if (phi (currentRhat is)) then (GS is) else None)

Case 0: assume (phi (currentRhat is))

= { evaluate using assumption }

feasible x (GS is)

= { assume GS satisfies its postcondition: feasible x (GS is) }

true.

Case 1: assume ~(phi (currentRhat is)). Then by def of phi we have

ex(z:R)(z in? (concretize (currentRhat is)) && (O x z))

=> phi (currentRhat is),

or by the contrapositive:

~ex(z:R)(z in? (concretize (currentRhat is)) && (O x z))

<= ~phi (currentRhat is)

so we can infer the additional assumption that

~ex(z:R)(z in? (concretize (currentRhat is)) && (O x z)).

which is equal to (note that (currentRhat is) = r0hat)

~ex(z:R)(z in? (concretize r0hat) && (O x z)).

which by by axiom r0hat_is_comprehensive simplifies to

~ex(z:R)(O x z).

feasible x (if (phi (currentRhat is)) then (GS is) else None)

= { evaluate using assumption }

23

feasible x None

= { unfold feasible and evaluate }

~(ex(y) (O x y))

= { since the goal matches the inferred assumption }

true.

QED

Theorem 3.2: The definition of GS satisfies its specification if

PropagateExtrapolate, AnalyzeConflict, and EnforceC satisfy their specs.

GS (st:State | phi (input st,currentRhat st)):

{ov:Option R | feasible (input st) ov } =

case PropagateExtrapolate st of

| Answer z -> Some z

| Fail (st1, cc) ->

(case AnalyzeConflict st1 cc of

| Some (p,bjd) -> let st2 = EnforceC st1 bjd p in

GS st2

| None -> None)

Proof: Let st be a State value that satisfies the precondition (phi (input

st,currentRhat st)) and let its parts be {input=x, currentRhat=rhat,...}.

Since (phi (currentRhat st)) holds, we can legally call PropagateExtrapolate,

and since it satisfies its spec by assumption, we have two cases. In each

case we must show that the postcondition of GS holds.

Case 1: PropagateExtrapolate st = Answer z;

then we have (O x z) by assumption that PropagateExtrapolate

satisfies its spec.

feasible x (GS st)

= {unfold & simplify using case assumption}

feasible x (Some z)

= {unfold feasible}

O x z

= {by derived consequence of the case assumption}

true.

24

Case 2: PropagateExtrapolate st = Fail (st1,cc);

then we have (by assumption that PE satisfies its spec):

RefinesTo(currentRhat st, currentRhat st1)

&& input st1 = input st

&& currentDepth st1 = currentDepth st

&& ~(phi (currentRhat st1))

&& cc in constraints st1

&& ~(satisfiesRhat (currentRhat st’) cc)

feasible x (GS st)

= {unfold & simplify using case assumption}

feasible x (case AnalyzeConflict st1 fi of

| Some (p,bjd) -> let st2 = EnforceC st1 bjd p in GS st2

| None -> None)

Case 2.1 AnalyzeConflict st1 cc = Some (lc,bjd);

then we have

entailsCs (constraints st) lc

&& ~(SatisfiesRhat(currentRhat st) lc)

&& (refinable st lc bjd)

by our assumption that AC satisfies its spec;

= { evaluate using case assumption }

feasible x (GS (EnforceC st1 bjd lc))

= { evaluate EnforceC: return a new state st2 with new depth and

extended constraint set. }

feasible x (GS st2)

= { By construction we know that the current rhat will satisfy phi,

since we only push feasible rhat on the stack. So we can call GS and

we can apply the induction hypothesis, so feasible is satisfied. What

is the wfo of the induction? }

true.

Case 2.2 AnalyzeConflict st1 cc = None;

then we have

~(ex(lc:ConflictConstraint,d:Nat)(refinable st lc d))

by our assumption that AC satisfies its spec; in particular, the root

25

node at depth 0 is not refinable. Since the root node concretizes to

all elements of R and inference preserves all (or existence of)

feasible solutions, we know that there can be no feasible, so

~ex(z)(O x z)

feasible x (case AnalyzeConflict st1 cc of

| Some (p,bjd) -> let st2 = EnforceC st1 bjd p in

GS st2

| None -> None)

= { evaluate AnalyzeConflict }

feasible x None

= { unfold }

~(ex(z)(O x z))

= { matching with derived assumption }

true.

