
Theory and Te
hniques for Synthesizing E�
ientBreadth-First Sear
h AlgorithmsSrinivas Nedunuri1, Douglas R. Smith2, William R. Cook1
1 University of Texas at Austin

2 Kestrel InstituteAbstra
t. Although Breadth-First Sear
h (BFS) has several advantages over Depth-First Sear
h (DFS) its prohibitive spa
e requirements have meant that algorithmdesigners often pass it over in favor of DFS. To address this short
oming, we introdu
ea theory of e�
ient BFS (EBFS), along with a simple re
ursive program s
hema for
arrying out the sear
h. The theory is based on dominan
e relations, a long standingte
hnique from the �eld of sear
h algorithms. We also show that greedy and greedy-like algorithms form a very useful and important sub-
ategory of EBFS. Finally, weshow how the EBFS
lass
an be used for semi-automated program synthesis byintrodu
ing some te
hniques for demonstrating that a given problem is solvable byEBFS. We illustrate our approa
h on several examples.1 Introdu
tionProgram synthesis is experien
ing something of a resurgen
e [SGF10,SLTB+06,GJTV11℄[PBS11,VY08,VYY10℄ following negative per
eptions of its s
alability in the early 90s. Manyof the
urrent approa
hes aim for near-automated synthesis. In
ontrast, the approa
h wefollow, we
all guided program synthesis, also in
orporates a high degree of automation but ismore user-guided. The basi
 idea is to identify interesting
lasses of algorithms and
aptureas mu
h generi
 algorithm design knowledge as possible in one pla
e.The user instantiatesthat knowledge with problem-spe
i�
 domain information. This step is often
arried outwith ma
hine assistan
e. The approa
h has been applied to su

essfully derive s
ores ofe�
ient algorithms for a wide range of pra
ti
al problems in
luding s
heduling [SPW95℄,
on
urrent garbage
olle
tion [PPS10℄, and SAT solvers [SW08℄.One signi�
ant
lass of algorithms that has been investigated is sear
h algorithms. Manyinteresting problems
an be solved by appli
ation of sear
h. In su
h an approa
h, an ini-tial sear
h spa
e is partitioned into subspa
es, a pro
ess
alled splitting, whi
h
ontinuesre
ursively until a feasible solution is found. A feasible solution is one that satis�es thegiven problem spe
i�
ation. Viewed as a sear
h tree, spa
es form nodes, and the subspa
esafter a split form the
hildren of that node. The pro
ess has been formalized by Smith[Smi88,Smi10℄. Problems whi
h
an be solved by global sear
h are said to be in the GlobalSear
h (GS)
lass. The enhan
ements in GS over standard bran
h-and-bound in
lude a num-ber of te
hniques designed to improve the quality of the sear
h by eliminating unpromisingavenues. One su
h te
hnique is referred to as dominan
e relations. Although they do notappear to have been widely used, the idea of dominan
e relations goes ba
k to at least the70s [Iba77℄. Essentially, a dominan
e relation is a relation between two nodes in the sear
htree su
h that if one dominates the other, then the dominated node is guaranteed to leadto a worse solution than the dominating one, and
an therefore be dis
arded. Establishinga dominan
e relation for a given problem is
arried out by a user. However this pro
ess

is not always obvious. There are also a variety of ways in whi
h to
arry out the sear
h,for example Depth-First (DFS), Breadth-First (BFS), Best-First, et
. Although DFS is themost
ommon, BFS a
tually has several advantages over DFS were it not for its exponentialspa
e requirement. The key to
arrying out BFS spa
e-e�
iently is to limit the size of thefrontier at any level. However, this has not been investigated in any systemati
 manner upto now.This paper has two main
ontributions:� We show how to limit the size of the frontier in sear
h using dominan
e relations,thereby enabling spa
e-e�
ient BFS. Additionally, we show that limiting the size of theundominated frontier to a
onstant results in a useful
lass of greedy algorithms.� Even though our method is not automati
, we believe that the pro
ess should be straight-forward to apply, without requiring Eureka steps. For this reason, we have devised te
h-niques that address roadblo
ks in derivations, whi
h are illustrated on some simple butilluminating examples. Further examples are in [NSC12℄2 Ba
kground To Guided Program Synthesis2.1 Pro
essThe basi
 steps in guided program synthesis are:1. Start with a logi
al spe
i�
ation of the problem to be solved. A spe
i�
ation is a quadru-ple 〈D,R, o, c〉where D is an input type, R an output or result type, o : D × R is apredi
ate spe
ifying
orre
t or feasible outputs for given inputs, and c : D×R → Int isa
ost fun
tion on solutions. An example spe
i�
ation of the Shortest Path problem isin Eg. 1 (This spe
i�
ation is explained in more detail below)2. Pi
k an algorithm
lass from a library of algorithm
lasses (Global Sear
h, Lo
alSear
h, Divide and Conquer, Fixpoint Iteration, et
). An algorithm
lass
om-prises a program s
hema
ontaining operators to be instantiated and an axiomati
 theoryof those operators (see [Ned12℄ for details) . A s
hema is analogous to a template fun
-tion in Java/C++ with the di�eren
e that both the template and template argumentsare formally
onstrained.3. Instantiate the operators of the program s
hema using information about the problemdomain and in a

ordan
e with the axioms of the
lass theory. To ensure
orre
tness, thisstep
an be
arried out with me
hani
al assistan
e. The result is an e�
ient algorithmfor solving the given problem.4. Apply low-level program transforms su
h as �nite di�eren
ing,
ontext-dependent sim-pli�
ation, and partial evaluation, followed by
ode generation. Many of these are auto-mati
ally applied by Spe
ware [S℄, a formal program development environment.The result of Step 4 is an e�
ient program for solving the problem whi
h is guaranteed
orre
t by
onstru
tion. The power of the approa
h stems from the fa
t that the
ommonstru
ture of many algorithms is
ontained in one reusable program s
hema and asso
iatedtheory. Of
ourse the program s
hema needs to be
arefully designed, but that is doneon
e by the library designer. The fo
us of this paper is the Global Sear
h
lass, andspe
i�
ally on how to methodi
ally
arry out Step 3 for a wide variety of problems. Detailsof the other algorithm
lasses and steps are available elsewhere [Kre98,Smi88,PPS10℄.

