Theory and Techniques for Synthesizing Efficient
Breadth-First Search Algorithms

Srinivas Nedunuri', Douglas R. Smith?, William R. Cook!

! University of Texas at Austin
2 Kestrel Institute

Abstract. Although Breadth-First Search (BFS) has several advantages over Depth-
First Search (DFS) its prohibitive space requirements have meant that algorithm
designers often pass it over in favor of DFS. To address this shortcoming, we introduce
a theory of efficient BFS (EBFS), along with a simple recursive program schema for
carrying out the search. The theory is based on dominance relations, a long standing
technique from the field of search algorithms. We also show that greedy and greedy-
like algorithms form a very useful and important sub-category of EBFS. Finally, we
show how the EBFS class can be used for semi-automated program synthesis by
introducing some techniques for demonstrating that a given problem is solvable by
EBFS. We illustrate our approach on several examples.

1 Introduction

Program synthesis is experiencing something of a resurgence [SGF10,SLTB*06,GJTV11|
[PBS11,VY08,VYY10] following negative perceptions of its scalability in the early 90s. Many
of the current approaches aim for near-automated synthesis. In contrast, the approach we
follow, we call guided program synthesis, also incorporates a high degree of automation but is
more user-guided. The basic idea is to identify interesting classes of algorithms and capture
as much generic algorithm design knowledge as possible in one place.The user instantiates
that knowledge with problem-specific domain information. This step is often carried out
with machine assistance. The approach has been applied to successfully derive scores of
efficient algorithms for a wide range of practical problems including scheduling [SPW95],
concurrent garbage collection [PPS10], and SAT solvers [SWO0S].

One significant class of algorithms that has been investigated is search algorithms. Many
interesting problems can be solved by application of search. In such an approach, an ini-
tial search space is partitioned into subspaces, a process called splitting, which continues
recursively until a feasible solution is found. A feasible solution is one that satisfies the
given problem specification. Viewed as a search tree, spaces form nodes, and the subspaces
after a split form the children of that node. The process has been formalized by Smith
[Smi88,Smil0]. Problems which can be solved by global search are said to be in the Global
Search (GS) class. The enhancements in GS over standard branch-and-bound include a num-
ber of techniques designed to improve the quality of the search by eliminating unpromising
avenues. One such technique is referred to as dominance relations. Although they do not
appear to have been widely used, the idea of dominance relations goes back to at least the
70s [Iba77]. Essentially, a dominance relation is a relation between two nodes in the search
tree such that if one dominates the other, then the dominated node is guaranteed to lead
to a worse solution than the dominating one, and can therefore be discarded. Establishing
a dominance relation for a given problem is carried out by a user. However this process

is not always obvious. There are also a variety of ways in which to carry out the search,
for example Depth-First (DFS), Breadth-First (BFS), Best-First, etc. Although DFS is the
most common, BFS actually has several advantages over DFS were it not for its exponential
space requirement. The key to carrying out BFS space-efficiently is to limit the size of the
frontier at any level. However, this has not been investigated in any systematic manner up
to now.

This paper has two main contributions:

— We show how to limit the size of the frontier in search using dominance relations,
thereby enabling space-efficient BFS. Additionally, we show that limiting the size of the
undominated frontier to a constant results in a useful class of greedy algorithms.

— Even though our method is not automatic, we believe that the process should be straight-
forward to apply, without requiring Eureka steps. For this reason, we have devised tech-
niques that address roadblocks in derivations, which are illustrated on some simple but
illuminating examples. Further examples are in [NSC12]

2 Background To Guided Program Synthesis

2.1 Process
The basic steps in guided program synthesis are:

1. Start with a logical specification of the problem to be solved. A specification is a quadru-
ple (D, R,0,c)where D is an input type, R an output or result type, o : D X R is a
predicate specifying correct or feasible outputs for given inputs, and ¢ : D x R — Int is
a cost function on solutions. An example specification of the Shortest Path problem is
in Eg. 1 (This specification is explained in more detail below)

2. Pick an algorithm class from a library of algorithm classes (GLOBAL SEARCH, LOCAL
SEARCH, DIVIDE AND CONQUER, FIXPOINT ITERATION, etc). An algorithm class com-
prises a program schema containing operators to be instantiated and an aziomatic theory
of those operators (see [Ned12] for details) . A schema is analogous to a template func-
tion in Java/C++ with the difference that both the template and template arguments
are formally constrained.

3. Instantiate the operators of the program schema using information about the problem
domain and in accordance with the axioms of the class theory. To ensure correctness, this
step can be carried out with mechanical assistance. The result is an efficient algorithm
for solving the given problem.

4. Apply low-level program transforms such as finite differencing, context-dependent sim-
plification, and partial evaluation, followed by code generation. Many of these are auto-
matically applied by Specware [S], a formal program development environment.

The result of Step 4 is an efficient program for solving the problem which is guaranteed
correct by construction. The power of the approach stems from the fact that the common
structure of many algorithms is contained in one reusable program schema and associated
theory. Of course the program schema needs to be carefully designed, but that is done
once by the library designer. The focus of this paper is the GLOBAL SEARCH class, and
specifically on how to methodically carry out Step 3 for a wide variety of problems. Details
of the other algorithm classes and steps are available elsewhere [Kre98,Smi88,PPS10].

