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t. Although Breadth-First Sear
h (BFS) has several advantages over Depth-First Sear
h (DFS) its prohibitive spa
e requirements have meant that algorithmdesigners often pass it over in favor of DFS. To address this short
oming, we introdu
ea theory of e�
ient BFS (EBFS), along with a simple re
ursive program s
hema for
arrying out the sear
h. The theory is based on dominan
e relations, a long standingte
hnique from the �eld of sear
h algorithms. We also show that greedy and greedy-like algorithms form a very useful and important sub-
ategory of EBFS. Finally, weshow how the EBFS 
lass 
an be used for semi-automated program synthesis byintrodu
ing some te
hniques for demonstrating that a given problem is solvable byEBFS. We illustrate our approa
h on several examples.1 Introdu
tionProgram synthesis is experien
ing something of a resurgen
e [SGF10,SLTB+06,GJTV11℄[PBS11,VY08,VYY10℄ following negative per
eptions of its s
alability in the early 90s. Manyof the 
urrent approa
hes aim for near-automated synthesis. In 
ontrast, the approa
h wefollow, we 
all guided program synthesis, also in
orporates a high degree of automation but ismore user-guided. The basi
 idea is to identify interesting 
lasses of algorithms and 
aptureas mu
h generi
 algorithm design knowledge as possible in one pla
e.The user instantiatesthat knowledge with problem-spe
i�
 domain information. This step is often 
arried outwith ma
hine assistan
e. The approa
h has been applied to su

essfully derive s
ores ofe�
ient algorithms for a wide range of pra
ti
al problems in
luding s
heduling [SPW95℄,
on
urrent garbage 
olle
tion [PPS10℄, and SAT solvers [SW08℄.One signi�
ant 
lass of algorithms that has been investigated is sear
h algorithms. Manyinteresting problems 
an be solved by appli
ation of sear
h. In su
h an approa
h, an ini-tial sear
h spa
e is partitioned into subspa
es, a pro
ess 
alled splitting, whi
h 
ontinuesre
ursively until a feasible solution is found. A feasible solution is one that satis�es thegiven problem spe
i�
ation. Viewed as a sear
h tree, spa
es form nodes, and the subspa
esafter a split form the 
hildren of that node. The pro
ess has been formalized by Smith[Smi88,Smi10℄. Problems whi
h 
an be solved by global sear
h are said to be in the GlobalSear
h (GS) 
lass. The enhan
ements in GS over standard bran
h-and-bound in
lude a num-ber of te
hniques designed to improve the quality of the sear
h by eliminating unpromisingavenues. One su
h te
hnique is referred to as dominan
e relations. Although they do notappear to have been widely used, the idea of dominan
e relations goes ba
k to at least the70s [Iba77℄. Essentially, a dominan
e relation is a relation between two nodes in the sear
htree su
h that if one dominates the other, then the dominated node is guaranteed to leadto a worse solution than the dominating one, and 
an therefore be dis
arded. Establishinga dominan
e relation for a given problem is 
arried out by a user. However this pro
ess



is not always obvious. There are also a variety of ways in whi
h to 
arry out the sear
h,for example Depth-First (DFS), Breadth-First (BFS), Best-First, et
. Although DFS is themost 
ommon, BFS a
tually has several advantages over DFS were it not for its exponentialspa
e requirement. The key to 
arrying out BFS spa
e-e�
iently is to limit the size of thefrontier at any level. However, this has not been investigated in any systemati
 manner upto now.This paper has two main 
ontributions:� We show how to limit the size of the frontier in sear
h using dominan
e relations,thereby enabling spa
e-e�
ient BFS. Additionally, we show that limiting the size of theundominated frontier to a 
onstant results in a useful 
lass of greedy algorithms.� Even though our method is not automati
, we believe that the pro
ess should be straight-forward to apply, without requiring Eureka steps. For this reason, we have devised te
h-niques that address roadblo
ks in derivations, whi
h are illustrated on some simple butilluminating examples. Further examples are in [NSC12℄2 Ba
kground To Guided Program Synthesis2.1 Pro
essThe basi
 steps in guided program synthesis are:1. Start with a logi
al spe
i�
ation of the problem to be solved. A spe
i�
ation is a quadru-ple 〈D,R, o, c〉where D is an input type, R an output or result type, o : D × R is apredi
ate spe
ifying 
orre
t or feasible outputs for given inputs, and c : D×R → Int isa 
ost fun
tion on solutions. An example spe
i�
ation of the Shortest Path problem isin Eg. 1 (This spe
i�
ation is explained in more detail below)2. Pi
k an algorithm 
lass from a library of algorithm 
lasses (Global Sear
h, Lo
alSear
h, Divide and Conquer, Fixpoint Iteration, et
). An algorithm 
lass 
om-prises a program s
hema 
ontaining operators to be instantiated and an axiomati
 theoryof those operators (see [Ned12℄ for details) . A s
hema is analogous to a template fun
-tion in Java/C++ with the di�eren
e that both the template and template argumentsare formally 
onstrained.3. Instantiate the operators of the program s
hema using information about the problemdomain and in a

ordan
e with the axioms of the 
lass theory. To ensure 
orre
tness, thisstep 
an be 
arried out with me
hani
al assistan
e. The result is an e�
ient algorithmfor solving the given problem.4. Apply low-level program transforms su
h as �nite di�eren
ing, 
ontext-dependent sim-pli�
ation, and partial evaluation, followed by 
ode generation. Many of these are auto-mati
ally applied by Spe
ware [S℄, a formal program development environment.The result of Step 4 is an e�
ient program for solving the problem whi
h is guaranteed
orre
t by 
onstru
tion. The power of the approa
h stems from the fa
t that the 
ommonstru
ture of many algorithms is 
ontained in one reusable program s
hema and asso
iatedtheory. Of 
ourse the program s
hema needs to be 
arefully designed, but that is doneon
e by the library designer. The fo
us of this paper is the Global Sear
h 
lass, andspe
i�
ally on how to methodi
ally 
arry out Step 3 for a wide variety of problems. Detailsof the other algorithm 
lasses and steps are available elsewhere [Kre98,Smi88,PPS10℄.