Example 1. Spe
i�
ation of the Shortest Path problem is shown in Fig. 2.1 (The 7→ readsas �instantiates to�) The input D is a stru
ture with 3 �elds, namely a start node, end nodeand a set of edges. The result R is a sequen
e of edges ([] notation). A
orre
t result is onethat satis�es the predi
ate path? whi
h
he
ks that a path z must be a
ontiguous pathfrom the start node to the end node (simple re
ursive de�nition not shown). Finally the
ost of a solution is the sum of the
osts of the edges in that solution. Note that �elds of astru
ture are a

essed using the '.' notation.2.2 Global Sear
h
D 7→ 〈start : Node, end : Node, edges : {Edge}〉

Edge = 〈f : Node, t : Node, cost : Nat〉
R 7→ [Edge]
o 7→ λ(x, z) · path?(z, x.start, x.end)

path?(p, s, f) = ...
c 7→ λ(x, z) ·

∑
edge∈z edge.costFig. 2.1. Spe
i�
ation of Shortest Path problem

Before delving into a program s
hema forGlobal Sear
h, it helps to understand thestru
tures over whi
h the program s
hemaoperates. In [Smi88℄, a sear
h spa
e is rep-resented by a des
riptor of some type R̂,whi
h is an abstra
tion of the result type
R. The initial or starting spa
e is de-noted ⊥. There are also two predi
ates split:
D × R̂ × R̂, written ⋔, and extra
t : R̂ ×R,written χ. Split de�nes when a spa
e is asubspa
e of another spa
e, and extra
t
ap-tures when a solution is extra
table froma spa
e. We say a solution z is
ontained in a spa
e y (written z ∈ y) if it
an be ex-tra
ted after a �nite number of splits. A feasible spa
e is one that
ontains feasible so-lutions. We often write ⋔ (x, y, y′) as y ⋔x y′ for readability, and even drop the sub-s
ript when there is no
onfusion. Global Sear
h theory (GS-theory) [Smi88℄ axiomati-
ally
hara
terizes the relation between the predi
ates ⊥, ⋔ and χ, as well as ensuringthat the asso
iated program s
hema
omputes a result that satis�es the spe
i�
ation.In the sequel, the symbols R̂,⊥,⋔, χ,⊕ are all assumed to be drawn from GS-theory.Example 2. Instantiating GS-theory for the Shortest Path problem requires instantiatingthe free terms in the theory. The type of solution spa
es R̂ is the same as the result type R.However, there is a
ovariant relationship between an element of R̂ and of R. For example,the initial spa
e,
orresponding to all possible paths, is the empty list. A spa
e is split byadding an edge to the
urrent path - that is the subspa
es are the di�erent paths that resultfrom adding an edge to the parent path. Finally a solution
an be trivially extra
ted fromany spa
e by setting the result z to the spa
e p. This is summarized in Fig. 2.2 ([] denotesthe empty list, and ++ denotes list
on
atenation).2.3 Dominan
e Relations
R̂ 7→ R
⊥ 7→ λx · []
⋔ 7→ λ(x, p, pe) · ∃e ∈ x.edges · pe = p++[e]
χ 7→ λ(z, p) · p = zFig. 2.2. GS instantiation for Shortest Path

As mentioned in the introdu
tion, a domi-nan
e relation provides a way of
omparingtwo subspa
es in order to show that one willalways
ontain at least as good a solutionas the other. (Goodness in this
ase is mea-sured by some
ost fun
tion on solutions).The �rst spa
e is said to dominate (⊲) the

se
ond, whi
h
an then be eliminated fromthe sear
h. Letting c∗ denote the
ost of anoptimal solution in a spa
e, this
an be for-malized as (all free variables are assumed to be universally quanti�ed):
y ⊲ y′ ⇒ c∗(x, y) ≤ c∗(x, y′) (2.1)Another way of expressing the
onsequent of (2.1) is

∀z′ ∈ y′ · o(x, z′) ⇒ ∃z ∈ y · o(x, z) ∧ c(x, z) ≤ c(x, z′) (2.2)To derive dominan
e relations, it is often useful to �rst derive a semi-
ongruen
e relation[Smi88℄. A semi-
ongruen
e between two partial solutions y and y′, written y y′, ensuresthat any way of extending y′ into a feasible solution
an also be used to extend y into afeasible solution. Like ⋔, is a ternary relation over D× R̂× R̂ but as we have done with
⋔ and many other su
h relations in this work, we drop the input argument when there is no
onfusion and write it as a binary relation for readability. Before de�ning semi-
ongruen
e,we introdu
e two
on
epts. One is the idea of useability of a spa
e. A spa
e y is is useable,written o∗(x, y), if ∃z. χ(y, z) ∧ o(x, z), meaning a feasible solution
an be extra
ted fromthe spa
e. The se
ond is the notion of in
orporating su�
ient information into a spa
e tomake it useable. This is de�ned by an operator ⊕ : R̂× t → R̂ that takes a spa
e and someadditional information of type t and returns a more de�ned spa
e. The type t depends on
R̂. For example if R̂ is the type of lists, then t might also be the same type. Now the formalde�nition of semi-
ongruen
e is:

y y′ ⇒ o∗(x, y′ ⊕ e) ⇒ o∗(x, y ⊕ e)That is, y y′ is a su�
ient
ondition for ensuring that if y′
an be extended into afeasible solution than so
an y with the same extension. Now if c is
ompositional (that is,
c(s⊕ t) = c(s) + c(t)) then it
an be shown [Ned12℄ that if y y′ and y is
heaper than y′,then y dominates y′ (written y ⊲ y′). Formally:

y y′ ∧ c(x, y) ≤ c(x, y′) ⇒ y ⊲ y′ (2.3)Dominan
e relations are a part of GS-theory [Smi88℄.Example 3. Shortest Path between two given nodes in a graph. If there are two paths p and
p′ leading from the start node, if p and p′ both terminate in the same node then p p′. Thereason is that any path extension e (of type t = [Edge]) of p′ that leads to the target nodeis also a valid path extension for p. Additionally if p is shorter than p′ then p dominates
p′, whi
h
an be dis
arded. Note that this does not imply that p leads to the target node,simply that no optimal solutions are lost in dis
arding p′. This dominan
e relation is formallyderived in Eg. 5Example 4. 0-1 Knapsa
kThe 0-1 Knapsa
k problem is, given a set of items ea
h of whi
h has a weight and utilityand a knapsa
k that has some maximum weight
apa
ity, to pa
k the knapsa
k with asubset of items that maximizes utility and does not ex
eed the knapsa
k
apa
ity. Given
ombinations k, k′, if k and k′ have both examined the same set of items and k weighs lessthan k′ then any additional items e that
an be feasibly added to k′
an also be added to
k, and therefore k k′. Additionally if k has at least as mu
h utility as k′ then k ⊲ k′.The remaining se
tions
over the original
ontributions of this paper .