Theorem 3.3: The definition of PropagateExtrapolate satisfies its

specification if Propagate, AnalyzeForCompleteness and EnforceE satisfy their

specs.

op PropagateExtrapolate(st:State | phi (input st,currentRhat st)):

{per:PEResult | case per of

| Answer z -> (O (input st) z)

| Fail (st’,cc) ->

RefinesTo(currentRhat st, currentRhat st’)

&& input st’ = input st

&& currentDepth st’ > currentDepth st

&& ~(phi (currentRhat st’))

&& cc in? constraints st

&& (fa(z:R)(z in? concretize (currentRhat st)

=> ~SatisfiesC(z, cc)))}

= case Propagate st of

| Ok st1 -> (case AnalyzeForCompleteness st1 of

| Answer z -> Answer z

| Extrapolate (vr,vl) ->

let st2 = EnforceE st1 (beta(singletonMap vr vl)) in

PropagateExtrapolate st2

| Fail stpf -> Fail stpf)

| Fail stcc -> Fail stcc

type PEResult = | Answer R | Fail (State*Constraint)

26

Proof: Let st be a State value that satisfies the precondition

(phi (input st,currentRhat st)) and let its parts be

{input=x, currentRhat=rhat,...}. Since (phi (currentRhat st)) holds, we can

call Propagate, and since it satisfies its spec by assumption, we have two

cases. In each case we must show that the postcondition of

PropagateExtrapolate holds. To simplify the presentation, we name the

postcondition of PropagateExtrapolate as feasiblePE:

feasiblePE st per = case per of

| Answer z -> (O (input st) z)

| Fail (st’,cc) ->

RefinesTo(currentRhat st, currentRhat st’)

&& input st’ = input st

&& currentDepth st’ >= currentDepth st

&& ~(phi (currentRhat st’))

&& cc in? constraints st

&& ~(SatisfiesRhat (currentRhat st’) cc)

feasiblePE st (PropagateExtrapolate st)

= { evaluate }

feasiblePE st (case Propagate st of ...)

Case 1: Propagate st = Ok st1; then since we assume that Propagate satisfies

its spec, we know that psi (and xi) have reached a feasible fixpoint,

and phi holds:

RefinesTo(currentRhat st, currentRhat st’)

&& input st’ = input st

&& currentDepth st’ = currentDepth st

&& psi(currentRhat st’) = currentRhat st’

&& xi(currentRhat st’) = currentRhat st’

&& phi(input st’,currentRhat st’)

Case 1.1 AnalyzeForCompleteness st1 = Answer z

then by assumption that AnalyzeForCompleteness for satisfies its spec,

we have (O (input st) z).

feasiblePE st (case Propagate st of ...)

= { evaluate using assumption }

feasiblePE st (case AnalyzeForCompleteness st1 of ...)

27

= { evaluate using assumption }

feasiblePE st (Answer z))

= { unfold and simplify feasiblePE }

(O (input st) z)

= { matching the derived assumption }

true.

Case 1.2 AnalyzeForCompleteness st1 = Extrapolate ehat;

then we have

RefinesTo(rhat, RhatJoin(rhat,ehat))

&& phi(input st,RhatJoin(rhat,ehat))

and we return per’ = PropagateExtrapolate (EnforceE st1 ehat)

which by assumption satisfies the postcondition of PE.

feasiblePE x (case AnalyzeForCompleteness st1 of

| Answer z -> Answer z

| Extrapolate ehat -> let st2 = EnforceE st1 ehat in

PropagateExtrapolate st2

| Fail stpf -> Fail stpf)

= {evaluate: AFC returns (Extrapolate ehat)}

feasiblePE x (PropagateExtrapolate (EnforceE st1 ehat))

= { unfold EnforceE }

feasiblePE x (PropagateExtrapolate st2)

where st2 = {input=x,

currentRhat = (rhat RhatJoin ehat),

currentDepth=(currentDepth st1)+1,

stk = update (stk st1) (currentDepth st1) (currentRhat st1)}

= { We can call PropagateExtrapolate since, by derived assumption we have

phi (rhat RhatJoin ehat), so assuming by induction hypothesis that

PropagateExtrapolate satisfies its spec, we have

feasiblePE x (PropagateExtrapolate st2). }

true.

28

Case 1.3 AnalyzeForCompleteness st1 = Fail cc;

then we have

fa(shat)(RefinesTo(rhat,shat) => ~(phi shat))

&& ~(satisfiesRhat rhat cc)

&& (entailsCs (constraints st) lc)

which implies by construction of phi and distributivity of concretize

that

~ex(z)(z in? concretize rhat && (O x z))

and in particular

fa(z)(z in? concretize rhat => ~ satisfiesC z cc)

feasiblePE x (case AnalyzeForCompleteness st1 of

| Answer z -> Answer z

| Extrapolate ehat -> let st2 = EnforceE st1 ehat in

PropagateExtrapolate st2

| Fail cc -> Fail (st1,cc))

= {evaluate: AFC returns (Fail (st1,cc))}

feasiblePE x (Fail (st1,cc))

= { unfold feasiblePE }

RefinesTo(currentRhat st, currentRhat st1)

&& input st1 = input st

&& currentDepth st1 >= currentDepth st

&& ~(ex(z)(z in? concretize (currentRhat st’) && (O (input st’) z)))

&& (entailsCs (constraints st) lc)

&& ~(satisfiesRhat (currentRhat st’) cc)

= { we need to discharge each of these conditions.