Example 1. Spe
i�
ation of the Shortest Path problem is shown in Fig. 2.1 (The 7→ readsas �instantiates to�) The input D is a stru
ture with 3 �elds, namely a start node, end nodeand a set of edges. The result R is a sequen
e of edges ([] notation). A 
orre
t result is onethat satis�es the predi
ate path? whi
h 
he
ks that a path z must be a 
ontiguous pathfrom the start node to the end node ( simple re
ursive de�nition not shown). Finally the
ost of a solution is the sum of the 
osts of the edges in that solution. Note that �elds of astru
ture are a

essed using the '.' notation.2.2 Global Sear
h
D 7→ 〈start : Node, end : Node, edges : {Edge}〉

Edge = 〈f : Node, t : Node, cost : Nat〉
R 7→ [Edge]
o 7→ λ(x, z) · path?(z, x.start, x.end)

path?(p, s, f) = ...
c 7→ λ(x, z) ·

∑
edge∈z edge.costFig. 2.1. Spe
i�
ation of Shortest Path problem

Before delving into a program s
hema forGlobal Sear
h, it helps to understand thestru
tures over whi
h the program s
hemaoperates. In [Smi88℄, a sear
h spa
e is rep-resented by a des
riptor of some type R̂,whi
h is an abstra
tion of the result type
R. The initial or starting spa
e is de-noted ⊥. There are also two predi
ates split:
D × R̂ × R̂, written ⋔, and extra
t : R̂ ×R,written χ. Split de�nes when a spa
e is asubspa
e of another spa
e, and extra
t 
ap-tures when a solution is extra
table froma spa
e. We say a solution z is 
ontained in a spa
e y (written z ∈ y) if it 
an be ex-tra
ted after a �nite number of splits. A feasible spa
e is one that 
ontains feasible so-lutions. We often write ⋔ (x, y, y′) as y ⋔x y′ for readability, and even drop the sub-s
ript when there is no 
onfusion. Global Sear
h theory (GS-theory) [Smi88℄ axiomati-
ally 
hara
terizes the relation between the predi
ates ⊥, ⋔ and χ, as well as ensuringthat the asso
iated program s
hema 
omputes a result that satis�es the spe
i�
ation.In the sequel, the symbols R̂,⊥,⋔, χ,⊕ are all assumed to be drawn from GS-theory.Example 2. Instantiating GS-theory for the Shortest Path problem requires instantiatingthe free terms in the theory. The type of solution spa
es R̂ is the same as the result type R.However, there is a 
ovariant relationship between an element of R̂ and of R. For example,the initial spa
e, 
orresponding to all possible paths, is the empty list. A spa
e is split byadding an edge to the 
urrent path - that is the subspa
es are the di�erent paths that resultfrom adding an edge to the parent path. Finally a solution 
an be trivially extra
ted fromany spa
e by setting the result z to the spa
e p. This is summarized in Fig. 2.2 ([] denotesthe empty list, and ++ denotes list 
on
atenation).2.3 Dominan
e Relations
R̂ 7→ R
⊥ 7→ λx · []
⋔ 7→ λ(x, p, pe) · ∃e ∈ x.edges · pe = p++[e]
χ 7→ λ(z, p) · p = zFig. 2.2. GS instantiation for Shortest Path

As mentioned in the introdu
tion, a domi-nan
e relation provides a way of 
omparingtwo subspa
es in order to show that one willalways 
ontain at least as good a solutionas the other. (Goodness in this 
ase is mea-sured by some 
ost fun
tion on solutions).The �rst spa
e is said to dominate (⊲) the



se
ond, whi
h 
an then be eliminated fromthe sear
h. Letting c∗ denote the 
ost of anoptimal solution in a spa
e, this 
an be for-malized as (all free variables are assumed to be universally quanti�ed):
y ⊲ y′ ⇒ c∗(x, y) ≤ c∗(x, y′) (2.1)Another way of expressing the 
onsequent of (2.1) is

∀z′ ∈ y′ · o(x, z′) ⇒ ∃z ∈ y · o(x, z) ∧ c(x, z) ≤ c(x, z′) (2.2)To derive dominan
e relations, it is often useful to �rst derive a semi-
ongruen
e relation[Smi88℄. A semi-
ongruen
e between two partial solutions y and y′, written y  y′, ensuresthat any way of extending y′ into a feasible solution 
an also be used to extend y into afeasible solution. Like ⋔,  is a ternary relation over D× R̂× R̂ but as we have done with
⋔ and many other su
h relations in this work, we drop the input argument when there is no
onfusion and write it as a binary relation for readability. Before de�ning semi-
ongruen
e,we introdu
e two 
on
epts. One is the idea of useability of a spa
e. A spa
e y is is useable,written o∗(x, y), if ∃z. χ(y, z) ∧ o(x, z), meaning a feasible solution 
an be extra
ted fromthe spa
e. The se
ond is the notion of in
orporating su�
ient information into a spa
e tomake it useable. This is de�ned by an operator ⊕ : R̂× t → R̂ that takes a spa
e and someadditional information of type t and returns a more de�ned spa
e. The type t depends on
R̂. For example if R̂ is the type of lists, then t might also be the same type. Now the formalde�nition of semi-
ongruen
e is:

y  y′ ⇒ o∗(x, y′ ⊕ e) ⇒ o∗(x, y ⊕ e)That is, y  y′ is a su�
ient 
ondition for ensuring that if y′ 
an be extended into afeasible solution than so 
an y with the same extension. Now if c is 
ompositional (that is,
c(s⊕ t) = c(s) + c(t)) then it 
an be shown [Ned12℄ that if y  y′ and y is 
heaper than y′,then y dominates y′ (written y ⊲ y′). Formally:

y  y′ ∧ c(x, y) ≤ c(x, y′) ⇒ y ⊲ y′ (2.3)Dominan
e relations are a part of GS-theory [Smi88℄.Example 3. Shortest Path between two given nodes in a graph. If there are two paths p and
p′ leading from the start node, if p and p′ both terminate in the same node then p p′. Thereason is that any path extension e (of type t = [Edge]) of p′ that leads to the target nodeis also a valid path extension for p. Additionally if p is shorter than p′ then p dominates
p′, whi
h 
an be dis
arded. Note that this does not imply that p leads to the target node,simply that no optimal solutions are lost in dis
arding p′. This dominan
e relation is formallyderived in Eg. 5Example 4. 0-1 Knapsa
kThe 0-1 Knapsa
k problem is, given a set of items ea
h of whi
h has a weight and utilityand a knapsa
k that has some maximum weight 
apa
ity, to pa
k the knapsa
k with asubset of items that maximizes utility and does not ex
eed the knapsa
k 
apa
ity. Given
ombinations k, k′, if k and k′ have both examined the same set of items and k weighs lessthan k′ then any additional items e that 
an be feasibly added to k′ 
an also be added to
k, and therefore k k′. Additionally if k has at least as mu
h utility as k′ then k ⊲ k′.The remaining se
tions 
over the original 
ontributions of this paper .



3 A Theory Of Spa
e-E�
ient Breadth-First Sear
h (EBFS)While sear
h 
an in prin
iple solve any 
omputable fun
tion, it still leaves open the questionof how to 
arry it out e�e
tively. Various sear
h strategies have been investigated overthe years; two of the most 
ommon being Breadth-First Sear
h (BFS) and Depth-FirstSear
h (DFS). It is well known that BFS o�ers several advantages over DFS. Unlike DFSwhi
h 
an get trapped in in�nite paths3, BFS will always �nd a solution if one exists.Se
ondly, BFS does not require ba
ktra
king. Third, for deeper trees, BFS will generally�nd a solution at the earliest possible opportunity. However, the major drawba
k of BFS isits spa
e requirement whi
h grows exponentially. For this reason, DFS is usually preferredover BFS.Our �rst 
ontribution in this paper is to re�ne GS-theory to identify the 
onditionsunder whi
h a BFS algorithm 
an operate spa
e-e�
iently. The key is to show how the sizeof the undominated frontier of the sear
h tree 
an be polynomially bounded. Dominan
erelations are the basis for this.In [Smi88℄, the relation ⋔l for l ≥ 0 is re
ursively de�ned as follows:
y ⋔0 y′ = (y = y′)

y ⋔l+1 y′ = ∃y′′ · y ⋔ y′′ ∧ y′′ ⋔l y′From this the next step is to de�ne those spa
es at a given frontier level that are notdominated. However, this requires some 
are be
ause dominan
e is a pre-order, that is itsatis�es the re�exivity and transitivity axioms as a partial order does, but not the anti-symmetry axiom. That is, it is quite possible for y to dominate y′ and y′ to dominate y but
y and y′ need not be equal. An example in Shortest Path is two paths of the same lengthfrom the start node that end at the same node. Ea
h path dominates the other. To eliminatesu
h 
y
li
 dominan
es, de�ne the relation y ≈ y′ as y ⊲ y′∧y′ ⊲ y. It is not di�
ult to showthat ≈ is an equivalen
e relation. Now let the quotient frontier at level l be the quotient set
frontierl/ ≈ . For type 
onsisten
y, let the representative frontier rfrontierl be the quotientfrontier in whi
h ea
h equivalen
e 
lass is repla
ed by some arbitrary member of that 
lass.The representative frontier is the frontier in whi
h 
y
li
 dominan
es have been removed.Finally then the undominated frontier undoml is rfrontierl − {y | ∃y′ ∈ rfrontierl · y′ ⊲ y}.Now given a problem in the GS 
lass, if it 
an be shown that ‖undoml‖ for any l ispolynomially bounded in the size of the input, a number of bene�ts a

rue: (1) BFS 
anbe used to tra
tably 
arry out the sear
h, as implemented in the raw program s
hema ofAlg. 1, (2) The raw s
hema of Alg. 1 
an be transformed into an e�
ient tail re
ursiveform, in whi
h the entire frontier is passed down and (3) If additionally the tree depth
an be polynomially bounded (whi
h typi
ally o

urs for example in 
onstraint satisfa
tionproblems or CSPs [De
03℄) then, under some reasonable assumptions about the work beingdone at ea
h node, the result is a polynomial-time algorithm for the problem.3.1 Program TheoryA program theory for EBFS de�nes a re
ursive fun
tion whi
h given a spa
e y, 
omputes anon-trivial subset Fx(y) of the optimal solutions 
ontained in y, where

Fx(y) = optc{z | z ∈ y ∧ o(x, z)}3 resolvable in DFS with additional programming e�ort