3 A Theory Of Spa
e-E�
ient Breadth-First Sear
h (EBFS)While sear
h
an in prin
iple solve any
omputable fun
tion, it still leaves open the questionof how to
arry it out e�e
tively. Various sear
h strategies have been investigated overthe years; two of the most
ommon being Breadth-First Sear
h (BFS) and Depth-FirstSear
h (DFS). It is well known that BFS o�ers several advantages over DFS. Unlike DFSwhi
h
an get trapped in in�nite paths3, BFS will always �nd a solution if one exists.Se
ondly, BFS does not require ba
ktra
king. Third, for deeper trees, BFS will generally�nd a solution at the earliest possible opportunity. However, the major drawba
k of BFS isits spa
e requirement whi
h grows exponentially. For this reason, DFS is usually preferredover BFS.Our �rst
ontribution in this paper is to re�ne GS-theory to identify the
onditionsunder whi
h a BFS algorithm
an operate spa
e-e�
iently. The key is to show how the sizeof the undominated frontier of the sear
h tree
an be polynomially bounded. Dominan
erelations are the basis for this.In [Smi88℄, the relation ⋔l for l ≥ 0 is re
ursively de�ned as follows:
y ⋔0 y′ = (y = y′)

y ⋔l+1 y′ = ∃y′′ · y ⋔ y′′ ∧ y′′ ⋔l y′From this the next step is to de�ne those spa
es at a given frontier level that are notdominated. However, this requires some
are be
ause dominan
e is a pre-order, that is itsatis�es the re�exivity and transitivity axioms as a partial order does, but not the anti-symmetry axiom. That is, it is quite possible for y to dominate y′ and y′ to dominate y but
y and y′ need not be equal. An example in Shortest Path is two paths of the same lengthfrom the start node that end at the same node. Ea
h path dominates the other. To eliminatesu
h
y
li
 dominan
es, de�ne the relation y ≈ y′ as y ⊲ y′∧y′ ⊲ y. It is not di�
ult to showthat ≈ is an equivalen
e relation. Now let the quotient frontier at level l be the quotient set
frontierl/ ≈ . For type
onsisten
y, let the representative frontier rfrontierl be the quotientfrontier in whi
h ea
h equivalen
e
lass is repla
ed by some arbitrary member of that
lass.The representative frontier is the frontier in whi
h
y
li
 dominan
es have been removed.Finally then the undominated frontier undoml is rfrontierl − {y | ∃y′ ∈ rfrontierl · y′ ⊲ y}.Now given a problem in the GS
lass, if it
an be shown that ‖undoml‖ for any l ispolynomially bounded in the size of the input, a number of bene�ts a

rue: (1) BFS
anbe used to tra
tably
arry out the sear
h, as implemented in the raw program s
hema ofAlg. 1, (2) The raw s
hema of Alg. 1
an be transformed into an e�
ient tail re
ursiveform, in whi
h the entire frontier is passed down and (3) If additionally the tree depth
an be polynomially bounded (whi
h typi
ally o

urs for example in
onstraint satisfa
tionproblems or CSPs [De
03℄) then, under some reasonable assumptions about the work beingdone at ea
h node, the result is a polynomial-time algorithm for the problem.3.1 Program TheoryA program theory for EBFS de�nes a re
ursive fun
tion whi
h given a spa
e y,
omputes anon-trivial subset Fx(y) of the optimal solutions
ontained in y, where

Fx(y) = optc{z | z ∈ y ∧ o(x, z)}3 resolvable in DFS with additional programming e�ort

Algorithm 1 pseudo-Haskell Program S
hema for EBFS (s
hema parameters underlined)solve :: D -> {R}solve(x) = bfs x {initial(x)}bfs :: D -> {RHat}-> {R}bfs x frontier =let lo
alsof y = let z = extra
t x yin if z!={} && o(x,z) then z else {}lo
als = (flatten.map) lo
alsof frontierallsubs = (flatten.map) (subspa
es x) frontierundom = {yy : yy∈allsubs &&(yy'∈subs && yy' `dominates` yy ⇒ yy==yy')}subsolns = bfs x undomin opt(lo
als ∪ subsolns)subspa
es :: D -> RHat -> {RHat}subspa
es x y = {yy: split(x,y,yy))opt :: {R} -> {R}opt zs = min {
 x z | z ∈zs}
optc is a subset of its argument that is the optimal set of solutions (w.r.t. the
ost fun
tion
c), de�ned as follows:

optcS = {z | z ∈ S ∧ (∀z′ ∈ S · c(z) ≤ c(z′))}Also let undom(y) be undoml(y)+1 ∩ {yy | y ⋔ yy} where l(y) is the level of y in the tree.The following theorem de�nes a re
urren
e that serves as the basis for
omputing Fx(y):Theorem 3.1. Let ⋔ be a well-founded relation of GS-theory and Gx(y) = optc({z | χ(y, z)∧
o(x, z)} ∪

⋃
yy∈undom(y)Gx(yy)}) be a re
urren
e. Then Gx(y) ⊆ Fx(y).The theorem states that if the feasible solutions immediately extra
table from a spa
e

y are
ombined with the solutions obtained from Gx of ea
h undominated subspa
e yy,and the optimal ones of those retained, the result is a subset of Fx(y). The next theoremdemonstrate non-triviality4 of the re
urren
e by showing that if a feasible solution exists ina spa
e, then one will be found.Theorem 3.2. Let ⋔ be a well-founded relation of GS-Theory and Gx be de�ned as above.Then
Fx(y) 6= ∅ ⇒ ({z | χ(y, z) ∧ o(x, z)} ∪

⋃

yy∈undom(y)

Gx(yy)}) 6= ∅Proofs of both theorems are in [NSC12℄. From the
hara
teristi
 re
urren
e we
anstraightforwardly derive a simple re
ursive fun
tion bfs to
ompute a non-trivial subset of
Fx for a given y, shown in Alg. 1The �nal program s
hema that is in
luded in the Spe
ware library is the result of in-
orporating a number of other features of GS su
h as ne
essary �lters, bounds tests, andpropagation, whi
h are not shown here. Details of these and other te
hniques are in [Smi88℄.4 Non-triviality is similar but not identi
al to
ompleteness. Completeness requires that everyoptimal solution is found by the re
urren
e, whi
h we do not guarantee.