Ezample 1. Specification of the Shortest Path problem is shown in Fig. 2.1 (The — reads
as “instantiates to”) The input D is a structure with 3 fields, namely a start node, end node
and a set of edges. The result R is a sequence of edges ([] notation). A correct result is one
that satisfies the predicate path? which checks that a path z must be a contiguous path
from the start node to the end node (simple recursive definition not shown). Finally the
cost of a solution is the sum of the costs of the edges in that solution. Note that fields of a
structure are accessed using the ’.” notation.

2.2 Global Search

Before delving into a program schema for

Global Search, it helps to understand the

structures over which the program schema D s (start : Node,end : Node, edges : { Edge})
operates. In [Smi88|, a search space is rep- Edge = (f : Node,t : Node, cost : Nat)
resented by a descriptor of some type R, R+ [Edge]

which is an abstraction of the result type o A(x,z) - path?(z, x.start, z.end)

R. The initial or starting space is de- path?(p, s, f) = ...

noted L. There are also two predicates split: ¢ — A(,2) - Zedgeez edge.cost

D x R x R, written i, and eztract: R x R,

written . Split deﬁnes when a space is a Fig. 2.1. Specification of Shortest Path problem
subspace of another space, and extract cap-

tures when a solution is extractable from

a space. We say a solution z is contained in a space y (written z € y) if it can be ex-
tracted after a finite number of splits. A feasible space is one that contains feasible so-
lutions. We often write h (z,y,y’) as y M, 3y’ for readability, and even drop the sub-
script when there is no confusion. Global Search theory (GS-theory) [Smi88| axiomati-
cally characterizes the relation between the predicates |, h and x, as well as ensuring
that the associated program schema computes a result that satisfies the specification.
In the sequel, the symbols R, 1, x,® are all assumed to be drawn from GS-theory.

Ezample 2. Instantiating GS-theory for the Shortest Path problem requires instantiating
the free terms in the theory. The type of solution spaces R is the same as the result type R.
However, there is a covariant relationship between an element of R and of R. For example,
the initial space, corresponding to all possible paths, is the empty list. A space is split by
adding an edge to the current path - that is the subspaces are the different paths that result
from adding an edge to the parent path. Finally a solution can be trivially extracted from
any space by setting the result z to the space p. This is summarized in Fig. 2.2 ([] denotes
the empty list, and ++ denotes list concatenation).

2.3 Dominance Relations

As mentioned in the introduction, a domi-
nance relation provides a way of comparing

R—=R two subspaces in order to show that one will
L=z] always contain at least as good a solution
M — Az, p,pe) - Je € z.edges - pe = p++le] S the other. (Goodness in this case is mea-
X Mz,p)-p=12 sured by some cost function on solutions).

The first space is said to dominate (>) the
Fig. 2.2. GS instantiation for Shortest Path

second, which can then be eliminated from

the search. Letting ¢* denote the cost of an

optimal solution in a space, this can be for-
malized as (all free variables are assumed to be universally quantified):

y>y = c*(z,y) < c(x,y) (2.1)
Another way of expressing the consequent of (2.1) is
V' ey o(x,2') =Tz €y olx,2) Ne(x, 2) < c(x, 2) (2.2)

To derive dominance relations, it is often useful to first derive a semi-congruence relation
[Smi88]. A semi-congruence between two partial solutions y and y’, written y ~» y’, ensures
that any way of extending vy’ into a feasible solution can also be used to extend y into a
feasible solution. Like M, ~ is a ternary relation over D x R x R but as we have done with
h and many other such relations in this work, we drop the input argument when there is no
confusion and write it as a binary relation for readability. Before defining semi-congruence,
we introduce two concepts. One is the idea of useability of a space. A space y is is useable,
written o*(z,y), if 3z. x(y, z) A o(z, 2), meaning a feasible solution can be extracted from
the space. The second is the notion of incorporating sufficient information into a space to
make it useable. This is defined by an operator & : R x t — R that takes a space and some
additional information of type ¢ and returns a more defined space. The type ¢ depends on
R. For example if R is the type of lists, then ¢ might also be the same type. Now the formal
definition of semi-congruence is:

y~y =o' (z,y Ge) =0 (v,yde)

That is, y ~ 3’ is a sufficient condition for ensuring that if 3’ can be extended into a
feasible solution than so can y with the same extension. Now if ¢ is compositional (that is,
c(s@®t) = c(s) +c(t)) then it can be shown |[Ned12] that if y ~~ y" and y is cheaper than y/,
then y dominates y' (written y > y’). Formally:

y~=y Ael,y) <cla,y) =y oy (2.3)
Dominance relations are a part of GS-theory [Smi88].

Ezample 3. Shortest Path between two given nodes in a graph. If there are two paths p and
p’ leading from the start node, if p and p’ both terminate in the same node then p ~ p’. The
reason is that any path extension e (of type ¢t = [Fdge]) of p’ that leads to the target node
is also a valid path extension for p. Additionally if p is shorter than p’ then p dominates
p’, which can be discarded. Note that this does not imply that p leads to the target node,
simply that no optimal solutions are lost in discarding p’. This dominance relation is formally
derived in Eg. 5

Example 4. 0-1 Knapsack

The 0-1 Knapsack problem is, given a set of items each of which has a weight and utility
and a knapsack that has some maximum weight capacity, to pack the knapsack with a
subset of items that maximizes utility and does not exceed the knapsack capacity. Given
combinations k, k', if k and &’ have both examined the same set of items and k weighs less
than k' then any additional items e that can be feasibly added to k' can also be added to
k, and therefore k ~ k’. Additionally if k has at least as much utility as k¥’ then k > k’.