Algorithm 1 pseudo-Haskell Program S
hema for EBFS (s
hema parameters underlined)solve :: D -> {R}solve(x) = bfs x {initial(x)}bfs :: D -> {RHat}-> {R}bfs x frontier =let lo
alsof y = let z = extra
t x yin if z!={} && o(x,z) then z else {}lo
als = (flatten.map) lo
alsof frontierallsubs = (flatten.map) (subspa
es x) frontierundom = {yy : yy∈allsubs &&(yy'∈subs && yy' `dominates` yy ⇒ yy==yy')}subsolns = bfs x undomin opt(lo
als ∪ subsolns)subspa
es :: D -> RHat -> {RHat}subspa
es x y = {yy: split(x,y,yy))opt :: {R} -> {R}opt zs = min {
 x z | z ∈zs}
optc is a subset of its argument that is the optimal set of solutions (w.r.t. the 
ost fun
tion
c), de�ned as follows:

optcS = {z | z ∈ S ∧ (∀z′ ∈ S · c(z) ≤ c(z′))}Also let undom(y) be undoml(y)+1 ∩ {yy | y ⋔ yy} where l(y) is the level of y in the tree.The following theorem de�nes a re
urren
e that serves as the basis for 
omputing Fx(y):Theorem 3.1. Let ⋔ be a well-founded relation of GS-theory and Gx(y) = optc({z | χ(y, z)∧
o(x, z)} ∪

⋃
yy∈undom(y)Gx(yy)}) be a re
urren
e. Then Gx(y) ⊆ Fx(y).The theorem states that if the feasible solutions immediately extra
table from a spa
e

y are 
ombined with the solutions obtained from Gx of ea
h undominated subspa
e yy,and the optimal ones of those retained, the result is a subset of Fx(y). The next theoremdemonstrate non-triviality4 of the re
urren
e by showing that if a feasible solution exists ina spa
e, then one will be found.Theorem 3.2. Let ⋔ be a well-founded relation of GS-Theory and Gx be de�ned as above.Then
Fx(y) 6= ∅ ⇒ ({z | χ(y, z) ∧ o(x, z)} ∪

⋃

yy∈undom(y)

Gx(yy)}) 6= ∅Proofs of both theorems are in [NSC12℄. From the 
hara
teristi
 re
urren
e we 
anstraightforwardly derive a simple re
ursive fun
tion bfs to 
ompute a non-trivial subset of
Fx for a given y, shown in Alg. 1The �nal program s
hema that is in
luded in the Spe
ware library is the result of in-
orporating a number of other features of GS su
h as ne
essary �lters, bounds tests, andpropagation, whi
h are not shown here. Details of these and other te
hniques are in [Smi88℄.4 Non-triviality is similar but not identi
al to 
ompleteness. Completeness requires that everyoptimal solution is found by the re
urren
e, whi
h we do not guarantee.



3.2 A 
lass of stri
tly greedy algorithms (SG)A greedy algorithm [CLRS01℄ is one whi
h repeatedly makes a lo
ally optimal 
hoi
e. Forsome 
lasses of problems this leads to a globally optimum 
hoi
e. We 
an get a 
hara
teriza-tion of optimally greedy algorithms within EBFS by restri
ting the size of undoml for any
l to 1. If undoml 6= ∅ then the singleton member y∗ of undoml is 
alled the greedy 
hoi
e.A perhaps surprising result is that our 
hara
terization of greedy algorithms is broaderthan a well-known 
hara
terization of greedy solutions, namely the Greedy Algorithm overalgebrai
 stru
tures 
alled greedoids [BZ92℄, whi
h are themselves more general than ma-troids. We demonstrated this in earlier work [NSC10℄ although at the time we were not ableto 
hara
terize the greedy 
lass as a spe
ial 
ase of EBFS.Another interesting result is that even if ‖undoml‖, for any l, 
annot be limited toone but 
an be shown to be some 
onstant value, the resulting algorithm, we 
all HardlyStri
tly Greedy5 (HSG), still has the same 
omplexity as a stri
tly greedy one. A numberof interesting problems have the HSG property, and these are dis
ussed later.Note that forproblems in the SG 
lass, there is no longer any �sear
h� in the 
onventional sense.4 MethodologyWe strongly believe that every formal approa
h should be a

ompanied by a methodologyby whi
h it 
an be used by a 
ompetent developer, without needing great insights. Guidedprogram synthesis already goes a long way towards meeting this requirement by 
apturingdesign knowledge in a reusable form. The remainder of the work to be done by a developer
onsists of instantiating the various parameters of the program s
hema. The se
ond main
ontribution of this paper is to des
ribe some te
hniques, illustrated with examples, thatgreatly simplify the instantiation pro
ess. We wish to reiterate that on
e the dominan
erelation and other operators in the s
hema have been instantiated, the result is a 
ompletesolution to the given problem. We fo
us on dominan
e relations be
ause they are arguablythe most 
hallenging of the operators to design. The remaining parameters 
an usually bewritten down by visual inspe
tion.The simplest form of derivation is to reason ba
kwards from the 
on
lusion of y  y′ ⇒
o∗(x, y′⊕e) ⇒ o∗(x, y⊕e), while assuming o∗(x, y′⊕e) . The additional assumptions that aremade along the way form the required semi-
ongruen
e 
ondition. The following exampleillustrates the approa
h.Example 5. Derivation of the semi-
ongruen
e relation for Shortest Path in Eg. 1 is fairlystraightforward 
al
ulation as shown in Fig 4.1. It relies on the spe
i�
ation of ShortestPath given in Eg. 1 and the GS-theory in Eg. 2.The 
al
ulation shows that a path y is semi-
ongruent to y′ if y and y′ both end at thesame node and additionally y is itself a valid path from the start node to its last node.Sin
e the 
ost fun
tion is 
ompositional, this immediately produ
es a dominan
e relation
y ⊲ y′ = last(y) = last(y′)∧path?(y, x.start, n)∧