3.2 A
lass of stri
tly greedy algorithms (SG)A greedy algorithm [CLRS01℄ is one whi
h repeatedly makes a lo
ally optimal
hoi
e. Forsome
lasses of problems this leads to a globally optimum
hoi
e. We
an get a
hara
teriza-tion of optimally greedy algorithms within EBFS by restri
ting the size of undoml for any
l to 1. If undoml 6= ∅ then the singleton member y∗ of undoml is
alled the greedy
hoi
e.A perhaps surprising result is that our
hara
terization of greedy algorithms is broaderthan a well-known
hara
terization of greedy solutions, namely the Greedy Algorithm overalgebrai
 stru
tures
alled greedoids [BZ92℄, whi
h are themselves more general than ma-troids. We demonstrated this in earlier work [NSC10℄ although at the time we were not ableto
hara
terize the greedy
lass as a spe
ial
ase of EBFS.Another interesting result is that even if ‖undoml‖, for any l,
annot be limited toone but
an be shown to be some
onstant value, the resulting algorithm, we
all HardlyStri
tly Greedy5 (HSG), still has the same
omplexity as a stri
tly greedy one. A numberof interesting problems have the HSG property, and these are dis
ussed later.Note that forproblems in the SG
lass, there is no longer any �sear
h� in the
onventional sense.4 MethodologyWe strongly believe that every formal approa
h should be a

ompanied by a methodologyby whi
h it
an be used by a
ompetent developer, without needing great insights. Guidedprogram synthesis already goes a long way towards meeting this requirement by
apturingdesign knowledge in a reusable form. The remainder of the work to be done by a developer
onsists of instantiating the various parameters of the program s
hema. The se
ond main
ontribution of this paper is to des
ribe some te
hniques, illustrated with examples, thatgreatly simplify the instantiation pro
ess. We wish to reiterate that on
e the dominan
erelation and other operators in the s
hema have been instantiated, the result is a
ompletesolution to the given problem. We fo
us on dominan
e relations be
ause they are arguablythe most
hallenging of the operators to design. The remaining parameters
an usually bewritten down by visual inspe
tion.The simplest form of derivation is to reason ba
kwards from the
on
lusion of y y′ ⇒
o∗(x, y′⊕e) ⇒ o∗(x, y⊕e), while assuming o∗(x, y′⊕e) . The additional assumptions that aremade along the way form the required semi-
ongruen
e
ondition. The following exampleillustrates the approa
h.Example 5. Derivation of the semi-
ongruen
e relation for Shortest Path in Eg. 1 is fairlystraightforward
al
ulation as shown in Fig 4.1. It relies on the spe
i�
ation of ShortestPath given in Eg. 1 and the GS-theory in Eg. 2.The
al
ulation shows that a path y is semi-
ongruent to y′ if y and y′ both end at thesame node and additionally y is itself a valid path from the start node to its last node.Sin
e the
ost fun
tion is
ompositional, this immediately produ
es a dominan
e relation
y ⊲ y′ = last(y) = last(y′)∧path?(y, x.start, n)∧

∑
edge∈y edge.cost ≤

∑
edge′∈y′ edge′.cost.Note the use of the distributive law for path? in step 4. Su
h laws are usually formulatedas part of a domain theory during a domain dis
overy pro
ess, or even as part of the pro-
ess of trying to
arry out a derivation su
h as the one just shown. Given an appropriate
onstru
tive prover (su
h as the one in KIDS [Smi90℄) su
h a derivation
ould in fa
t be au-tomated. Other examples that have been derived using this approa
h are A
tivity Sele
tion5 This name inspired by that of the Hardly Stri
tly Bluegrass festival held annually in San Fran
is
o

o∗(x, y ⊕ e)
= {defn of o∗}
∃z · χ(y ⊕ e, z) ∧ o(x, z)
= {defn of χ}
o(x, y ⊕ e)
= {defn of o}
path?(y ⊕ e, x.start, x.end)
= {distributive law for path?}
∃n · path?(y, x.start, n) ∧ path?(e, n, x.end)
⇐ {o∗(x, y′ ⊕ e), ie.∃m · path?(y′, x.start,m) ∧ path?(e,m, x.end). Let m be a witness for n}
path?(y, x.start,m) ∧ path?(e,m, x.end)
= {m = last(y).t, (where last returns the last element of a sequen
e)}
last(y).t = last(y′).t ∧ path?(y, x.start, n)Fig. 4.1. Derivation of semi-
ongruen
e relation for Shortest Path[NSC10℄, Integer Linear Programming [Smi88℄, and variations on the Maximum SegmentSum problem [NC09℄. The next two se
tions deal with situations in whi
h the derivation isnot so straightforward.4.1 Te
hnique 1: An ex
hange ta
ti
In the example just
onsidered, and many su
h others, the derivation pro
ess was free ofrabbits (Dijkstra's term for magi
 steps that appear seemingly out of nowhere). However,some
ases are a little more
hallenging. As an example
onsider the following problem:Example 6. One-Ma
hine S
heduling. This is the problem of s
heduling a number of jobs ona ma
hine so as to minimize the sum of the
ompletion times of the jobs (be
ause dividingthe sum of the
ompletion times by the number of jobs gives the average amount of timethat a job waits before being pro
essed). A s
hedule is a permutation of the set of inputjobs {J1, J2, . . . Jn}. The input to the problem is a set of tasks, where a task
onsists ofa pair of an id and duration, p. The result is a sequen
e of tasks. The output
ondition orequires that every task (and only those tasks) in the input be s
heduled, ie pla
ed at aunique position in the output sequen
e. Finally the
ost of a solution, as stated above, isthe sum of the
ompletion times of the tasks. The problem spe
i�
ation is therefore:

D 7→ {Task}
R 7→ [Task]

Task = 〈id : Id, p : T ime〉
o 7→ λ(x, z) · asBag(z) = x
c 7→ λ(x, z) ·

∑n
i=1 ct(z, i)

ct(z, i) =
∑i

j=1 zj .pThe instantiation of terms in GS-theory is similar to that of Shortest Path:
R̂ 7→ R
⊥ 7→ λx · []
⋔ 7→ λ(x, s, ss) · ∃t ∈ x. ss = s++[t]
χ 7→ λ(z, p) · p = z
⊲ 7→ ?