The remaining sections cover the original contributions of this paper .

3 A Theory Of Space-Efficient Breadth-First Search (EBFS)

While search can in principle solve any computable function, it still leaves open the question
of how to carry it out effectively. Various search strategies have been investigated over
the years; two of the most common being Breadth-First Search (BFS) and Depth-First
Search (DFS). It is well known that BFS offers several advantages over DFS. Unlike DFS
which can get trapped in infinite paths®, BFS will always find a solution if one exists.
Secondly, BFS does not require backtracking. Third, for deeper trees, BFS will generally
find a solution at the earliest possible opportunity. However, the major drawback of BFS is
its space requirement which grows exponentially. For this reason, DFS is usually preferred
over BFS.

Our first contribution in this paper is to refine GS-theory to identify the conditions
under which a BFS algorithm can operate space-efficiently. The key is to show how the size
of the undominated frontier of the search tree can be polynomially bounded. Dominance
relations are the basis for this.

In [Smi88], the relation ! for I > 0 is recursively defined as follows:

y 'y =y=y)
y ml-i—l y/ _ E|y”~ y A y// /\y// ml y/

From this the next step is to define those spaces at a given frontier level that are not
dominated. However, this requires some care because dominance is a pre-order, that is it
satisfies the reflexivity and transitivity axioms as a partial order does, but not the anti-
symmetry axiom. That is, it is quite possible for y to dominate 3" and ¥’ to dominate y but
y and ¥’ need not be equal. An example in Shortest Path is two paths of the same length
from the start node that end at the same node. Each path dominates the other. To eliminate
such cyclic dominances, define the relation y = y" as y > ¢y’ Ay’ > y. It is not difficult to show
that = is an equivalence relation. Now let the quotient frontier at level [be the quotient set
frontier;/ = . For type consistency, let the representative frontier rfrontier; be the quotient
frontier in which each equivalence class is replaced by some arbitrary member of that class.
The representative frontier is the frontier in which cyclic dominances have been removed.
Finally then the undominated frontier undomy is rfrontier; — {y | y’ € rfrontier; - y' > y}.

Now given a problem in the GS class, if it can be shown that |jundom;|| for any [is
polynomially bounded in the size of the input, a number of benefits accrue: (1) BFS can
be used to tractably carry out the search, as implemented in the raw program schema of
Alg. 1, (2) The raw schema of Alg. 1 can be transformed into an efficient tail recursive
form, in which the entire frontier is passed down and (3) If additionally the tree depth
can be polynomially bounded (which typically occurs for example in constraint satisfaction
problems or CSPs [Dec03]) then, under some reasonable assumptions about the work being
done at each node, the result is a polynomial-time algorithm for the problem.

3.1 Program Theory

A program theory for EBFS defines a recursive function which given a space y, computes a
non-trivial subset F, (y) of the optimal solutions contained in y, where

Fo(y) = opte{z | z € y No(z,2)}

3 resolvable in DFS with additional programming effort

Algorithm 1 pseudo-Haskell Program Schema for EBFS (schema parameters underlined)

solve :: D -> {R}
solve(x) = bfs x {initial(x)}

bfs :: D -> {RHat}-> {R}
bfs x frontier =
let localsof y = let z = extract x y
in if z!={} &% o(x,z) then z else {}
locals = (flatten.map) localsof frontier
allsubs = (flatten.map) (subspaces x) frontier
undom = {yy : yy€allsubs &&
(yy’Esubs && yy’ ‘dominates‘ yy = yy==yy’)}
subsolns = bfs x undom
in opt(locals U subsolns)

subspaces :: D -> RHat -> {RHat}
subspaces x y = {yy: split(x,y,yy))

opt :: {R} -> {R}
opt zs = min {c x z | z €zs}

opt. is a subset of its argument that is the optimal set of solutions (w.r.t. the cost function
¢), defined as follows:

opt.S={z|2ze SANZ €S - c(z) <c(z))}

Also let undom(y) be undomy)11 N {yy | y M yy} where I(y) is the level of y in the tree.
The following theorem defines a recurrence that serves as the basis for computing F (y):

Theorem 3.1. Let th be a well-founded relation of GS-theory and G, (y) = opt.({z | x(y,2)A
o(z,2)} UUyyeundom(y) G (yy)}) be a recurrence. Then Go(y) € Fau(y).

The theorem states that if the feasible solutions immediately extractable from a space
y are combined with the solutions obtained from G, of each undominated subspace yy,
and the optimal ones of those retained, the result is a subset of F(y). The next theorem
demonstrate non-triviality* of the recurrence by showing that if a feasible solution exists in
a space, then one will be found.

Theorem 3.2. Let th be a well-founded relation of GS-Theory and G, be defined as above.
Then

F(y) #0= ({21 x(y.2) ho(z,2)} U () Galyy)}) #0

yy€undom(y)

Proofs of both theorems are in [NSC12|. From the characteristic recurrence we can
straightforwardly derive a simple recursive function bfs to compute a non-trivial subset of
F, for a given y, shown in Alg. 1

The final program schema that is included in the Specware library is the result of in-
corporating a number of other features of GS such as necessary filters, bounds tests, and
propagation, which are not shown here. Details of these and other techniques are in [Smi88].

