
Requirement Enforcement by Transformation Automata

Douglas R. Smith
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304 USA

smith@kestrel.edu

ABSTRACT
The goal of this work is to treat safety and security policies
as requirements to be composed in an aspectual style with
a developing application. Policies can be expressed either
logically or by means of automata. We introduce the concept
of transformation automaton, which is an automaton whose
transitions are labeled with program transformations. A
transformation automaton is applied to a target program by
a sound static analysis procedure. The effect is to perform a
global transformation that enforces the specified policy. The
semantic effect of this global transformation is explored.

In previous work we discussed how the intent of an AspectJ-
style aspect can be expressed precisely and abstractly as a
state invariant. Here, this result is generalized to handle
invariants that are conditional and stated over both events
and state properties. A policy stated in such a logical for-
mat can be translated to a transformation automaton that
enforces it in a target program. The translation process is
defined by a collection of inference schemes that can be me-
chanically instantiated and then solved, at least partially
automatically, by deductive calculations.

1. INTRODUCTION
This paper takes steps toward a deep integration of two
worlds - the burgeoning field of Aspect-Oriented Software
Development (AOSD) and the field of formal software de-
velopment by mechanized refinement. These two fields have
much to offer each other. Viewing each from the point of
view of the other provides insights leading to cross-fertilization
and new generalizations of both.

Formal software development starts with real-world require-
ments that are formalized into specifications. Specifications
are then subjected to a series of refinements that preserve
properties while introducing implementation details. Most
work on development-by-refinement takes a posit-and-prove
approach: a refinement is manually written that adds im-
plementation detail to the current design specification, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Foundations of Aspect-Oriented
Languages (FOAL 2007), March 13, 2007, Vancouver, BC, Canada.
Copyright 2007 ACM ISBN 1-59593-671-4/07/03 ...$5.00.

the refinement is proved correct on the side. In contrast,
our work has focused on generating refinements by apply-
ing representations of abstract design knowledge and using
automated reasoning [20, 21]. To achieve wider acceptance
and lower lifecycle costs, it is necessary to develop highly
automated means for generating refinements.

A crucial fact of complex system design is that no matter
how one designs the hierarchical structure of a system, there
are always concerns that cross-cut the component struc-
ture and introduce dependencies that are not exposed at
the component interfaces. These dependencies complicate
the understanding and evolution of the system. We view
cross-cutting concerns (such as aspects, safety and security
policies, nonfunctional requirements) as behavioral require-
ments on a system.

The main contribution of AOSD is the development and
popularization of means for expressing these cross-cutting
requirements, or at least implementation prescriptions for
them, in modular syntax, and providing automatic methods
for weaving or composing them into one’s design. What has
been lacking is means for specifying the intent of aspects.
In previous work [22] we showed how many AspectJ-style
aspects can be specified by means of state invariants, and
how aspect weaving can be performed as invariant mainte-
nance. By starting with a logical specification of the intent
of a cross-cutting concern, we showed how to derive what are
called the pointcuts and advice of AspectJ aspects [10]. The
derivation process provides assurance that the joinpoints are
complete and that the advice correctly implements the spec-
ification.

This paper continues our focus on abstract, yet precise means
for specifying the intent of cross-cutting requirements. Our
previous results are generalized to handle invariants that
are conditional and stated over both events and state prop-
erties. In particular, the specification of safety and security
policies typically requires taking behavioral context into ac-
count when deciding whether current actions are acceptable.
Policies can be expressed either logically or by means of au-
tomata, as convenient.

To implement cross-cutting requirements, we introduce the
concept of transformation automata, which are automata
whose transitions are labeled with program transformations.
A transformation automaton is applied to a target program
by a sound static analysis procedure. The effect is to per-

form a global transformation that enforces the specified pol-
icy by applying a collection of local transformations. We
show how to calculate transformation automata from spec-
ifications of cross-cutting requirements.

Formal development poses several questions. What is the se-
mantic effect of mechanically composing a cross-cutting re-
quirement into a program? Is the requirement correctly and
completely realized? Do previously satisfied requirements
remain satisfied? We examine these issues in the context of
a variety of examples.

The goal of this work is to treat cross-cutting concerns as
requirement specifications, and to introduce the broadest
possible range of mechanisms for composing/weaving those
cross-cutting concerns in the context of a refinement process
that generates correct-by-construction code. After introduc-
tion of notations, we work through a series of examples.