However, attempting to derive a semi-
ongruen
e relation in the same manner as we did forthe Shortest Path problem by
omparing two s
hedules αa and αb will not work. This isbe
ause every task must be s
heduled, so any extension ω that extends say αa must
ontain
b but as ea
h task
an be s
heduled only on
e, su
h an extension will not be feasible for αb.Su
h situations are very
ommon in s
heduling and planning problems6. For su
h problems,note that when R̂ is a sequen
e type, every possible way a (
alled a
hoi
e) of extendingsome sequen
e α ie. α++[a], written αa for
on
iseness, forms a subspa
e of α. A simpleexample is the problem of generating all bit strings. If the
urrent spa
e is some bit stringsay [1,0,0,1℄ then the two subspa
es are [1,0,0,1℄++[0℄ and [1,0,0,1℄++[1℄ , written 10010 and10011 resp. Another example o

urs in CSP. If α is the sequen
e of assignments to the �rst ivariables, then αv for every v in Di+1 is a subspa
e of α. The ta
ti
 to try in su
h situationsis to
ompare two partial solutions that are permutations of ea
h other. This idea is ba
kedup by the following theorem.Theorem 4.1. Suppose it
an be shown that any feasible extension of αa must eventually befollowed by some
hoi
e b. That is, any feasible solution
ontained in αa must be
ontainedin αaβb for some β. Let αbβa be the partial solution obtained by ex
hanging a and b. If
R(α, a, b) is an expression for the semi-
ongruen
e relation αbβa αaβb and C(α,a,b)is an expression for c(αbβaγ) ≤ c(αaβbγ), for any α, β, then R(α, a, b) ∧ C(α, a, b) is adominan
e relation αb ⊲ αa.Proof. See [Ned12℄Example 6 Revisited. We now show how to derive a dominan
e relation for thisproblem. The ta
ti
 above suggests the following: Suppose some partial s
hedule is extendedby pi
king task a to assign in the next position and this is followed subsequently by some task
b. When is this better than pi
king b for the next position and a subsequently? Let y = αaβband y′ = αbβa. It is not di�
ult to show that y and y′ are un
onditionally semi-
ongruent.To apply Theorem 4.1 it is ne
essary to derive an expression for c(αbβaγ) ≤ c(αaβbγ).Let z = yγ and z′ = y′γ and let i be the position of a (b) in y (resp. y′) and j be theposition of b (a) in y (resp. y′). As shown in Fig. 4.2, the
al
ulation is simple enough to beautomated. The derivation shows that for any feasible solution αbβaω extending αb thereis a
heaper feasible solution αaβbω that extends αa provided a.p ≤ b.p. By Theorem 4.1,this
onstitutes the dominan
e relation αa ⊲ αb. Finally, as ≤ is total order, there mustbe a
hoi
e that dominates all other
hoi
es, namely the task with the least pro
essingtime. Therefore the problem is in the SG
lass. Following this greedy
hoi
e at every steptherefore leads to the optimum solution. Instantiating the library s
hema derived from Alg.1 with su
h a dominan
e relation (along with the other parameters) immediately results ina greedy algorithm for this problem. The result
orresponds to the Shortest Pro
essing Time(SPT) rule, dis
overed by W.E. Smith in 1956. We have shown how it
an be systemati
allyderived.We have applied the ta
ti
 above to derive other s
heduling algorithms, for example analgorithm for the s
heduling problem 1//Lm in whi
h the goal is to minimize the maximumlateness of any job (amount by whi
h it misses its due date), as well as variant of it to derivedominan
e relations for planning problems [Ned12℄.6 In planning, a
tions that must o

ur after another a
tion to a
hieve a feasible plan are
alleda
tion landmarks

c(z) ≤ c(z′)
= {unfold defn of c}

c(α) + ct(z, i) + c(β) + ct(z, j) + c(γ) ≤ c(α) + ct(z, j) + c(β) + ct(z, i) + c(γ)

= {unfold defn of ct. Realize that c(α) = ∑‖α‖
i=1

∑i

j=1
αj .p and let pt(α) = ∑‖α‖

j=1
αj .p}

c(α) + pt(α) + a.p+ c(β) + pt(α) + a.p+ pt(β) + b.p

≤
ct(α) + pt(α) + b.p+ c(β) + pt(α) + b.p+ pt(β) + a.p

= {algebra}
2(a.p) + b.p ≤ 2(b.p) + a.p

= {algebra}
a.p ≤ b.p Fig. 4.2. Cal
ulation of
ost
omparison relation for 1 ma
h. s
heduling4.2 Te
hnique 2: General Dominan
eThere are situations in whi
h the above ta
ti
 will fail. Consider the following problem from[CLRS01℄ and [Cur03℄:Example 7. Professor Midas's Driving ProblemProfessor Midas wishes to plan a
ar journey along a �xed route. There are agiven number of gas stations along the route, and the professor's gas tank when full
an
over a given number of miles. Derive an algorithm that minimizes the numberof refueling stops the professor must make.The input data is assumed to be a sequen
e of
umulative distan
es of gas stations from thestarting point (cds) along with the
ar's tank
apa
ity (cap, measured in terms of distan
e).The variables will represent the gas stations along the route, that is variable i will be the ithgas station. A stop at a gas station is indi
ated in the result by assigning the
orrespondingvariable true, and false otherwise. The start and �nish are
onsidered mandatory stops(that is z1 and zn are required to be true). Finally, the
ost of a solution is a simple
ountof the number of variables assigned true. An obvious requirement on the input is that thedistan
e between any two stations not ex
eed the tank
apa
ity of the
ar. These ideas are
aptured in the following spe
i�
ation (in the
ost fun
tion false is interpreted as 0 and trueas 1). Note that a type 〈. . . | P 〉 denotes a predi
ate subtype in whi
h the type membersmust satisfy the predi
ate P .
D 7→ 〈cds : [Nat], cap : Nat | ∀x ∈ D · ∀i < ‖x.cds‖ · x.cds[i + 1]− x.cds[i] ≤ x.cap〉
R 7→ [Boolean]
o 7→ ‖z‖ = ‖x.cds‖ ∧ fsok (x, z)