* Non-triviality is similar but not identical to completeness. Completeness requires that every
optimal solution is found by the recurrence, which we do not guarantee.

3.2 A class of strictly greedy algorithms (SG)

A greedy algorithm [CLRS01] is one which repeatedly makes a locally optimal choice. For
some classes of problems this leads to a globally optimum choice. We can get a characteriza-
tion of optimally greedy algorithms within EBFS by restricting the size of undom; for any
[to 1. If undom; # 0 then the singleton member y* of undom, is called the greedy choice.

A perhaps surprising result is that our characterization of greedy algorithms is broader
than a well-known characterization of greedy solutions, namely the Greedy Algorithm over
algebraic structures called greedoids [BZ92|, which are themselves more general than ma-
troids. We demonstrated this in earlier work [NSC10] although at the time we were not able
to characterize the greedy class as a special case of EBFS.

Another interesting result is that even if |lundomyl|, for any [, cannot be limited to
one but can be shown to be some constant value, the resulting algorithm, we call Hardly
Strictly Greedy® (HSG), still has the same complexity as a strictly greedy one. A number
of interesting problems have the HSG property, and these are discussed later.Note that for
problems in the SG class, there is no longer any “search” in the conventional sense.

4 Methodology

We strongly believe that every formal approach should be accompanied by a methodology
by which it can be used by a competent developer, without needing great insights. Guided
program synthesis already goes a long way towards meeting this requirement by capturing
design knowledge in a reusable form. The remainder of the work to be done by a developer
consists of instantiating the various parameters of the program schema. The second main
contribution of this paper is to describe some techniques, illustrated with examples, that
greatly simplify the instantiation process. We wish to reiterate that once the dominance
relation and other operators in the schema have been instantiated, the result is a complete
solution to the given problem. We focus on dominance relations because they are arguably
the most challenging of the operators to design. The remaining parameters can usually be
written down by visual inspection.

The simplest form of derivation is to reason backwards from the conclusion of y ~ y' =
o*(z,y' ®e) = o*(x,yd®e), while assuming o*(z, y’ Pe) . The additional assumptions that are
made along the way form the required semi-congruence condition. The following example
illustrates the approach.

Ezample 5. Derivation of the semi-congruence relation for Shortest Path in Eg. 1 is fairly
straightforward calculation as shown in Fig 4.1. It relies on the specification of Shortest
Path given in Eg. 1 and the GS-theory in Eg. 2.

The calculation shows that a path y is semi-congruent to y’ if ¥ and y’ both end at the
same node and additionally y is itself a valid path from the start node to its last node.
Since the cost function is compositional, this immediately produces a dominance relation
y >y = last(y) = last(y') Apath?(y, x.start,n) A3 _,..c, edge.cost <3 ., edge’.cost.
Note the use of the distributive law for path? in step 4. Such laws are usually formulated
as part of a domain theory during a domain discovery process, or even as part of the pro-
cess of trying to carry out a derivation such as the one just shown. Given an appropriate
constructive prover (such as the one in KIDS [Smi90]) such a derivation could in fact be au-
tomated. Other examples that have been derived using this approach are Activity Selection

5 This name inspired by that of the Hardly Strictly Bluegrass festival held annually in San Francisco

o' (z,y ©e)

= {defn of 0"}

Jz- x(yDe,z) ANo(x, z)

= {defn of x}

o(z,y @e)

= {defn of o}

path?(y @ e, x.start, z.end)

= {distributive law for path?}

In - path?(y,z.start,n) A path?(e,n, x.end)

< {o*(z,y ®e), ie.3m - path?(y’, z.start,m) A path?(e,m,z.end). Let m be a witness for n}
path?(y, z.start,m) A path?(e,m, z.end)

= {m = last(y).t, (where last returns the last element of a sequence)}
last(y).t = last(y').t A path?(y,z.start,n)

Fig. 4.1. Derivation of semi-congruence relation for Shortest Path

[NSC10], Integer Linear Programming [Smi88|, and variations on the Maximum Segment
Sum problem [NC09]. The next two sections deal with situations in which the derivation is
not so straightforward.

4.1 Technique 1: An exchange tactic

In the example just considered, and many such others, the derivation process was free of
rabbits (Dijkstra’s term for magic steps that appear seemingly out of nowhere). However,
some cases are a little more challenging. As an example consider the following problem:

Ezample 6. One-Machine Scheduling. This is the problem of scheduling a number of jobs on
a machine so as to minimize the sum of the completion times of the jobs (because dividing
the sum of the completion times by the number of jobs gives the average amount of time
that a job waits before being processed). A schedule is a permutation of the set of input
jobs {J1,Ja,...Jn}. The input to the problem is a set of tasks, where a task consists of
a pair of an id and duration, p. The result is a sequence of tasks. The output condition o
requires that every task (and only those tasks) in the input be scheduled, ie placed at a
unique position in the output sequence. Finally the cost of a solution, as stated above, is
the sum of the completion times of the tasks. The problem specification is therefore:

D — {Task}
R — [Task]