∑
edge∈y edge.cost ≤

∑
edge′∈y′ edge′.cost.Note the use of the distributive law for path? in step 4. Su
h laws are usually formulatedas part of a domain theory during a domain dis
overy pro
ess, or even as part of the pro-
ess of trying to 
arry out a derivation su
h as the one just shown. Given an appropriate
onstru
tive prover (su
h as the one in KIDS [Smi90℄) su
h a derivation 
ould in fa
t be au-tomated. Other examples that have been derived using this approa
h are A
tivity Sele
tion5 This name inspired by that of the Hardly Stri
tly Bluegrass festival held annually in San Fran
is
o



o∗(x, y ⊕ e)
= {defn of o∗}
∃z · χ(y ⊕ e, z) ∧ o(x, z)
= {defn of χ}
o(x, y ⊕ e)
= {defn of o}
path?(y ⊕ e, x.start, x.end)
= {distributive law for path?}
∃n · path?(y, x.start, n) ∧ path?(e, n, x.end)
⇐ {o∗(x, y′ ⊕ e), ie.∃m · path?(y′, x.start,m) ∧ path?(e,m, x.end). Let m be a witness for n}
path?(y, x.start,m) ∧ path?(e,m, x.end)
= {m = last(y).t, (where last returns the last element of a sequen
e)}
last(y).t = last(y′).t ∧ path?(y, x.start, n)Fig. 4.1. Derivation of semi-
ongruen
e relation for Shortest Path[NSC10℄, Integer Linear Programming [Smi88℄, and variations on the Maximum SegmentSum problem [NC09℄. The next two se
tions deal with situations in whi
h the derivation isnot so straightforward.4.1 Te
hnique 1: An ex
hange ta
ti
In the example just 
onsidered, and many su
h others, the derivation pro
ess was free ofrabbits (Dijkstra's term for magi
 steps that appear seemingly out of nowhere). However,some 
ases are a little more 
hallenging. As an example 
onsider the following problem:Example 6. One-Ma
hine S
heduling. This is the problem of s
heduling a number of jobs ona ma
hine so as to minimize the sum of the 
ompletion times of the jobs (be
ause dividingthe sum of the 
ompletion times by the number of jobs gives the average amount of timethat a job waits before being pro
essed). A s
hedule is a permutation of the set of inputjobs {J1, J2, . . . Jn}. The input to the problem is a set of tasks, where a task 
onsists ofa pair of an id and duration, p. The result is a sequen
e of tasks. The output 
ondition orequires that every task (and only those tasks) in the input be s
heduled, ie pla
ed at aunique position in the output sequen
e. Finally the 
ost of a solution, as stated above, isthe sum of the 
ompletion times of the tasks. The problem spe
i�
ation is therefore:

D 7→ {Task}
R 7→ [Task]

Task = 〈id : Id, p : T ime〉
o 7→ λ(x, z) · asBag(z) = x
c 7→ λ(x, z) ·

∑n
i=1 ct(z, i)

ct(z, i) =
∑i

j=1 zj .pThe instantiation of terms in GS-theory is similar to that of Shortest Path:
R̂ 7→ R
⊥ 7→ λx · []
⋔ 7→ λ(x, s, ss) · ∃t ∈ x. ss = s++[t]
χ 7→ λ(z, p) · p = z
⊲ 7→ ?



However, attempting to derive a semi-
ongruen
e relation in the same manner as we did forthe Shortest Path problem by 
omparing two s
hedules αa and αb will not work. This isbe
ause every task must be s
heduled, so any extension ω that extends say αa must 
ontain
b but as ea
h task 
an be s
heduled only on
e, su
h an extension will not be feasible for αb.Su
h situations are very 
ommon in s
heduling and planning problems6. For su
h problems,note that when R̂ is a sequen
e type, every possible way a (
alled a 
hoi
e) of extendingsome sequen
e α ie. α++[a], written αa for 
on
iseness, forms a subspa
e of α. A simpleexample is the problem of generating all bit strings. If the 
urrent spa
e is some bit stringsay [1,0,0,1℄ then the two subspa
es are [1,0,0,1℄++[0℄ and [1,0,0,1℄++[1℄ , written 10010 and10011 resp. Another example o

urs in CSP. If α is the sequen
e of assignments to the �rst ivariables, then αv for every v in Di+1 is a subspa
e of α. The ta
ti
 to try in su
h situationsis to 
ompare two partial solutions that are permutations of ea
h other. This idea is ba
kedup by the following theorem.Theorem 4.1. Suppose it 
an be shown that any feasible extension of αa must eventually befollowed by some 
hoi
e b. That is, any feasible solution 
ontained in αa must be 
ontainedin αaβb for some β. Let αbβa be the partial solution obtained by ex
hanging a and b. If
R(α, a, b) is an expression for the semi-
ongruen
e relation αbβa  αaβb and C(α,a,b)is an expression for c(αbβaγ) ≤ c(αaβbγ), for any α, β, then R(α, a, b) ∧ C(α, a, b) is adominan
e relation αb ⊲ αa.Proof. See [Ned12℄Example 6 Revisited. We now show how to derive a dominan
e relation for thisproblem. The ta
ti
 above suggests the following: Suppose some partial s
hedule is extendedby pi
king task a to assign in the next position and this is followed subsequently by some task
b. When is this better than pi
king b for the next position and a subsequently? Let y = αaβband y′ = αbβa. It is not di�
ult to show that y and y′ are un
onditionally semi-
ongruent.To apply Theorem 4.1 it is ne
essary to derive an expression for c(αbβaγ) ≤ c(αaβbγ).Let z = yγ and z′ = y′γ and let i be the position of a (b) in y (resp. y′) and j be theposition of b (a) in y (resp. y′). As shown in Fig. 4.2, the 
al
ulation is simple enough to beautomated. The derivation shows that for any feasible solution αbβaω extending αb thereis a 
heaper feasible solution αaβbω that extends αa provided a.p ≤ b.p. By Theorem 4.1,this 
onstitutes the dominan
e relation αa ⊲ αb. Finally, as ≤ is total order, there mustbe a 
hoi
e that dominates all other 
hoi
es, namely the task with the least pro
essingtime. Therefore the problem is in the SG 
lass. Following this greedy 
hoi
e at every steptherefore leads to the optimum solution. Instantiating the library s
hema derived from Alg.1 with su
h a dominan
e relation (along with the other parameters ) immediately results ina greedy algorithm for this problem. The result 
orresponds to the Shortest Pro
essing Time(SPT) rule, dis
overed by W.E. Smith in 1956. We have shown how it 
an be systemati
allyderived.We have applied the ta
ti
 above to derive other s
heduling algorithms, for example analgorithm for the s
heduling problem 1//Lm in whi
h the goal is to minimize the maximumlateness of any job (amount by whi
h it misses its due date), as well as variant of it to derivedominan
e relations for planning problems [Ned12℄.6 In planning, a
tions that must o