fsok(x, z) = ∀i, j · i ≤ j · didntStop(z, i, j) ⇒ span(x, i, j) ≤ x.cap
didntStop(z, a, b) = ∀i · a ≤ i ≤ b · ¬zi
span(x, i, j) = x.cds[j + 1]− x.cds[i− 1]

c 7→ λx, z ·
∑‖z‖

i=1 ziThe instantiation of GS-theory, with the ex
eption of ⊲, is as it was for the ma
hines
heduline example (Eg. 6). Attempting to apply the Ex
hange ta
ti
 des
ribed above andderive a semi-
ongruen
e relation between αTβF and αFβT (T is true and F is false) thatdoes not depend on β will fail. The
ounter-example of Fig 4.3 shows why (boxes represent

variables, shading means the variable was set true): it is possible that there is some extension
e to αT whi
h delays a stop but whi
h is too long a span for αF . In su
h situations, wehave found it useful to try to establish general dominan
e (Def. 2.2).As before, it is useful to identify any distributive laws. In this
ase, the
ombination ofpartial solutions r and s satis�es fsok provided ea
h partial solution independently satis�es
fsok and where they abut satis�es fsok . Expressing the law formally requires broadening thede�nition of fsok somewhat to take into a

ount the o�set t of a parti
ular sequen
e fromthe start, that is: fsok (x, z, t) = ∀i, j · i ≤ j∧didntStop(z, i, j) ⇒ span(x, i+t, j+t) ≤ x.cap.Then:

fsok(x, y ⊕ e, 0) = fsok (x, y, 0) ∧ fsok (x, e, ‖y‖) ∧ fs2ok (x, y, e)where fs2ok deals with the boundary between y and e and
an be shown to be
fs2ok (x, y, e) = fsok (x, lfs(y)++ffs(e), ‖y − lfs(y)‖)where �s (resp. lfs) denotes the initial (resp. last) false span of a segment, if any.Now
onsider the two possible solutions after a split again, namely αT and αF . Todemonstrate o(x, αFe) for some e, the usual ba
kwards inferen
e pro
edure
an be applied,assuming αTe′ for some e′ (for brevity, the input x to fsok has been dropped)

o(x, αFe)
= {defn }
fsok (αFe, 0)
= {defn }
fsok (α, 0) ∧ fsok (F, ‖α‖) ∧ fs2ok (α, F) ∧ fsok (e, ‖α‖ + 1) ∧ fs2ok (αF, e)
= {fsok(α, 0) be
ause o(x, αTe′), fsok(F,−) be
ause of restri
tion on D}
fs2ok(α, F) ∧ fsok(e, ‖α‖+ 1)) ∧ fs2ok(αF, e)
= {see below}
fs2ok(α, F)

Partial soln 1 after split

Partial soln 2 after split

extension

<= x.cap

> x.capFig. 4.3. Counter-example: extension works forthe 1st partial soln but not for the 2nd

To demonstrate both fsok (e, ‖α‖ + 1)and fs2ok (αF, e), let e = e′[1 = T] (e′ withthe �rst variable assigned true). Clearly
fsok (e, ‖α‖ + 1) if fsok(e′, ‖α‖ + 1) and
fs2ok (αF, e) if fs2ok (α, F) be
ause ffs(e) isempty. As αF has one stop less than αTand e has at most one extra, it follows that
c(x, αFe) ≤ c(x, αTe′). Therefore αF dom-inates αT provided there is su�
ient fuel tomake it to the next stop. As there are onlytwo bran
hes following a split, the greedy
hoi
e is
lear. Informally this rule is totravel as far as possible without stopping.Other algorithms we have derived by ap-plying general dominan
e have been a SGalgorithm for Shortest Path similar to Di-jkstra's algorithm, and SG algorithms similar to Prim and Kruskal for Minimum SpanningTrees [NSC12℄.

4.3 Te
hnique 3: Feasibility ProblemsFinally, we show that the notion of greediness applies not only to optimality problems, butalso feasibility problems. By letting the �
ost� of a solution be its
orre
tness and using thestandard ordering on Booleans, namely that false<true, we
an derive a feasibility dominan
e
riterion for y ⊲F y′, namely o(x, y′) ⇒ o(x, y) [Ned12℄. One way to use this
onstraint isderive
onditions under whi
h o(x, y′) is false, ensuring y′ is dominated. An example of thisfollows.Example 8. Sear
hing for a key in an ordered sequen
e. A
ombined problem spe
i�
ationand GS-theory instantiation is:
D 7→ 〈seq : [Int], key : Int | unique(key, seq)∧ ordered(seq)〉
R 7→ Nat
o 7→ λ(x, z) · x.seq[z] = x.key

R̂ 7→ (Nat,Nat)
⋔ 7→ λ(x, (i, j), (k, l)) · (k = i ∧ l = ⌊(i+ j)/2)⌋)∨

(k = ⌊(i + j)/2)⌋+ 1 ∧ l = j)
χ 7→ λ(y, z) · z = yThe input D provides the sequen
e and the key, requiring that the sequen
e be orderedand the key o

ur uniquely in the sequen
e. The result is the index of the desired key.The two subspa
es after a split are the sequen
e from the start i of the parent sequen
eto the midway point and from some point immediately after the midway to the end j ofthe parent sequen
e. (This split relation is derived in [Smi10℄). In general, there
ould bean n-way split, or a split at any
hosen point in the range but for simpli
ity, only thebinary midpoint
ase is illustrated. There are only two subspa
es after a split denoted Land R. Fig 4.4 derives the
ondition under whi
h o(x, αL) holds. Negating this
ondition,ie. x.key > x.seq[(i+ j)/2] determines when o(x, αL) is false and αL is dominated, leavingat most one undominated
hild, αR. Completing the instantiation of GS-theory with thisdominan
e
ondition provides the bindings for the parameters of the program s
hema ofAlg. 1. Sin
e the depth of the sear
h is O(log n), the result is an O(log n) greedy algorithmthat implements Binary Sear
h.4.4 HSG problems

o(x, αL)
= {defn. of o}
∃z ∈ αL · o(x, z)
= {defn. of o}∨(i+j)/2

p=i x.seq[p] = x.key

⇒ {ordered elements}
x.key ≤ x.seq[(i + j)/2]Fig. 4.4. Derivation of greedy dominan
e relationfor binary sear
h