Task = (id : Id,p : Time)
o+ Nz, 2) - asBag(z) =z
c—= Nz, z) - Y0 ct(z,1)

ct(z,1) = Z;‘:l Zj-P

The instantiation of terms in GS-theory is similar to that of Shortest Path:
R R
L=z
M= Az, s,85) - It € x. 88 = s++]t]
X+ Az,p)-p=2
> 7

However, attempting to derive a semi-congruence relation in the same manner as we did for
the Shortest Path problem by comparing two schedules ca and ab will not work. This is
because every task must be scheduled, so any extension w that extends say cwa must contain
b but as each task can be scheduled only once, such an extension will not be feasible for ab.
Such situations are very common in scheduling and planning problems®. For such problems,
note that when R is a sequence type, every possible way a (called a choice) of extending
some sequence « ie. a++[a], written aa for conciseness, forms a subspace of a. A simple
example is the problem of generating all bit strings. If the current space is some bit string
say [1,0,0,1] then the two subspaces are [1,0,0,1]4+[0] and [1,0,0,1]4+[1] , written 10010 and
10011 resp. Another example occurs in CSP. If « is the sequence of assignments to the first 4
variables, then awv for every v in D;4 is a subspace of a. The tactic to try in such situations
is to compare two partial solutions that are permutations of each other. This idea is backed
up by the following theorem.

Theorem 4.1. Suppose it can be shown that any feasible extension of aa must eventually be
followed by some choice b. That is, any feasible solution contained in aa must be contained
in aafBb for some B. Let abBa be the partial solution obtained by exchanging a and b. If
R(a,a,b) is an expression for the semi-congruence relation abfa ~ aafb and C(c,a,b)
is an expression for c(abBay) < claafby), for any «, B, then R(a,a,b) A C(a,a,b) is a
dominance relation ab > aa.

Proof. See [Ned12]
O

Example 6 Revisited. We now show how to derive a dominance relation for this
problem. The tactic above suggests the following: Suppose some partial schedule is extended
by picking task a to assign in the next position and this is followed subsequently by some task
b. When is this better than picking b for the next position and a subsequently? Let y = aa5b
and ¥’ = abBa. It is not difficult to show that y and y’ are unconditionally semi-congruent.
To apply Theorem 4.1 it is necessary to derive an expression for c¢(abBay) < c(aafSBby).
Let z = yy and 2’ = y’v and let i be the position of a (b) in y (resp. ¥') and j be the
position of b (a) in y (resp. y). As shown in Fig. 4.2, the calculation is simple enough to be
automated. The derivation shows that for any feasible solution abfaw extending ab there
is a cheaper feasible solution aafSbw that extends aa provided a.p < b.p. By Theorem 4.1,
this constitutes the dominance relation aa > ab. Finally, as < is total order, there must
be a choice that dominates all other choices, namely the task with the least processing
time. Therefore the problem is in the SG class. Following this greedy choice at every step
therefore leads to the optimum solution. Instantiating the library schema derived from Alg.
1 with such a dominance relation (along with the other parameters) immediately results in
a greedy algorithm for this problem. The result corresponds to the Shortest Processing Time
(SPT) rule, discovered by W.E. Smith in 1956. We have shown how it can be systematically
derived.

We have applied the tactic above to derive other scheduling algorithms, for example an
algorithm for the scheduling problem 1//L,, in which the goal is to minimize the maximum
lateness of any job (amount by which it misses its due date), as well as variant of it to derive
dominance relations for planning problems [Ned12].

5 In planning, actions that must occur after another action to achieve a feasible plan are called
action landmarks

c(2) < ¢(2")
= {unfold defn of ¢}
c(a) + ct(z,) + c(B) + ct(z,§) + c(v) < e(@) + ct(z,§) + c(B) + ct(z, 1) + ¢(7)
= {unfold defn of ct. Realize that c(a) = Y121 22:1 a;.p and let pt(a) = Z‘J‘i! a;.p}
c(a) + pt(a) + a.p + ¢(B) + pt(a) + a.p + pt(B) + b.p
<
ct(a) + pt(a) + b.p + ¢(B) + pt(a) + b.p + pt(B) + a.p
= {algebra}
2(a.p) +b.p <2(b.p) +a.p
= {algebra}
a.p < bp

Fig. 4.2. Calculation of cost comparison relation for 1 mach. scheduling

4.2 Technique 2: General Dominance

There are situations in which the above tactic will fail. Consider the following problem from
[CLRS01] and [Cur03]:

Ezample 7. Professor Midas’s Driving Problem

Professor Midas wishes to plan a car journey along a fixed route. There are a
given number of gas stations along the route, and the professor’s gas tank when full
can cover a given number of miles. Derive an algorithm that minimizes the number
of refueling stops the professor must make.

The input data is assumed to be a sequence of cumulative distances of gas stations from the
starting point (cds) along with the car’s tank capacity (cap, measured in terms of distance).
The variables will represent the gas stations along the route, that is variable ¢ will be the ith
gas station. A stop at a gas station is indicated in the result by assigning the corresponding
variable true, and false otherwise. The start and finish are considered mandatory stops
(that is z; and z, are required to be true). Finally, the cost of a solution is a simple count
of the number of variables assigned true. An obvious requirement on the input is that the
distance between any two stations not exceed the tank capacity of the car. These ideas are
captured in the following specification (in the cost function false is interpreted as 0 and true
as 1). Note that a type (... | P) denotes a predicate subtype in which the type members
must satisfy the predicate P.