First: from the postcondition of Propagate we have

RefinesTo(currentRhat st, currentRhat st1) }

true

&& input st1 = input st

&& currentDepth st1 >= currentDepth st

&& ~(ex(z)(z in? concretize (currentRhat st’) && (O (input st’) z)))

&& (entailsCs (constraints st) lc)

&& ~(satisfiesRhat (currentRhat st’) cc)

= { Second: from the postcondition of Propagate we have

input st1 = input st }

true

29

&& true

&& currentDepth st1 >= currentDepth st

&& ~(ex(z)(z in? concretize (currentRhat st’) && (O (input st’) z)))

&& (entailsCs (constraints st) lc)

&& ~(satisfiesRhat (currentRhat st’) cc)

= { Third: from the postcondition of Propagate we have

currentDepth st1 = currentDepth st

which implies the postcondition }

true

&& true

&& true

&& ~(ex(z)(z in? concretize (currentRhat st’) && (O (input st’) z)))

&& (entailsCs (constraints st) lc)

&& ~(satisfiesRhat (currentRhat st’) cc)

= { Fourth: the derived assumption above matches the condition }

true

&& true

&& true

&& true

&& (entailsCs (constraints st) lc)

&& ~(satisfiesRhat (currentRhat st’) cc)

= { Fifth: the postcondition of AFC matches the fifth condition }

true

&& true

&& true

&& true

&& true

&& ~(satisfiesRhat (currentRhat st’) cc)

= { Sixth: the postcondition of AFC matches the sixth condition }

true.

Case 2: Propagate st = Fail (st’,cc)

then since Propagate satisfies its spec, we know the following:

RefinesTo(currentRhat st, currentRhat st’)

&& input st’ = input st

&& currentDepth st’ = currentDepth st

&& ~(phi(input st’,currentRhat st’))

30

&& cc in? constraints st’

&& ~(satisfiesRhat (currentRhat st’) cc)

and we must prove the postcondition of PE holds:

feasiblePE st (PropagateExtrapolate st)

= { evaluate }

feasiblePE st (case Propagate st of ...)

= { evaluate using case assumption Propagate st = Fail (st’,cc) }

RefinesTo(currentRhat st, currentRhat st’)

&& input st’ = input st

&& currentDepth st’ >= currentDepth st

&& ~(phi (currentRhat st’))

&& cc in? constraints st

&& ~(SatisfiesRhat (currentRhat st’) cc)

= { matching with the postconditions of Propagate }

true.

3.3 Constraint Resolution and Conflict Analysis

The key performance breakthroughs in SAT solvers over the last 20 years have come though the
AnalyzeConflict operation. Much of our effort in this project was focused on developing an
abstract understanding of conflict analysis that is independent of the constraint logic and could
be formalized in the algorithm theory. There is a worldwide flurry of theorizing on exactly this
point, trying to find an abstraction of the SAT experience that can transfer readily to other
problems.

The conflict analysis problem is this. Given a failure in the search for a feasible solution, find
a reason for the failure and use that reason to avoid that failure and similar failures in the
future. In a little more detail, find a constraint which, if it had been present in the given
constraints, would have precluded the failed search step. Moreover, it is desirable to find the
most general reason, or dually the strongest constraint, in order to focus the search process as
mush as possible. We present below two related but different precise formulations of conflict
analysis.

At the point of a search failure, we have a value-set assignment vs and a constraint Cn ∈ Cs
that fails: vs |= Cn = False.

31

Conflict Analysis as an under-approximating Galois Connection

It is tempting to cast conflict analysis in dual terms to the propagation inference theory devel-
oped earlier. That is, to model conflict analysis in terms of a Galois Connection and iteration
within an abstract interpretation framework to capture the search for a most general reason for
the failure [2, 3].

The reasons for the failure point can be formulated as follows:

Reasons(vs, Cn) = {ws | γ(vs) ⊆ γ(ws) ⊆ cmodCs}.

A most general reason for the failure would be a maximal element of this set. Note that a
“reason” here is a value-set assignment, not a complete valuation, nor a constraint. This leads
to a specification of conflict analysis as a problem: given a value-set assignment vs that fails
some constraint Cn ∈ Cs, find a value-set assignment ws that

1. refines to countermodels: γ(ws) ⊆ cmodCs

2. generalizes vs: γ(vs) ⊆ γ(ws), or ws w vs

3. is as general as possible: find a maximal element satisfying (1) and (2).