ur after another a
tion to a
hieve a feasible plan are 
alleda
tion landmarks



c(z) ≤ c(z′)
= {unfold defn of c}

c(α) + ct(z, i) + c(β) + ct(z, j) + c(γ) ≤ c(α) + ct(z, j) + c(β) + ct(z, i) + c(γ)

= {unfold defn of ct. Realize that c(α) = ∑‖α‖
i=1

∑i

j=1
αj .p and let pt(α) = ∑‖α‖

j=1
αj .p}

c(α) + pt(α) + a.p+ c(β) + pt(α) + a.p+ pt(β) + b.p

≤
ct(α) + pt(α) + b.p+ c(β) + pt(α) + b.p+ pt(β) + a.p

= {algebra}
2(a.p) + b.p ≤ 2(b.p) + a.p

= {algebra}
a.p ≤ b.p Fig. 4.2. Cal
ulation of 
ost 
omparison relation for 1 ma
h. s
heduling4.2 Te
hnique 2: General Dominan
eThere are situations in whi
h the above ta
ti
 will fail. Consider the following problem from[CLRS01℄ and [Cur03℄:Example 7. Professor Midas's Driving ProblemProfessor Midas wishes to plan a 
ar journey along a �xed route. There are agiven number of gas stations along the route, and the professor's gas tank when full
an 
over a given number of miles. Derive an algorithm that minimizes the numberof refueling stops the professor must make.The input data is assumed to be a sequen
e of 
umulative distan
es of gas stations from thestarting point (cds) along with the 
ar's tank 
apa
ity (cap, measured in terms of distan
e).The variables will represent the gas stations along the route, that is variable i will be the ithgas station. A stop at a gas station is indi
ated in the result by assigning the 
orrespondingvariable true, and false otherwise. The start and �nish are 
onsidered mandatory stops(that is z1 and zn are required to be true). Finally, the 
ost of a solution is a simple 
ountof the number of variables assigned true. An obvious requirement on the input is that thedistan
e between any two stations not ex
eed the tank 
apa
ity of the 
ar. These ideas are
aptured in the following spe
i�
ation (in the 
ost fun
tion false is interpreted as 0 and trueas 1). Note that a type 〈. . . | P 〉 denotes a predi
ate subtype in whi
h the type membersmust satisfy the predi
ate P .
D 7→ 〈cds : [Nat], cap : Nat | ∀x ∈ D · ∀i < ‖x.cds‖ · x.cds[i + 1]− x.cds[i] ≤ x.cap〉
R 7→ [Boolean]
o 7→ ‖z‖ = ‖x.cds‖ ∧ fsok (x, z)

fsok(x, z) = ∀i, j · i ≤ j · didntStop(z, i, j) ⇒ span(x, i, j) ≤ x.cap
didntStop(z, a, b) = ∀i · a ≤ i ≤ b · ¬zi
span(x, i, j) = x.cds[j + 1]− x.cds[i− 1]

c 7→ λx, z ·
∑‖z‖

i=1 ziThe instantiation of GS-theory, with the ex
eption of ⊲, is as it was for the ma
hines
heduline example (Eg. 6). Attempting to apply the Ex
hange ta
ti
 des
ribed above andderive a semi-
ongruen
e relation between αTβF and αFβT (T is true and F is false) thatdoes not depend on β will fail. The 
ounter-example of Fig 4.3 shows why (boxes represent



variables, shading means the variable was set true): it is possible that there is some extension
e to αT whi
h delays a stop but whi
h is too long a span for αF . In su
h situations, wehave found it useful to try to establish general dominan
e (Def. 2.2).As before, it is useful to identify any distributive laws. In this 
ase, the 
ombination ofpartial solutions r and s satis�es fsok provided ea
h partial solution independently satis�es
fsok and where they abut satis�es fsok . Expressing the law formally requires broadening thede�nition of fsok somewhat to take into a

ount the o�set t of a parti
ular sequen
e fromthe start, that is: fsok (x, z, t) = ∀i, j · i ≤ j∧didntStop(z, i, j) ⇒ span(x, i+t, j+t) ≤ x.cap.Then:

fsok(x, y ⊕ e, 0) = fsok (x, y, 0) ∧ fsok (x, e, ‖y‖) ∧ fs2ok (x, y, e)where fs2ok deals with the boundary between y and e and 
an be shown to be
fs2ok (x, y, e) = fsok (x, lfs(y)++ffs(e), ‖y − lfs(y)‖)where �s ( resp. lfs) denotes the initial (resp. last) false span of a segment, if any.Now 
onsider the two possible solutions after a split again, namely αT and αF . Todemonstrate o(x, αFe) for some e, the usual ba
kwards inferen
e pro
edure 
an be applied,assuming αTe′ for some e′ (for brevity, the input x to fsok has been dropped)

o(x, αFe)
= {defn }
fsok (αFe, 0)
= {defn }
fsok (α, 0) ∧ fsok (F, ‖α‖) ∧ fs2ok (α, F ) ∧ fsok (e, ‖α‖ + 1) ∧ fs2ok (αF, e)
= {fsok(α, 0) be
ause o(x, αTe′), fsok(F,−) be
ause of restri
tion on D}
fs2ok(α, F ) ∧ fsok(e, ‖α‖+ 1)) ∧ fs2ok(αF, e)
= {see below}
fs2ok(α, F )

Partial soln 1 after split

Partial soln 2 after split

extension

<= x.cap

> x.capFig. 4.3. Counter-example: extension works forthe 1st partial soln but not for the 2nd

To demonstrate both fsok (e, ‖α‖ + 1)and fs2ok (αF, e), let e = e′[1 = T ] (e′ withthe �rst variable assigned true). Clearly
fsok (e, ‖α‖ + 1) if fsok(e′, ‖α‖ + 1) and
fs2ok (αF, e) if fs2ok (α, F ) be
ause ffs(e) isempty. As αF has one stop less than αTand e has at most one extra, it follows that
c(x, αFe) ≤ c(x, αTe′). Therefore αF dom-inates αT provided there is su�
ient fuel tomake it to the next stop. As there are onlytwo bran
hes following a split, the greedy
hoi
e is 
lear. Informally this rule is totravel as far as possible without stopping.Other algorithms we have derived by ap-plying general dominan
e have been a SGalgorithm for Shortest Path similar to Di-jkstra's algorithm, and SG algorithms similar to Prim and Kruskal for Minimum SpanningTrees [NSC12℄.



4.3 Te
hnique 3: Feasibility ProblemsFinally, we show that the notion of greediness applies not only to optimality problems, butalso feasibility problems. By letting the �
ost� of a solution be its 
orre
tness and using thestandard ordering on Booleans, namely that false<true, we 
an derive a feasibility dominan
e
riterion for y ⊲F y′, namely o(x, y′) ⇒ o(x, y) [Ned12℄. One way to use this 
onstraint isderive 
onditions under whi
h o(x, y′) is false, ensuring y′ is dominated. An example of thisfollows.Example 8. Sear
hing for a key in an ordered sequen
e. A 
ombined problem spe
i�
ationand GS-theory instantiation is:
D 7→ 〈seq : [Int], key : Int | unique(key, seq)∧ ordered(seq)〉
R 7→ Nat
o 7→ λ(x, z) · x.seq[z] = x.key

R̂ 7→ (Nat,Nat)
⋔ 7→ λ(x, (i, j), (k, l)) · (k = i ∧ l = ⌊(i+ j)/2)⌋)∨

(k = ⌊(i + j)/2)⌋+ 1 ∧ l = j)
χ 7→ λ(y, z) · z = yThe input D provides the sequen
e and the key, requiring that the sequen
e be orderedand the key o

ur uniquely in the sequen
e. The result is the index of the desired key.The two subspa
es after a split are the sequen
e from the start i of the parent sequen
eto the midway point and from some point immediately after the midway to the end j ofthe parent sequen
e. (This split relation is derived in [Smi10℄). In general, there 
ould bean n-way split, or a split at any 
hosen point in the range but for simpli
ity, only thebinary midpoint 
ase is illustrated. There are only two subspa
es after a split denoted Land R. Fig 4.4 derives the 
ondition under whi
h o(x, αL) holds. Negating this 
ondition,ie. x.key > x.seq[(i+ j)/2] determines when o(x, αL) is false and αL is dominated, leavingat most one undominated 
hild, αR. Completing the instantiation of GS-theory with thisdominan
e 
ondition provides the bindings for the parameters of the program s
hema ofAlg. 1. Sin
e the depth of the sear
h is O(log n), the result is an O(log n) greedy algorithmthat implements Binary Sear
h.4.4 HSG problems

o(x, αL)
= {defn. of o}
∃z ∈ αL · o(x, z)
= {defn. of o}∨(i+j)/2

p=i x.seq[p] = x.key

⇒ {ordered elements}
x.key ≤ x.seq[(i + j)/2]Fig. 4.4. Derivation of greedy dominan
e relationfor binary sear
h

The problems illustrated so far have all beenStri
tly Greedy (SG). This was intentional.For one thing, many problems have a greedysolution (or a greedy approximation). Ad-ditionally, as one moves down an algorithmhierar
hy, the narrower 
lass generally hasa more e�
ient algorithm. The pri
e to bepaid is that it is usually more di�
ult toestablish the 
onditions ne
essary for mem-bership in a tighter 
lass. The te
hniques wehave demonstrated for establishing mem-bership in SG apply equally well to thebroader 
ategory of HSG and indeed the