2. PRELIMINARIES
A behavior of a program can be represented graphically as
a trace of alternating states and actions

state0
act0 // state1

act1 // state2
act2 // state3 · · ·

or more formally as a sequence of transition triples of the
form

〈statei, acti, statei+1〉,
where states are a mapping from variables to values, and
actions are state-changing operations (i.e. program state-
ments). If x is a state variable and s a state, then s.x denotes
the value of x in s. Further, in the context of the transi-
tion triple 〈state0, act, state1〉, x will refer to the value of x
in the preState, state0.x, and x′ refers to the value in the
postState, state1.x.

For concreteness, an action is represented by abstract syn-
tax so that we can perform pattern-matching and other
syntactical operations and tests. The following operators
construct sequences, including traces: nil, written [], and
append(S, a), written S :: a for sequence S and element a.

The semantics of a system S is given by a set of traces
Traces(S). To specify a system, we determine the obser-
vations that a stakeholder could make, and then write con-
straints on the observable state properties and event order-
ings. Here we assume that the observables of the system
are exactly the states and actions of a trace; e.g. we cannot
observe the state while a (primitive) action is taking place.

Actions are specified in a pre- and post-condition style. For
example, the specification

assume: x ≥ 0
achieve: x′ ∗ x′ = x ∧ x′ ≥ 0

is satisfied by the action x :=
√

x.

A refinement is a morphism in a suitable category of specifi-
cations. Intuitively, a refinement morphism preserves struc-
ture and properties. For algebraic specifications, a refine-
ment morphism maps vocabulary such that typing is pre-
served, and formulas/sentences remain provable under trans-

lation (i.e. theorems are preserved). This means that prop-
erties are preserved. For behavioral specifications, a refine-
ment morphism maps vocabulary such that typing is pre-
served, theorems are preserved, and domain behavior is sim-
ulated by codomain behavior [15]. The last condition im-
plies that if system S refines to system T then Traces(T) ⊆
Traces(S), or more generally that there is a simulation map
from traces of T to traces of S.

Reification

In order to specify requirements that express cross-cutting
features, we often need to reify certain extra-computational
values such as history, the runtime call stack, the runtime
heap, or external agents.

Suppose for example that we need some way to discuss the
history of the program at any point in time. The execu-
tion history of the program can be reified into the state by
means of a specification variable (sometimes called a shadow
or ghost variable). That is, imagine that with each action
taken by the program there is a concurrent action to update
a variable called hist that records the history up until the
current state; so each transition has the form

〈sti, (acti || hist := hist :: 〈sti, acti, sti+1〉), sti+1〉
where α||β denotes parallel composition of actions α and
β. Obviously this would be an expensive variable, but it is
only needed for specification purposes, and typically at most
a residue of it will appear in the executable code.

Other common examples of values to reify include the call
stack (to constrain dynamic control context), heap (to con-
strain dynamic data context), time (to state performance
constraints), and agency (to express the principals who are
responsible for system actions).

3. EXAMPLE: AUTOSAVE REQUIREMENT
Suppose that we are developing a data editing application,
and we desire to impose an autosave requirement (adapted
from [1]): every 6 changes to the data from a file, save the
data back out. With the aid of the reified variable hist, a
specification of this requirement is easily stated:

2 cnt = (length · dataop? . action ? hist) mod 6
2 cnt = 5 =⇒ data = file

where
(1) the action function selects the action from a transition
〈statei, acti, statei+1〉
(2) ? is the image operator, so action ? hist is the list of
actions performed up to the present
(3) dataop? holds for the representation of an action that
changes the data of concern
(4) . is the filter operator, so dataop? . action ? hist is the
list of dataops performed up to the present
(5) 2 the always modality of temporal logic [12]; 2φ asserts
that the state (or transition) formula φ holds invariantly at
every state of a trace.
In words, the two formulas assert that in every observable
state, the variable cnt records the number of dataops modulo
6 that have occurred to that point in the current behavior
(which is recorded in hist), and furthermore, in each state
in which cnt has value 5, the data and the file have the same
contents.

3.1 Establishing the Invariant
We have two invariants to establish, and we proceed along
the lines presented in [22], by simultaneously deriving the
essential parts of a inductive proof and the transformations
that carry them out.