D’Silva, Haller and Kroening (DHK) [2] represent Reasons(vs, Cn) as a Galois Connection
that under-approximates the countermodels of Cs, dually to how the value-set domain itself
is an over-approximating domain for models of Cs. The concrete operation of interest here is
cmodCs(X), and, roughly speaking, a sound (under)approximation of it is iterated to find a
maximal reason for the failure. Once such a reason is found, it is converted to a constraint that
is used both for backjumping and for learning.

While there is a nice conceptual symmetry here (by casting both propagation inference and
conflict analysis as abstract interpretations over/under the same concrete domain), there are
several problems with this approach. First, in SAT, there is a one-to-one correspondence be-
tween partial assignments and constraints, so a most-general partial assignment can be directly
converted to a constraint. It is not obvious that there will be such a bijection in other problem
domains. Second, the iteration is not focused on the particular constraint that fails at the
failure point. Third, the crucial discovery that one can perform constraint analysis by resolving
from the failure point is glossed over in the DHK approach: constraint resolution to the 1-UIP
[7, 13] is treated as a “heuristic” that serves to create a starting point for an iterative clause
minimization process [12].

Conflict Analysis as guided inference

We believe that an alternative approach provides a more effective and satisfying formulation.
This approach focuses on constraints directly rather than value-set assignments. By analogy to
the DHK approach, we provide an alternative formulation of the reasons for a failure:

Reasons(vs, Cn) = {C | (Cs ` C) ∧ (vs |= C = False)}.

32

A most general reason for the failure would be a strongest constraint in this set. This leads to
an alternative specification of conflict analysis as a problem: given a value-set assignment vs
that fails some constraint Cn ∈ Cs, find a constraint C that

1. is a consequence of Cs: Cs ` C

2. generalizes the failure of vs: vs |= C = False

3. is as strong as possible: find a minimal element satisfying (1) and (2) (using implication
as a partial order).

A direct realization of this specification can be formalized in terms of iterated constraint reso-
lution along the chain of propation inferences made at the current depth, and including a form
of constraint normalization that generalizes [12]. We discuss next the particular mathematical
results that justify and inform this approach.

Resolution of constraints in arbitrary logics

State of the art solvers make use of constraint resolution to infer at runtime new constraints and
record them as learned constraints. Since the constraint theory presented above is independent
of logic, the operation of resolution can only be specified abstractly, not defined. When details
of the constraint logic are specified concretely, then we can synthesize or manually develop the
necessary resolution operation. In this section, we lay out the abstract theory of constraint
resolution and give a variety of examples of its application.

Definition. If constraints C1 and C2 each contain an occurrence of variable x, then a resolvant
of C1 and C2 is a quantifier-free formula that is equivalent to ∃(x)

(
C1 ∧ C2

)
.

We speak of “the” resolvant of two constraints - there is only one resolvant from a semantic
point of view, whereas there can be many syntactic expressions of it. Hence we specify the
Resolve operator, but expect that it can have many implementations.

For particular problems it is clear how to perform resolution. For example, in SAT and general
CSP problems, one uses the cut rule from propositional logic; for time-window-based scheduling
we need generalized resolution with special relations [6], and for variants of ILP we use cutting
planes (essentially Fourier-Motzkin). The challenge is to unify these examples and see how to
express a generalized resolution rule that applies at the abstract level of Global Search theory.
One consideration is that the effect of resolving the pruning condition and the last decision is
that we want to eliminate the last decision, so that the inferred formula is a pruning condition
at the previous step. Thus eliminating a variable seems to be an essential ingredient.

Given two formulas F [a] and G[a] containing a common subexpression a, we desire to find a
consequence that eliminates a. We do not specify in which logic these formulas are expressed;
the point is to characterize the resolution inference rule in an arbitrary logic.

33

Proposition 3.1 F [a] ∧ G[a] =⇒ ∃(a)
(
F [a] ∧ G[a]

)
.

Proof: In any model for the left-hand side there exists some valuation for the subexpression a.
�

We conjecture that the resolution inference rule can always be calculated by applying quantifier
elimination to the right-hand side in Proposition 3.1 in the theory of the problem domain.
Quantifier elimination may only apply under certain conditions. For example, the resolution
rule for propositional and first-order logic requires that the expression to be eliminated has
opposite polarity in the two expressions. We conjecture that the generic precondition on Resolve
is that the two constraints can come into conflict in the following sense: there exists a partial
valuation under which the feasible values some variable (a in the proposition) are disjoint:

∃vs({a|a ∈ vs(a) ∧ F [a]} ∩ {a|a ∈ vs(a) ∧ G[a]} = {}.