D — (cds : [Nat],cap : Nat |Vz € D - Vi < ||z.cds| - z.cds]i + 1] — x.cds[i] < x.cap)
R +— [Boolean]
o ||z]| = ||lz.cds|| A fsok(x, z)
fsok(x,z) =Vi,j-i<j- didntStop(z,i,j) = span(z,i,j) < x.cap
didntStop(z,a,b) =Vi-a<i<b- -z
span(z,i,j) = x.cds[j + 1] — z.cds[i — 1]
¢ A,z YL

The instantiation of GS-theory, with the exception of >, is as it was for the machine
scheduline example (Eg. 6). Attempting to apply the Exchange tactic described above and
derive a semi-congruence relation between oTSF and aF' 8T (T is true and F is false) that
does not depend on S will fail. The counter-example of Fig 4.3 shows why (boxes represent

variables, shading means the variable was set true): it is possible that there is some extension
e to o1 which delays a stop but which is too long a span for oF . In such situations, we
have found it useful to try to establish general dominance (Def. 2.2).

As before, it is useful to identify any distributive laws. In this case, the combination of
partial solutions r and s satisfies fsok provided each partial solution independently satisfies
fsok and where they abut satisfies fsok. Expressing the law formally requires broadening the
definition of fsok somewhat to take into account the offset ¢ of a particular sequence from
the start, that is: fsok(x, z,t) = Vi, j- i < jAdidntStop(z,i,7) = span(z,i+t, j+t) < z.cap.
Then:

where fs20k deals with the boundary between y and e and can be shown to be

[fs20k(z,y, e) = fsok(x, Ufs(y)++ifs(e) lly — Us(y)])

where ffs (resp. Ifs) denotes the initial (resp. last) false span of a segment, if any.

Now consider the two possible solutions after a split again, namely o and oF. To
demounstrate o(x, aF'e) for some e, the usual backwards inference procedure can be applied,
assuming oTe’ for some e’ (for brevity, the input = to fsok has been dropped)

o(z,aFe)

= {defn }

fsok(aFe,0)

= {defn }

fsok(c,0) A fsok(F, ||a|]) A fs20k(a, F) A fsok(e, |||l + 1) A fs20k(aF,e)

= {fsok(a,0) because o(x,aTe’), fsok(F,—) because of restriction on D}
fs20k(a, F) A fsok(e,|la| +1)) A fs2ok(aF,e)

= {see below}

fs20k(a, F)

To demonstrate both fsok(e, ||| + 1)
and fs2ok(aF,e), let e = €'[1 = T] (¢’ with
the first variable assigned true). Clearly <=x.cap
fsok(e,|la]| + 1) if fsok(e',|la]] + 1) and N
fs2ok(aF,e) if fs20k(c«, F') because ffs(e) is Partialsoln 1 after spit H B B
empty. As oF has one stop less than oT _
and e has at most one extra, it follows that exenson | [
c(x,ale) < c(z,aTe’). Therefore aF' dom- . . " BE BN
inates oT provided there is sufficient fuel to
make it to the next stop. As there are only A
two branches following a split, the greedy >x.cap
choice is clear. Informally this rule is to
travel as far as possible without stopping.
Other algorithms we have derived by ap-
plying general dominance have been a SG
algorithm for Shortest Path similar to Di-
jkstra’s algorithm, and SG algorithms similar to Prim and Kruskal for Minimum Spanning
Trees [NSC12].

Fig. 4.3. Counter-example: extension works for
the 1st partial soln but not for the 2nd

4.3 Technique 3: Feasibility Problems

Finally, we show that the notion of greediness applies not only to optimality problems, but
also feasibility problems. By letting the “cost” of a solution be its correctness and using the
standard ordering on Booleans, namely that false <true, we can derive a feasibility dominance
criterion for y >p ¥/, namely o(z,y’) = o(z,y) [Ned12]. One way to use this constraint is
derive conditions under which o(z,y’) is false, ensuring ¢’ is dominated. An example of this
follows.

Ezxample 8. Searching for a key in an ordered sequence. A combined problem specification
and GS-theory instantiation is:

D — (seq : [Int], key : Int | unique(key, seq) A ordered(seq))

R+— Nat

0 Az, 2) - z.seqlz] = x.key

R +— (Nat, Nat)

M= Az, (2,5), (k1) - (k=inl=|(+75)/2)])V
(k=[GE+5)/2]+1n1=3])

X—=AMy,2)- 2=y

The input D provides the sequence and the key, requiring that the sequence be ordered
and the key occur uniquely in the sequence. The result is the index of the desired key.
The two subspaces after a split are the sequence from the start ¢ of the parent sequence
to the midway point and from some point immediately after the midway to the end j of
the parent sequence. (This split relation is derived in [Smil0]). In general, there could be
an n-way split, or a split at any chosen point in the range but for simplicity, only the
binary midpoint case is illustrated. There are only two subspaces after a split denoted L
and R. Fig 4.4 derives the condition under which o(x, «L) holds. Negating this condition,
ie. x.key > x.seq[(i + j)/2] determines when o(z, aL) is false and «L is dominated, leaving
at most one undominated child, aR. Completing the instantiation of GS-theory with this
dominance condition provides the bindings for the parameters of the program schema of
Alg. 1. Since the depth of the search is O(logn), the result is an O(logn) greedy algorithm
that implements Binary Search.