The problems illustrated so far have all beenStri
tly Greedy (SG). This was intentional.For one thing, many problems have a greedysolution (or a greedy approximation). Ad-ditionally, as one moves down an algorithmhierar
hy, the narrower
lass generally hasa more e�
ient algorithm. The pri
e to bepaid is that it is usually more di�
ult toestablish the
onditions ne
essary for mem-bership in a tighter
lass. The te
hniques wehave demonstrated for establishing mem-bership in SG apply equally well to thebroader
ategory of HSG and indeed the

at
h-all one of EBFS. Although problemsin the broader
ategories are seemingly sparser, we have
arried out derivations for severalproblems that are in the HSG
lass. For example, we demonstrated membership in the HSG
lass for 2-SAT (Boolean satis�ability in whi
h there are at most 2 variables per
lause)[Ned12℄ as well as for a family of Segment Sum problems [NC09℄. The dominan
e relationswe derived for the Segment Sum problems resulted in very e�
ient linear-time algorithms forall the problems. Noteworthy is that the run-time performan
e of the solutions we derived
onsistently ex
eeded those obtained by program transformation [SHT00,SHT01,SOH05℄.Geneti
 algorithms in whi
h the des
endant population is maintained at a
onstant level areanother example of HSG algorithms.5 Related WorkGulwani et al. [SGF10,GJTV11℄ des
ribe a powerful program synthesis approa
h
alledtemplate-based synthesis. A user supplies a template or outline of the intended programstru
ture, and the tool �lls in the details. A number of interesting programs have been syn-thesized using this approa
h, in
luding Bresenham's line drawing algorithm and various bitve
tor manipulation routines. A related method is indu
tive synthesis [IGIS10℄ in whi
h thetool synthesizes a program from examples. The latter has been used for inferring spread-sheet formulae from examples. All the tools rely on powerful SMT solvers. The Sket
hingapproa
h of Solar-Lezama et al [PBS11℄ also relies on indu
tive synthesis. A sket
h, similarin intent to a template, is supplied by the user and the tool �lls in su
h aspe
ts as loopbounds and array indexing. Sket
hing relies on e�
ient SAT solvers. To quote Gulwani etal. the bene�t of the template approa
h is that �the programmer only need write the stru
-ture of the
ode and the tool �lls out the details� [SGF10℄.Rather than the programmersupplying an arbitrary template, though, we suggest the use of a program s
hema from theappropriate algorithm
lass (refer to Step 2 of the pro
ess in Se
. 2.1). We believe that theadvantage of su
h an approa
h is that, based on a sound theory, mu
h
an already be in-ferred at the abstra
t level and this is
aptured in the theory asso
iated with the algorithm
lass. Furthermore, knowledge of properties at the abstra
t level allows spe
ialization of theprogram s
hema with information that would otherwise have to either be guessed at by theprogrammer devising a template or inferred automati
ally by the tool (e.g. tail re
ursiveimplementation or e�
ient implementation of dominan
e testing with hashing). We believethis will allow semi-automated synthesis to s
ale up to larger problems su
h as
onstraintsolvers (SAT, CSP, LP, MIP, et
.), planning and s
heduling, and O/S level programs su
has garbage
olle
tors [PPS10℄.Program veri�
ation is another �eld that shares
ommon goals with program synthesis -namely a
orre
t e�
ient program. The di�eren
e lies in approa
h - we prefer to
onstru
tthe program in a way that is guaranteed to be
orre
t, as opposed to verifying its
orre
t-ness after the fa
t. Certainly some re
ent tools su
h as Dafny [Lei10℄ provide very usefulfeedba
k in an IDE during program
onstru
tion. But even su
h tools requires signi�
antprogram annotations in the form of invariants to be able to automati
ally verify non-trivialexamples su
h as the S
horr-Waite algorithm [Lei10℄. Nevertheless, we do not see veri�
a-tion and synthesis as being ne
essarily opposed. For example, ensuring the
orre
tness ofthe instantiation of several of the operators in the program s
hema whi
h is usually doneby inspe
tion is a veri�
ation task, as is ensuring
orre
tness of the s
hema that goes in the
lass library. We also feel that re
ent advan
es in veri�
ation via SMT solvers will also helpguided synthesis by in
reasing the degree of automation.

Re�nement is generally viewed as an alternative to synthesis. A spe
i�
ation is graduallyre�ned into an e�
ient exe
utable program. Re�nement methods su
h as Z and B haveproved to be very popular. In
ontrast to re�nement, guided program synthesis alreadyhas the program stru
ture in pla
e, and the main body of work
onsists of instantiatingthe s
hema parameters followed by various program transformations many of whi
h
anbe me
hani
ally applied. Both re�nement and synthesis rely extensively on tool support,parti
ularly in the form of provers.We expe
t that advan
es in both synthesis and re�nementwill bene�t the other �eld.Curtis [Cur03℄ presents a
lassi�
ation s
heme for greedy algorithms. Ea
h
lass hassome
onditions that must be met for a given algorithm to belong to that
lass. The greedyalgorithm is then automati
ally
orre
t and optimal. Unlike Curtis, our results extend be-yond stri
tly greedy algorithms. We also rely extensively on
al
ulational proofs for probleminstan
es.Another approa
h has been taken by Bird and de Moor [BM93℄ who show that under
ertain
onditions a dynami
 programming algorithm simpli�es into a greedy algorithm.Our
hara
terization in
an be
onsidered an analogous spe
ialization of (a form of) bran
h-and-bound. The di�eren
e is that we do not require
al
ulation of the entire program, butspe
i�
 operators, whi
h is a less onerous task.6 Summary and Future WorkWe have shown how Breadth-First Sear
h
an be
arried out e�
iently by relying on domi-nan
e relations. This is an important result as Breadth-First Sear
h has several advantagesover Depth-First Sear
h. Se
ondly, we demonstrated some te
hniques by whi
h dominan
erelations
an be derived and illustrated them on several problems. We hope to identifyand
olle
t more te
hniques over time and
atalogue then in the style of design patterns[GHJV95℄.Nearly all the derivations shown in this paper have been
arried out by hand. However,they are simple enough to be automated. We plan on building a prover that in
orporatesthe ideas mentioned in here. We are en
ouraged by the su