The Proposition justifies the following specification of the resolution operation in an arbitrary
logic.

weakResolve is a variant in which the resolvant is a weakening of ∃(a)
(
F [a] ∧ G[a]

)
for logics in

which the resolvant itself is not expressible (i.e. the logic is not closed under strong resolution).

op Resolve(C1:Constraint)(C2:Constraint)

(v:Variable| v in? (varsOf C1) && v in? (varsOf C2)):

{C:Constraint | Equivalent C (mkExistential v (mkConjunction C1 C2))}

theorem resolution_inference is

fa (C1:Constraint,C2:Constraint)

Entails(mkConjunction(C1,C2), Resolve(C1,C2))

We show next several examples of how we can calculate resolution rules for various logics.

Example 1. Propositional Logic’s Cut Rule: A ∨B, ¬B ∨ C ` A ∨ C.

We calculate as follows:

(A ∨B) ∧ (¬B ∨ C)

=⇒ { Proposition 3.1 }

∃(B)
(
(A ∨B) ∧ (¬B ∨ C)

)
= { unfolding the existential; or case analysis }

((A ∨ false) ∧ (¬false ∨ C)) ∨ ((A ∨ true) ∧ (¬true ∨ C))

34

= { Simplifying }

(A ∧ true) ∨ (true ∧ C)

= { Simplifying}

A ∨ C.

Note that in the cut rule, the occurences of the eliminated B proposition have postive and
negative polarity respectively. This insight was generalized by Manna and Waldinger who
developed a generalized resolution calculus for deductive synthesis [5] and extended it to handle
special relations [6].

Example 2. Generalized Resolution in First-order Predicate Calculus: If a occurs positively in
F [a] and negatively in G[a], then F [a] ∧ G[a] ` F [false] ∨ G[true].

Lemma 3.1 Let H[a] be monotone (antitone) in a : Boolean. If H[a] holds in some structure,
then H[true] (resp. H[false]) also holds.

Proof: H[a] iff ∃(b)
(
H[b]

)
iff H[true], where the last step holds by QE. Similar reasoning applies

to the antitone case.

First, assume we have a model of F [a] ∧ G[a]. By Lemma 3.1 we also then have F [true] =
true ∧ G[false] = true.

We calculate as follows:

Assume: F [a] ∧ G[a]
∧ F [true] = true ∧ G[false] = true
∧ F [false] =⇒ F [true]
∧ G[true] =⇒ G[false]

Simplify: F [a] ∧ G[a]

F [a] ∧ G[a]

=⇒ { Proposition 1 }

∃(a)
(
F [a] ∧ G[a]

)
= { unfolding the existential; or case analysis }

(F [false] ∧ G[false]) ∨ (F [true] ∧ G[true])

= { Simplifying using Lemma 1 }

35

(F [false] ∧ true) ∨ (true ∧ G[true])

= { Simplifying}

F [false] ∨ G[true].

Example 3: 0,1-Pseudo-Boolean Linear (PBL)

In this case we have linear inequalities over 0,1 variables with positive coefficients and bounds.

let C1 = Σai · xi ≥ d1 and C2 = Σbi · xi ≥ d2 where i ranges over {1, .., n}.

C1⊕ C2

= { assume a1 is positive and b1 negative, then we can resolve on x1, yielding by definition }

∃x1(Σai · xi ≥ d1 ∧ Σbi · xi ≥ d2)

= { let Σ1 = Σi≥2ai · xi and Σ2 = Σi≥2bi · xi }

∃x1(a1 · x1 + Σ1 ≥ d1 ∧ b1 · x1 + Σ2 ≥ d2)

= { isolating x1 in both conjuncts, noting negative b1 }

∃x1(x1 ≥ (d1 − Σ1)/a1 ∧ x1(d2 − Σ2)/b1)

= { QE aka Fourier-Motzkin }

(d2 − Σ2)/b1 ≥ (d1 − Σ1)/a1

= { rearranging and simplifying}

Σi≥2(ai/a1 − ai/b1) · xi ≥ (d1/a1d2/b1).

Resolution inferences in ILP are sometimes called (Gomory) cutting planes.

We can establish several results about the resolve function. We use the circle-plus sign as an
infix notation for resolve: Resolve(C1, C2) = C1 ⊕ C2.

Proposition 3.2 1. modC1(X) ∩modC2(X) ⊆ modC1⊕C2(X)
2. cmodC1(X) ∪ cmodC2(X) ⊇ cmodC1⊕C2(X)

Proof: We show (1), and then (2) follows by duality.