4.4 HSG problems

The problems illustrated so far have all been
Strictly Greedy (SG). This was intentional.

o(z,al) For one thing, many problems have a greedy
= {defn. of o} solution (or a greedy approximation). Ad-
dz e al - o(z,z2) ditionally, as one moves down an algorithm
= {defn. of o} hierarchy, the narrower class generally has
v(ijl_j)/? x.seqlp] = x.key a more efficient algorithm. The price to be
:>p€0rdered elements} paid is that it is usually more difficult to
z.key < x.seq|(i +) /2] establish the conditions necessary for mem-

bership in a tighter class. The techniques we
Fig. 4.4. Derivation of greedy dominance relation have demonstrated for establishing mem-
for binary search bership in SG apply equally well to the
broader category of HSG and indeed the

catch-all one of EBFS. Although problems
in the broader categories are seemingly sparser, we have carried out derivations for several
problems that are in the HSG class. For example, we demonstrated membership in the HSG
class for 2-SAT (Boolean satisfiability in which there are at most 2 variables per clause)
[Ned12] as well as for a family of Segment Sum problems [NC09]. The dominance relations
we derived for the Segment Sum problems resulted in very efficient linear-time algorithms for
all the problems. Noteworthy is that the run-time performance of the solutions we derived
consistently exceeded those obtained by program transformation [SHT00,SHT01,SOHO05].
Genetic algorithms in which the descendant population is maintained at a constant level are
another example of HSG algorithms.

5 Related Work

Gulwani et al. [SGF10,GJTV11] describe a powerful program synthesis approach called
template-based synthesis. A user supplies a template or outline of the intended program
structure, and the tool fills in the details. A number of interesting programs have been syn-
thesized using this approach, including Bresenham’s line drawing algorithm and various bit
vector manipulation routines. A related method is inductive synthesis [IGIS10] in which the
tool synthesizes a program from examples. The latter has been used for inferring spread-
sheet formulae from examples. All the tools rely on powerful SMT solvers. The Sketching
approach of Solar-Lezama et al [PBS11] also relies on inductive synthesis. A sketch, similar
in intent to a template, is supplied by the user and the tool fills in such aspects as loop
bounds and array indexing. Sketching relies on efficient SAT solvers. To quote Gulwani et
al. the benefit of the template approach is that “the programmer only need write the struc-
ture of the code and the tool fills out the details” [SGF10].Rather than the programmer
supplying an arbitrary template, though, we suggest the use of a program schema from the
appropriate algorithm class (refer to Step 2 of the process in Sec. 2.1). We believe that the
advantage of such an approach is that, based on a sound theory, much can already be in-
ferred at the abstract level and this is captured in the theory associated with the algorithm
class. Furthermore, knowledge of properties at the abstract level allows specialization of the
program schema with information that would otherwise have to either be guessed at by the
programmer devising a template or inferred automatically by the tool (e.g. tail recursive
implementation or efficient implementation of dominance testing with hashing). We believe
this will allow semi-automated synthesis to scale up to larger problems such as constraint
solvers (SAT, CSP, LP, MIP, etc.), planning and scheduling, and O/S level programs such
as garbage collectors [PPS10)].

Program verification is another field that shares common goals with program synthesis -
namely a correct efficient program. The difference lies in approach - we prefer to construct
the program in a way that is guaranteed to be correct, as opposed to verifying its correct-
ness after the fact. Certainly some recent tools such as Dafny [LeilO| provide very useful
feedback in an IDE during program construction. But even such tools requires significant
program annotations in the form of invariants to be able to automatically verify non-trivial
examples such as the Schorr-Waite algorithm [Leil0]. Nevertheless, we do not see verifica-
tion and synthesis as being necessarily opposed. For example, ensuring the correctness of
the instantiation of several of the operators in the program schema which is usually done
by inspection is a verification task, as is ensuring correctness of the schema that goes in the
class library. We also feel that recent advances in verification via SMT solvers will also help
guided synthesis by increasing the degree of automation.

Refinement is generally viewed as an alternative to synthesis. A specification is gradually
refined into an efficient executable program. Refinement methods such as Z and B have
proved to be very popular. In contrast to refinement, guided program synthesis already
has the program structure in place, and the main body of work consists of instantiating
the schema parameters followed by various program transformations many of which can
be mechanically applied. Both refinement and synthesis rely extensively on tool support,
particularly in the form of provers. We expect that advances in both synthesis and refinement
will benefit the other field.

Curtis [Cur03] presents a classification scheme for greedy algorithms. Each class has
some conditions that must be met for a given algorithm to belong to that class. The greedy
algorithm is then automatically correct and optimal. Unlike Curtis, our results extend be-
yond strictly greedy algorithms. We also rely extensively on calculational proofs for problem
instances.

Another approach has been taken by Bird and de Moor [BM93] who show that under
certain conditions a dynamic programming algorithm simplifies into a greedy algorithm.
Our characterization in can be considered an analogous specialization of (a form of) branch-
and-bound. The difference is that we do not require calculation of the entire program, but
specific operators, which is a less onerous task.

6 Summary and Future Work

We have shown how Breadth-First Search can be carried out efficiently by relying on domi-
nance relations. This is an important result as Breadth-First Search has several advantages
over Depth-First Search. Secondly, we demonstrated some techniques by which dominance
relations can be derived and illustrated them on several problems. We hope to identify
and collect more techniques over time and catalogue then in the style of design patterns
[GHIV95].