The first step is to generate code to establish the invariant
initially, by satisfying the following two specifications:

assume: hist = []
achieve: cnt′ = lengthDataops mod 6

where we abbreviate

length · dataop? . action ? hist

by lengthDataops. The postcondition can be simplified as
follows:

cnt′ = (length · dataop? . action ? hist) mod 6

⇐⇒ { using the definition of hist and simplifying }

cnt′ = 0

which is satisfied by the initialization code

cnt := 0.

Generating initialization code for the other invariant is sim-
ilar:

assume: hist = [] ∧ cnt = 0
achieve: cnt = 5 =⇒ data = file

The postcondition can be simplified as follows:

cnt = 5 =⇒ data = file

⇐⇒ { using the assumption and simplifying}

true

which is vacuously satisfied (i.e. by the empty code, or skip).

More generally, when the invariant contains reified variables,
the following scheme specifies code for establishing an invari-
ant I(x) in the initial state:

assume: hist = []
∧ . . . initialization constraints on other reified variables

achieve: I(x)

3.2 Specifying Disruptive Code and Deriving the

Pointcut
To proceed with the inductive argument, we must maintain
the invariant for all actions of the target code. Since most

actions of the target code have no effect on the invariant,
for efficiency it is useful to focus on those actions that might
disrupt the invariant. We will then generate code for main-
taining the invariant in parallel with the disruptive action.
The set of all code points that might disrupt the invariant
corresponds to the AspectJ concept of events that satisfy a
pointcut.

An exact characterization of the disruption points is given
by

I(x) 6= I(x′). (1)

That is, any action that satisfies (1) as a postcondition is a
disruption point. More generally, any action that satisfies
a necessary condition on (1) is a potential disruption point.
We can simplify (1) a little by assuming that I(x) holds be-
fore the action, so all we need is to find a necessary condition
on ¬I(x′).

In our example, we set up the following inference task:

assume: cnt = lengthDataops mod 6
∧ hist′ = hist :: 〈 , act, 〉
∧ cnt′ = cnt

simplify: ¬(cnt′ = lengthDataops mod 6)

In words, we assume that the invariant holds before an ar-
bitrary action act, and that the hist variable is updated in
parallel with act. Moreover, we add in a frame axiom that
asserts that act does not change cnt since it is a fresh vari-
able introduced by the invariant.

Intuitively, one would expect to derive dataop? as the char-
acterization of actions that could disrupt the invariant, and
that is indeed the case. Since the details of the calculation
are similar to examples in [22], we omit them here, in favor
of later examples that exhibit new features.

For the other invariant, we set up the following inference
task:

assume: cnt = 5 =⇒ data = file
∧ cnt = lengthDataops mod 6
∧ hist′ = hist :: 〈 , act, 〉
∧ dataop?(act)
∧ cnt′ = (cnt + 1) mod 6

simplify: ¬(cnt′ = 5 =⇒ data′ = file′)

We calculate a pointcut specification as follows:

¬(cnt′ = 5 =⇒ data′ = file′)

⇐⇒ { simplifying }

cnt′ = 5 ∧ data′ 6= file′

⇐⇒ { using postcondition of dataop }

cnt′ = 5

⇐⇒ { using assumption on cnt′ }

(cnt + 1) mod 6 = 5

⇐⇒ { simplifying }

cnt = 4.

That is, it is only the occurrence of a dataop action when
cnt = 4 that could possibly disrupt the invariant.

Generally, the task to infer a pointcut is given by the infer-
ence scheme in Figure 1.

assume: I(x)
∧ hist′ = hist :: 〈 , act, 〉
∧ ... updates of other reified variables ...
∧ ... relevant frame conditions ...

simplify: ¬I(x′)

Figure 1: Inference Scheme for Joinpoint Specifica-
tion

The simplified result will typically contain a mixture of con-
straints, some of which constrain the action code (which
actions might violate the invariant), and some of which con-
strain the state in which the action is taken.