36

modC1(X) ∩modC2

= {m | m ∈ X ∧ m |= C1} ∩ {m | m ∈ X ∧ m |= C2} by definition

= {m | m ∈ X ∧ m |= C1 ∧ m |= C2}
⊆ {m | m ∈ X ∧ m |= C1⊕ C2} Proposition 2.2

= modC1⊕C2(X). by definition

Proposition 3.3 Let x be a variable over a lattice-structured domain. Let C1 be a constraint
that is monotone or antitone in x. Similarly for constraint C2. Let Θ be a valuation over
V ars(C1)

⋃
V ars(C2)\{x} such that C1 and C2 are satisfiable in Θ and

Θ |= {x | C1}
⋂
{x | C2} = {}

then (1) x has opposite polarity in C1 and C2 and (2) the resolvant of C1 and C2 is false in Θ.

Proof: Assume that x is monotone both C1 and C2. Let x1 be an element of {x | C1Θ} and let
x2 be an element of {x | C2Θ}. Since x1 ≤ x1 t x2 and x2 ≤ x1 t x2, then by the monotonicity
assumption, we also have

C1[x1] =⇒ C1[x1 t x2]

and
C2[x2] =⇒ C2[x1 t x2].

Therefore x1 t x2 satisfies both C1 and C2, contradicting our assumption. A similar argument
applies in the case that x is antitone both C1 and C2, except that we consider the element
x1 u x2.

To show part (2), the assumption that

Θ |= {x | C1}
⋂
{x | C2} = {}

is equivalent to
Θ |= ¬∃(x)

(
C1 ∧ C2

)
;

i.e. the resolvant of C1 and C2 is false in Θ. �

The straightforward interpretation of the Proposition is that the resolvant of two constraints
can be used to preclude some candidate valuations from the model-level search.

Notation: if vs is a partial/value-set valuation, then vs(x) is the set of values that variable
x can be assigned. A partial valuation is effectively complete if vs(x) is a singleton for each
variable x. When C is a constraint, then vs[C] is False if

∀(m : V aluation)(m ∈ γ(vs) => ¬m |= C)

i.e. C fails all extensions of vs, and vs[C] is unknown otherwise. Let

vs[C](x) = {v | ∃(m : V aluation)(m(x) = v ∧ m |= C ∧ m ∈ γ(vs)}.

37

Proposition 3.4 In the GS-CDBL scheme, if we use Arc Consistency for propagation, and
resolve backwards from a failure point, then each resolvant back to the decision variable will be
false under the current partial valuation.

Proof: Assume that we use a value-set abstract domain, and propagation reduces the value sets
using the definite constraints derived from Arc Consistency. We proceed by induction from the
failure point at the current depth d. We examine the sequence of inferences that follow from
the decision at depth d. Suppose that the last propagation inference reduced the value set of
variable x, so vsn(x) ⊂ vsn−1(x). Furthermore, suppose that the failed constraint is Cn, so
vsn[Cn] = False. Generally, let the ith inference step at depth d use constraint Ci, and let Ĉi

be the resolvant of Ĉi+1 and Ci, where Ĉn = Cn initially. We need to show that if Ĉi+1 fails in
the current partial valuation, then so does Ĉi. We reason as follows:

vsi[Ĉi]

= { definition of resolvant }

vsi[∃(xi)(Ci(xi) ∧ Ĉi+1(xi))]

= { Simplifying }

∃(xi)(vsi[Ci(xi)] ∧ vsi[Ĉi+1(xi)])

= { Simplifying }

∃(xi, vi)(vi ∈ vsi(xi) ∧ vi ∈ vsi[Ci](xi) ∧ vi ∈ vsi[Ĉi+1](xi))

= { By assumption that Ĉi+1 fails in vs, the set vsi[Ĉi+1](xi) must be disjoint from vsi[Ci](xi) }

∃(vi)False

= { Simplifying }

False.

This result is important because in conflict analysis we wish to infer a constraint that fails in
the current partial valuation that can be used to perform propagation inferences at an earlier
depth. The proposition asserts that simply resolving backwards from a failure point towards
the most recent decision will yield such failing constraints.

38

4 Related Work

It is useful to step back and reflect on the history of SAT solving. The first SAT solving method
was by Davis-Putnam in 1960 and was a pure proof search via the cut rule (which is resolution
on propositional formulas). This algorithm is complete but very inefficient. The main reason
for the inefficiency is our inability to control the inferences to be relevant. The proof space is
vast and contains many valid inferences that are irrelevant to the problem at hand. This is a
fundamental weakness of proof-search methods in most expressive logics. Hence the focus on
logics that have efficient decision procedures - algorithms that calculate proofs without having
to search.