at
h-all one of EBFS. Although problemsin the broader 
ategories are seemingly sparser, we have 
arried out derivations for severalproblems that are in the HSG 
lass. For example, we demonstrated membership in the HSG
lass for 2-SAT (Boolean satis�ability in whi
h there are at most 2 variables per 
lause)[Ned12℄ as well as for a family of Segment Sum problems [NC09℄. The dominan
e relationswe derived for the Segment Sum problems resulted in very e�
ient linear-time algorithms forall the problems. Noteworthy is that the run-time performan
e of the solutions we derived
onsistently ex
eeded those obtained by program transformation [SHT00,SHT01,SOH05℄.Geneti
 algorithms in whi
h the des
endant population is maintained at a 
onstant level areanother example of HSG algorithms.5 Related WorkGulwani et al. [SGF10,GJTV11℄ des
ribe a powerful program synthesis approa
h 
alledtemplate-based synthesis. A user supplies a template or outline of the intended programstru
ture, and the tool �lls in the details. A number of interesting programs have been syn-thesized using this approa
h, in
luding Bresenham's line drawing algorithm and various bitve
tor manipulation routines. A related method is indu
tive synthesis [IGIS10℄ in whi
h thetool synthesizes a program from examples. The latter has been used for inferring spread-sheet formulae from examples. All the tools rely on powerful SMT solvers. The Sket
hingapproa
h of Solar-Lezama et al [PBS11℄ also relies on indu
tive synthesis. A sket
h, similarin intent to a template, is supplied by the user and the tool �lls in su
h aspe
ts as loopbounds and array indexing. Sket
hing relies on e�
ient SAT solvers. To quote Gulwani etal. the bene�t of the template approa
h is that �the programmer only need write the stru
-ture of the 
ode and the tool �lls out the details� [SGF10℄.Rather than the programmersupplying an arbitrary template, though, we suggest the use of a program s
hema from theappropriate algorithm 
lass (refer to Step 2 of the pro
ess in Se
. 2.1). We believe that theadvantage of su
h an approa
h is that, based on a sound theory, mu
h 
an already be in-ferred at the abstra
t level and this is 
aptured in the theory asso
iated with the algorithm
lass. Furthermore, knowledge of properties at the abstra
t level allows spe
ialization of theprogram s
hema with information that would otherwise have to either be guessed at by theprogrammer devising a template or inferred automati
ally by the tool (e.g. tail re
ursiveimplementation or e�
ient implementation of dominan
e testing with hashing). We believethis will allow semi-automated synthesis to s
ale up to larger problems su
h as 
onstraintsolvers (SAT, CSP, LP, MIP, et
.), planning and s
heduling, and O/S level programs su
has garbage 
olle
tors [PPS10℄.Program veri�
ation is another �eld that shares 
ommon goals with program synthesis -namely a 
orre
t e�
ient program. The di�eren
e lies in approa
h - we prefer to 
onstru
tthe program in a way that is guaranteed to be 
orre
t, as opposed to verifying its 
orre
t-ness after the fa
t. Certainly some re
ent tools su
h as Dafny [Lei10℄ provide very usefulfeedba
k in an IDE during program 
onstru
tion. But even su
h tools requires signi�
antprogram annotations in the form of invariants to be able to automati
ally verify non-trivialexamples su
h as the S
horr-Waite algorithm [Lei10℄. Nevertheless, we do not see veri�
a-tion and synthesis as being ne
essarily opposed. For example, ensuring the 
orre
tness ofthe instantiation of several of the operators in the program s
hema whi
h is usually doneby inspe
tion is a veri�
ation task, as is ensuring 
orre
tness of the s
hema that goes in the
lass library. We also feel that re
ent advan
es in veri�
ation via SMT solvers will also helpguided synthesis by in
reasing the degree of automation.



Re�nement is generally viewed as an alternative to synthesis. A spe
i�
ation is graduallyre�ned into an e�
ient exe
utable program. Re�nement methods su
h as Z and B haveproved to be very popular. In 
ontrast to re�nement, guided program synthesis alreadyhas the program stru
ture in pla
e, and the main body of work 
onsists of instantiatingthe s
hema parameters followed by various program transformations many of whi
h 
anbe me
hani
ally applied. Both re�nement and synthesis rely extensively on tool support,parti
ularly in the form of provers.We expe
t that advan
es in both synthesis and re�nementwill bene�t the other �eld.Curtis [Cur03℄ presents a 
lassi�
ation s
heme for greedy algorithms. Ea
h 
lass hassome 
onditions that must be met for a given algorithm to belong to that 
lass. The greedyalgorithm is then automati
ally 
orre
t and optimal. Unlike Curtis, our results extend be-yond stri
tly greedy algorithms. We also rely extensively on 
al
ulational proofs for probleminstan
es.Another approa
h has been taken by Bird and de Moor [BM93℄ who show that under
ertain 
onditions a dynami
 programming algorithm simpli�es into a greedy algorithm.Our 
hara
terization in 
an be 
onsidered an analogous spe
ialization of (a form of) bran
h-and-bound. The di�eren
e is that we do not require 
al
ulation of the entire program, butspe
i�
 operators, whi
h is a less onerous task.6 Summary and Future WorkWe have shown how Breadth-First Sear
h 
an be 
arried out e�
iently by relying on domi-nan
e relations. This is an important result as Breadth-First Sear
h has several advantagesover Depth-First Sear
h. Se
ondly, we demonstrated some te
hniques by whi
h dominan
erelations 
an be derived and illustrated them on several problems. We hope to identifyand 
olle
t more te
hniques over time and 
atalogue then in the style of design patterns[GHJV95℄.Nearly all the derivations shown in this paper have been 
arried out by hand. However,they are simple enough to be automated. We plan on building a prover that in
orporatesthe ideas mentioned in here. We are en
ouraged by the su

ess of a similar prover that waspart of KIDS, a prede
essor to Spe
ware.We are 
urrently applying some of these ideas to the problem of synthesizing fast plannersthat produ
e good quality plans. We hope to report on this work in the near future.Referen
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