3.3 Specification and Derivation of Maintenance

Code
To complete the induction, for each potentially disruptive
action (using the derived pointcut specification), we gener-
ate maintenance code to reestablish the invariant in parallel
with it. Consider the second derived pointcut specification.
Suppose that act is an action such that dataop?(act) and
suppose that cnt = 4. In order to preserve the invariant, we
need to perform a maintenance action that satisfies

assume: (cnt = 5 =⇒ data = file)
∧ cnt = lengthDataops mod 6
∧ dataop?(act)
∧ cnt = 4
∧ hist′ = hist :: 〈 , act, 〉
∧ cnt′ = (cnt + 1) mod 6

achieve: cnt′ = 5 =⇒ data′ = file′

The postcondition simplifies straightforwardly to the post-
condition data′ = file′ which is satisfied by an operator,
say saveData, that saves data into the file. Similarly, we
calculate the straightforward maintenance postcondition

cnt′ = (cnt + 1) mod 6

for the first derived pointcut from Section 3.2.

More generally, suppose that static analysis has identified
an action act as potentially disruptive of invariant I(x). If
act satisfies the specification

assume : P (x)
achieve : Q(x, x′)

then the maintenance code can be specified as in Figure 2.
In this schematic specification we compose the aspect with
the base code by means of a conjunction. Note that this
specification preserves the effect of act while additionally
reestablishing the invariant I. If it is inconsistent to achieve
both, then the specification is unrealizable.

assume : P (x) ∧ I(x)
∧ hist′ = hist :: 〈s0, act, s1〉
∧ ...updates to other reified vars...

achieve : Q(x, x′) ∧ I(x′)

Figure 2: Inference Scheme for Maintenance Speci-
fication

We are not finished with this example yet. It remains to
explain the mechanism whereby the parts of the induction
argument, derived above, are carried out on the target sys-
tem design. The next section introduces the required mech-
anism, and then completes the example.

4. TRANSFORMATION AUTOMATA
Program transformations have long been used to effect change
on program designs, for example as in the optimizing trans-
formations in compilers. Traditionally, a transformation has
the form

sourcePat → targetPat if C

which applies to an expression expr in a program context
if (1) expr matches sourcePat with certain bindings; i.e.
θ = match(expr, sourcePat) where θ is a substitution, and
(2) the condition C holds in context; i.e. Cθ can be proved
in context. The effect of the transformation is to replace
expr with targetPatθ.

Clearly, a transformation produces a local change in a pro-
gram text. In general there is little that can be said about
the semantic effect of a transformation, since expr can be re-
placed with arbitrary code. Typically however, most trans-
formations are used to replace an expression with an equal
expression (modulo context), so the effect is to preserve the
semantics of the whole despite a syntactic change to a local
part. We are concerned with the more general problem of
whether a collection of local changes enforces a global policy
and effects a global refinement.

To enforce an invariant global policy/requirement on a sys-
tem, it is necessary to ensure that the invariant holds in all
transitions in all system traces. We introduce the notion of
a transformation automaton as the means for carrying out
a systematic collection of local transformations that achieve
a desired global effect.

A transition transformation has the form

[P]{actPat}[Q] → [A]{newActPat}[B] if C

where P, Q, A, B are state predicates, actPat and
newActPat are patterns (expressed over the specification

language and using appropriate pattern notations), and C is
a state predicate that expresses the conditions of the trans-
formation.

A transition transformation matches an action act if (1) act
matches actionPat with bindings θ, and (2) act satisfies the
pre/postcondition [Pθ, Qθ]; i.e.

Pθ =⇒ wp(act, Qθ)

holds, where wp is the weakest precondition operator [6].
The intention is that a transition transformation matches a
system action either via pattern matching with the actionPat,
or by satisfying a pre/post-condition specification, or by a
combination of the two. Deciding whether an transition
transformation is enabled is undecidable in general. A prac-
tical implementation of this approach must restrict the lan-
guage and logic to allow efficient decision procedures. Of
course, by forgoing the use of the pre/postcondition specifi-
cations, one has ordinary transformations on each transition,
and therefore fast matching.

When a transition transformation matches action act with
substitution θ, then its effect is to replace act by a new
action

if Cθ then newAct else act

where newAct satisfies the right-hand side (RHS) specifica-
tion; i.e. such that

θ′ = match(newAct, newActPatθ)

and

Aθθ′ =⇒ wp(newAct, Bθθ′)

holds.

A Transformation Automaton (TA) is an automaton whose
transitions are labeled with transition transformations. We
write transformation automata using a Java-like syntax of
the form

TA policyName {
variable-declaration*
transition-declaration*

}

Each variable-declaration introduces a local variable to the
policy and is declared using Java-like syntax (* is used to
denote zero or more occurrences).