The next step, soon afterward, was by Davis-Logemann-Loveland in 1962, which based the
algorithm on search in model space – a model of the given constraints is built up an assignment
at a time. Inference was restricted to a special case of the cut rule: unit resolution, which forces
an assignment to a variable. This proved to be a much more efficient algorithm. Note how the
Davis-Logemann-Loveland algorithm combines model search and inference. Inference is tightly
controlled in such a way as to be much more relevant - it is only applied in contexts such that
it directly contributes to extending the search in model space. The model search is driving the
solver and inference is there to help the model search rather than to build a proof directly.

Research into backjumping and learning in SAT starting in the 70’s culminated in the dependency-
directed backtracking and learning mechanisms in GRASP from Marques-Silva and Sakallah in
the 90’s [7], with several significant advances by Zhang et al. at Princeton in the (z)CHAFF
system[9]. Inference (again the cut rule) is applied not only to further the model search, but
also to infer how to proceed when model search reaches a deadend, a contradiction. Again
inference is used in a tightly controlled way to foster the model search rather than to construct
a proof.

These reflections on SAT solving help to guide our thinking about synthesizing best-practice
constraint solvers. They provide some insight into the development of SMT solvers, which are
working through the issues of how to combine the model search of SAT with efficient theory-
inference. Opportunities still exist to apply these insights into optimization problems - how can
inference help guide the model-search towards optimal cost models?

5 Concluding Remarks and Open Issues

The main contribution of this paper has been to lay out a standard pattern for the derivation
of correct-by-construction CSP solvers using the conflict-directed backjumping and learning
paradigm. Our emphasis has been on formalizing a design theory for this class of solvers, which
is necessarily independent of the particulars of the constraint logic.

There are several issues that remain open and are subjects for future research. We made progress
on developing a native Metaslang calculator for use in transformations, but more needs to be
done, e.g. to support the calculation of a classification morphism from the GS CDBL to a given

39

problem specification. The older KIDS system [11] had a modified first-order prover that could
generate refinements of this kind.

Another issue arises from the distinction between problem constraints that are bound at spec-
ification time and those that are bound at runtime (as in SAT and most mathematical pro-
gramming problems). The calculations for generating propagation code depend on the form
of the constraints. Our current solution to this problem is to have the user perform the defi-
nite constraint calculations for example constraints and then to specify the general pattern to
implement propagation.

References

[1] Dechter, R. Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003.

[2] D’Silva, V., Haller, L., and Kroening, D. Satisfiability solvers are static analysers.
In SAS (2012), pp. 317–333.

[3] D’Silva, V., Haller, L., and Kroening, D. Abstract conflict driven learning. In
POPL (2013), pp. 143–154.

[4] Kestrel Institute. Specware System and documentation, 2003.
http://www.specware.org/.

[5] Manna, Z., and Waldinger, R. A deductive approach to program synthesis. ACM
Transactions on Programming Languages and Systems 2, 1 (January 1980), 90–121.

[6] Manna, Z., and Waldinger, R. Special relations in automated deduction. In Automata,
Languages and Programming (1985), Springer LNCS 194, pp. 413–423.

[7] Marques-Silva, J., and Sakallah, K. Grasp: a search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48, 5 (1999), 506 – 521.

[8] McMillan, K. L., Kuehlmann, A., and Sagiv, M. Generalizing dpll to richer logics.
In CAV’09 (2009), pp. 462–476.

[9] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. Chaff:
engineering an efficient sat solver. In DAC ’01: Proceedings of the 38th conference on
Design automation (2001), ACM Press, pp. 530–535.

[10] Rehof, J., and Mogensen, T. Tractable constraints in finite semilattices. In Science
of Computer Programming (1996), Springer-Verlag, pp. 285–300.

[11] Smith, D. R. KIDS – a semi-automatic program development system. IEEE Transactions
on Software Engineering Special Issue on Formal Methods in Software Engineering 16, 9
(1990), 1024–1043.

[12] Sörensson, N., and Biere, A. Minimizing learned clauses. In SAT (2009), pp. 237–243.

40

[13] Zhang, L., Madigan, C. F., Moskewicz, M. W., and Malik, S. Efficient conflict
driven learning in boolean satisfiability solver. In ICCAD (2001), pp. 279–285.

41

A Lattice-Based Laws

A variety of laws related to lattices arise naturally and commonly in derivations. The reason
is that many domain and types have lattice structure, and there is a fairly rich theory about
lattices. Rather than replicate instances of the same lattice theorems/laws for each type, we
state them in their abstract lattice form. To give some indication of their power, we also list
some common instances.

A.1 Lattices

A lattice 〈L,u,t,≤〉 is a partial order 〈L,≤〉 together with a least upper bound operator t,
called join, a greatest lower bound operator u, called meet.