Nearly all the derivations shown in this paper have been carried out by hand. However,
they are simple enough to be automated. We plan on building a prover that incorporates
the ideas mentioned in here. We are encouraged by the success of a similar prover that was
part of KIDS, a predecessor to Specware.

We are currently applying some of these ideas to the problem of synthesizing fast planners
that produce good quality plans. We hope to report on this work in the near future.

References

[BM93] R. S. Bird and O. De Moor. From dynamic programming to greedy algorithms. In Formal
Program Development, volume 755 of Lecture Notes in Computer Science, pages 43-61.
Springer-Verlag, 1993.

[BZ92] Anders Bjijoerner and Gijcenter M. Ziegler. Introduction to greedoids. In Neil White,
editor, Matroid Applications. Cambridge University Press, 1992.

[CLRS01] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2nd edition, 2001.

[Cur03] S. A. Curtis. The classification of greedy algorithms. Sci. Comput. Program., 49(1-
3):125-157, 2003.

[Dec03] R Dechter. Constraint Processing. Morgan Kauffman, 2003.

[GHIV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Professional, 1995.

[GIJTV11] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free programs. In

[Iba77]
[IGIS10]
[Kre98|

[Leil0]

[NC09)

[Ned12]
[NSC10]

[NSC12]

[PBS11]

[PPS10|

[S]
[SGF10]

[SHTO0]

[SHTO1]

PLDI, pages 62-73, 2011.

T. Ibaraki. The power of dominance relations in branch-and-bound algorithms. J. ACM,
24(2):264-279, 1977.

S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. A simple inductive synthesis
methodology and its applications. In OOPSLA, pages 36—46, 2010.

C. Kreitz. Program synthesis. In W. Bibel and P. Schmitt, editors, Automated Deduction
— A Basis for Applications, volume III, chapter II1.2.5, pages 105-134. Kluwer, 1998.
K. R. M. Leino. Dafny: an automatic program verifier for functional correctness. In
Proc. 16th intl. conf. on Logic for Prog., AI, and Reasoning, LPAR, pages 348-370,
2010.

S. Nedunuri and W.R. Cook. Synthesis of fast programs for maximum segment sum
problems. In Intl. Conf. on Generative Prog. and Component Engineering (GPCE),
Oct. 2009.

S. Nedunuri. Theory and Techniques for Synthesizing Efficient Breadth-First Search
Algorithms. PhD thesis, Univ. of Texas at Austin, 2012.

S. Nedunuri, D. R. Smith, and W. R. Cook. A class of greedy algorithms and its relation
to greedoids. Intl. Collog. on Theoretical Aspects of Computing (ICTAC), 2010.

S. Nedunuri, D. R. Smith, and W. R. Cook. Theory and techniques for synthesizing
graph algorithms using breadth-first search. In Ist Workshop on Synthesis (SYNT) in
Computer Aided Verification (CAV), 2012.

Y. Pu, R. Bodik, and S. Srivastava. Synthesis of first-order dynamic programming
algorithms. In OOPSLA, pages 83-98, 2011.

D. Pavlovic, P. Pepper, and D. R. Smith. Formal derivation of concurrent garbage
collectors. In Math. of Program Constr. (MPC), 2010.

Specware. http://www.specware.org.

S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program
synthesis. In POPL, pages 313-326, 2010.

I. Sasano, Z. Hu, and M. Takeichi. Make it practical: A generic linear-time algorithm for
solving maximum-weightsum problems. In Intl. Conf. Functional Prog.(ICFP), 2000.
Isao Sasano, Zhenjiang Hu, and Masato Takeichi. Generation of efficient programs for
solving maximum multi-marking problems. In Proc. 2nd Intl. SAIG Workshop, 2001.

[SLTB'06] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat. Combinatorial

[Smi88|
[Smi90)]

[Smil0]
[SOHO5]

[SPW95]
[SWOS]
[VYO08§]

[VYY10]

sketching for finite programs. In Proc. of the 12th intl. conf. on architectural support
for prog. lang. and operating systems (ASPLOS), pages 404-415, 2006.

D. R. Smith. Structure and design of global search algorithms. Tech. Rep. Kes.U.87.12,
Kestrel Institute, 1988.

D. R. Smith. Kids: A semi-automatic program development system. IEEE Trans. on
Soft. Eng., Spec. Issue on Formal Methods, 16(9):1024-1043, September 1990.

D. R. Smith. Global search theory revisited. Unpublished, December 2010.

Isao Sasano, Mizuhito Ogawa, and Zhenjiang Hu. Maximum marking problems with
accumulative weight functions. In Proc. ICTAC. Springer-Verlag, 2005.

D. R. Smith, E. A. Parra, and S. J. Westfold. Synthesis of high-performance transporta-
tion schedulers. Technical report, Kestrel Institute, 1995.

D. R. Smith and S. Westfold. Synthesis of propositional satisfiability solvers. Final proj.
report, Kestrel Institute, 2008.

M. Vechev and E. Yahav. Deriving linearizable fine-grained concurrent objects. PLDI
’08, pages 125-135, 2008.

M. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of synchronization.
POPL ’10, pages 327-338, 2010.