ess of a similar prover that waspart of KIDS, a prede
essor to Spe
ware.We are
urrently applying some of these ideas to the problem of synthesizing fast plannersthat produ
e good quality plans. We hope to report on this work in the near future.Referen
es[BM93℄ R. S. Bird and O. De Moor. From dynami
 programming to greedy algorithms. In FormalProgram Development, volume 755 of Le
ture Notes in Computer S
ien
e, pages 43�61.Springer-Verlag, 1993.[BZ92℄ Anders Bjï¾÷rner and Gï¾÷nter M. Ziegler. Introdu
tion to greedoids. In Neil White,editor, Matroid Appli
ations. Cambridge University Press, 1992.[CLRS01℄ T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introdu
tion to Algorithms. MITPress, 2nd edition, 2001.[Cur03℄ S. A. Curtis. The
lassi�
ation of greedy algorithms. S
i. Comput. Program., 49(1-3):125�157, 2003.[De
03℄ R De
hter. Constraint Pro
essing. Morgan Kau�man, 2003.[GHJV95℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusableobje
t-oriented software. Addison-Wesley Professional, 1995.

[GJTV11℄ S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free programs. InPLDI, pages 62�73, 2011.[Iba77℄ T. Ibaraki. The power of dominan
e relations in bran
h-and-bound algorithms. J. ACM,24(2):264�279, 1977.[IGIS10℄ S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. A simple indu
tive synthesismethodology and its appli
ations. In OOPSLA, pages 36�46, 2010.[Kre98℄ C. Kreitz. Program synthesis. In W. Bibel and P. S
hmitt, editors, Automated Dedu
tion� A Basis for Appli
ations, volume III,
hapter III.2.5, pages 105�134. Kluwer, 1998.[Lei10℄ K. R. M. Leino. Dafny: an automati
 program veri�er for fun
tional
orre
tness. InPro
. 16th intl.
onf. on Logi
 for Prog., AI, and Reasoning, LPAR, pages 348�370,2010.[NC09℄ S. Nedunuri and W.R. Cook. Synthesis of fast programs for maximum segment sumproblems. In Intl. Conf. on Generative Prog. and Component Engineering (GPCE),O
t. 2009.[Ned12℄ S. Nedunuri. Theory and Te
hniques for Synthesizing E�
ient Breadth-First Sear
hAlgorithms. PhD thesis, Univ. of Texas at Austin, 2012.[NSC10℄ S. Nedunuri, D. R. Smith, and W. R. Cook. A
lass of greedy algorithms and its relationto greedoids. Intl. Colloq. on Theoreti
al Aspe
ts of Computing (ICTAC), 2010.[NSC12℄ S. Nedunuri, D. R. Smith, and W. R. Cook. Theory and te
hniques for synthesizinggraph algorithms using breadth-�rst sear
h. In 1st Workshop on Synthesis (SYNT) inComputer Aided Veri�
ation (CAV), 2012.[PBS11℄ Y. Pu, R. Bodík, and S. Srivastava. Synthesis of �rst-order dynami
 programmingalgorithms. In OOPSLA, pages 83�98, 2011.[PPS10℄ D. Pavlovi
, P. Pepper, and D. R. Smith. Formal derivation of
on
urrent garbage
olle
tors. In Math. of Program Constr. (MPC), 2010.[S℄ Spe
ware. http://www.spe
ware.org.[SGF10℄ S. Srivastava, S. Gulwani, and J. S. Foster. From program veri�
ation to programsynthesis. In POPL, pages 313�326, 2010.[SHT00℄ I. Sasano, Z. Hu, and M. Takei
hi. Make it pra
ti
al: A generi
 linear-time algorithm forsolving maximum-weightsum problems. In Intl. Conf. Fun
tional Prog.(ICFP), 2000.[SHT01℄ Isao Sasano, Zhenjiang Hu, and Masato Takei
hi. Generation of e�
ient programs forsolving maximum multi-marking problems. In Pro
. 2nd Intl. SAIG Workshop, 2001.[SLTB+06℄ A. Solar-Lezama, L. Tan
au, R. Bodik, S. Seshia, and V. Saraswat. Combinatorialsket
hing for �nite programs. In Pro
. of the 12th intl.
onf. on ar
hite
tural supportfor prog. lang. and operating systems (ASPLOS), pages 404�415, 2006.[Smi88℄ D. R. Smith. Stru
ture and design of global sear
h algorithms. Te
h. Rep. Kes.U.87.12,Kestrel Institute, 1988.[Smi90℄ D. R. Smith. Kids: A semi-automati
 program development system. IEEE Trans. onSoft. Eng., Spe
. Issue on Formal Methods, 16(9):1024�1043, September 1990.[Smi10℄ D. R. Smith. Global sear
h theory revisited. Unpublished, De
ember 2010.[SOH05℄ Isao Sasano, Mizuhito Ogawa, and Zhenjiang Hu. Maximum marking problems witha

umulative weight fun
tions. In Pro
. ICTAC. Springer-Verlag, 2005.[SPW95℄ D. R. Smith, E. A. Parra, and S. J. Westfold. Synthesis of high-performan
e transporta-tion s
hedulers. Te
hni
al report, Kestrel Institute, 1995.[SW08℄ D. R. Smith and S. Westfold. Synthesis of propositional satis�ability solvers. Final proj.report, Kestrel Institute, 2008.[VY08℄ M. Ve
hev and E. Yahav. Deriving linearizable �ne-grained
on
urrent obje
ts. PLDI'08, pages 125�135, 2008.[VYY10℄ M. Ve
hev, E. Yahav, and G. Yorsh. Abstra
tion-guided synthesis of syn
hronization.POPL '10, pages 327�338, 2010.