A bounded lattice 〈L,u,t,⊥,>,≤〉 has a universal lower bound ⊥ ≤ x for all x ∈ L, and a
universal upper bound x ≤ > for all x ∈ L. A lattice is complete if every subset of L has a least
upper bound in L and a greatest lower bound in L.

A.2 Lattice Quantifiers

A lattice quantifier is the reduction of join or meet over a set of lattice elements. It is convenient
to define notation to cover common cases of indexing over sets. The general case is expressed:

⊔
a|P (a)

f(a)

and dually l

a|P (a)

f(a)

which quantify over the set {a | a ∈ L ∧ P (a)}.

42

A.3 Quantifier Elimination Laws

Lattice quantifiers are useful in formulating problems, and laws to eliminate them are a powerful
tool during calculation. Listed below are elimination laws for lattice-based quantifiers in which
we have functions from a preorder 〈A,�〉 to a lattice 〈L,u,t,≤〉.

Monotone F : 〈A,�〉 → 〈L,u,t,≤〉
1.1

⊔
a�â F (a) = F (â)

d
ǎ�a F (a) = F (ǎ) 1.2

Antimonotone F : 〈A,�〉 → 〈L,u,t,≤〉
-1.1

⊔
ǎ�a F (a) = F (ǎ)

d
a�â F (a) = F (â) -1.2

Specialization to Predicates

Monotone F : 〈A,�〉 → 〈Boolean,∧,∨,⇒〉
2.1

∨
a:A|a�â F (a) = F (â)

∧
a:A|ǎ�a F (a) = F (ǎ) 2.2

2.1 ∃(a : A|a � â)F (a) = F (â) ∀(a : A|ǎ � a)F (a) = F (ǎ) 2.2

Antimonotone F : 〈A,�〉 → 〈Boolean,∧,∨,⇒〉
-2.1 ∃(a : A) (ǎ � a ∧ F (a)) = F (ǎ) ∀(a : A) (a � â⇒ F (a)) = F (â) -2.2

Specialization to Propositional Formulas

Monotone F : 〈Boolean,⇒〉 → 〈Boolean,∧,∨,⇒〉
3.1 ∃(a : Boolean) F (a) = F (true) ∀(a : Boolean) F (a) = F (false) 3.2

Antimonotone F : 〈Boolean,⇒〉 → 〈Boolean,∧,∨,⇒〉
-3.1 ∃(a : Boolean) F (a) = F (false) ∀(a : Boolean) F (a) = F (true) -3.2

43

A.4 Quantifier Change Laws

Listed below are quantifier change laws. It often happens that we have an expression that is
quantified over one set S, but for purposes of calculation, we need it quantified over a different
set T . The laws presented below show how to effect such a change.

Listed below are quantifier change laws with respect to a lattice 〈L,t,u,≤〉.

S ⊆ T and g : T → L⊔
x∈S g(x) ≤

⊔
x∈T g(x)

S ⊆ T and g : T → Ld
x∈S g(x) ≥

d
x∈T g(x)

or, more generally,

h : S → T and g : T → L⊔
x∈S g(h(x)) ≤

⊔
x∈T g(x)

h : S → T and g : T → Ld
x∈S g(h(x)) ≥

d
x∈T g(x)

Special Cases:

1. L is the Boolean lattice: 〈Boolean,∧,∨,⇒〉

S ⊆ T and g : T → Boolean∨
x∈S g(x) =⇒

∨
x∈T g(x)

S ⊆ T and g : T → Boolean∧
x∈S g(x) ⇐=

∧
x∈T g(x)

2. L is the lattice of (polymorphic) finite sets: 〈Set(α),∪,∩,⊆〉

S ⊆ T and g : T → L⋃
x∈S g(x) ⊆

⋃
x∈T g(x)

S ⊆ T and g : T → L⋂
x∈S g(x) ⊇

⋂
x∈T g(x)

4. L is the lattice of Integers: 〈Integer,max,min,≤〉

S ⊆ T and g : T → L

maxx∈S g(x) ≤ maxx∈T g(x)

S ⊆ T and g : T → L

minx∈S g(x) ≥ minx∈T g(x)

44

A.5 Inference Rules

Polarity

Isotone F : 〈A,�〉 → 〈L,≤〉
a � b =⇒ F (a) ≤ F (b)

Antitone F : 〈A,�〉 → 〈L,≤〉
a � b =⇒ F (a) ≥ F (b)

Resolution in Predicate Calculus

Isotone E : Boolean→ Boolean, Antitone F : Boolean→ Boolean

E(a) ∧ F (a) =⇒ E(false) ∨ F (true)

Isotone E : Boolean→ Boolean, Antitone F : Boolean→ Boolean

E(a) ∨ F (a) ⇐= E(true) ∧ F (false)

45