Each transition-declaration specifies a transition transfor-
mation as described above. Policy variables can be initial-
ized, referenced, and modified by the transition transforma-
tions. In addition, each transition transformation can have
local metavariables in its patterns that are bound to system
action expressions. For purposes of this paper TAs do not
have a mechanism to bind system values/objects to local
variables. This simplifies the presentation and process of
applying TAs, but prohibits the application of more than
one instance of a policy to a system design. The extensions
needed to capture source system values and support multiple
policy instances can be found in [23, 24].

Since TAs track both state properties and events, they can
represent the checking and enforcement of a variety of kinds
of requirements, ranging from event ordering to temporal
logic properties and combinations of these.

Returning to the AutoSave example, we assemble a TA
from the pieces of the inductive argument that were derived
above:

TA AutoSave {
Nat cnt
{init} → []{}[cnt′ = 0]
{dataop?(act)}

→ [actpre]{}[actpost ∧ cnt′ = cnt + 1]
{dataop?(act)}

→ [actpre]{}[actpost ∧ data′ = file′]
if cnt = 4

}

where init is a no-op action at the beginning of the program.
The init-enabled transition transformation serves to initial-
ize state and uses the postcondition cnt′ = 0 derived in Sec-
tion 3.1. The remaining transition transformations are as-
sembled from the derived pointcut specifications (from Sec-
tion 3.2) and corresponding derived maintenance code spec-
ifications (from Section 3.3). Each derived pointcut specifi-
cation forms the left-hand side (LHS) and the correspond-
ing specification of maintenance code forms the right-hand
side(RHS). The predicates actpre and actpost denote the pre-
and post-conditions of act, respectively. Also, we use a pred-
icate on actions in place of a pattern, here dataop?. This is
more concise for communication purposes and avoids some
of the formal noise which is necessary in particular pattern
languages. Also we omit the pre- and post-conditions, action
patterns, and conditions when they provide no constraints.

The AutoSave TA can be made more concise by using some
abbreviations for transformation patterns that are both com-
monly occurring and have pleasant semantic properties. Each
of these abbreviations effects a refinement - it preserves
properties of the system action as well as establishing a new
property.

Abbreviation RHS pattern
achieve R [actpre]{}[actpost ∧ R]
maintain I [actpre ∧ I]{}[actpost ∧ I]
ensure [P, Q] [actpre ∧ P]{}[actpost ∧ Q]
ok {act}

Figure 3: TA Abbreviations

With these abbreviations, the AutoSave TA can be expressed
more compactly as

TA AutoSave {
Nat cnt
{init} → achieve [cnt′ = 0]
{dataop?(act)} → achieve [cnt′ = cnt + 1 mod 6]
{dataop?(act)} → achieve [data′ = file′]

if cnt = 4
}

or, after carrying out the straightforward syntheses,

TA AutoSave {
Nat cnt
{init} → {cnt := 0}
{dataop?(act)} → {act; cnt := cnt + 1 mod 6}
{dataop?(act)} → {act; saveData} if cnt = 4

}

The deductive calculations that translate a logically stated
policy into a TA are similar to those performed in the Fi-
nite Differencing transformation [14, 20]. They can be auto-
mated over some domains, but in general may require some
user interaction.

Applying Transformation Automata
The application of a transformation automaton to a system
design is accomplished by a form of sound static analysis.
Requiring the analysis to be sound means that the transition
transformations are applied locally to all program actions
to which the transformations apply. This means that in all
traces and all transitions in each trace, if a TA transition
transformation applies, then it has been applied. There are
no false negatives. This key property enables us to assert
strong semantic claims about the design after transforma-
tion by a TA.

Since we are consumers and not developers of static analy-
sis technology, we only informally specify the necessary tech-
niques here. The analysis algorithms are well-known, e.g. [5,
18, 2], although practical implementations must pay careful
attention to efficiency.

The strategy for applying a transformation automaton pro-
ceeds in stages, as presented below.

The first stage is a flow-sensitive interprocedural dataflow
analysis that simulates the transformation automata over
the Control Flow Graph (CFG) of the system design. The
result of TA simulation includes (1) a map from each source
control point to a representation of possible policy variable
values, (2) a map from each source code action to a set of
policy transitions, and (3) a summary of the state changes
effected by method calls.

In the second stage, the transition transformations that label
each system action are applied. Schematically, let act be a
system action that is labeled with policy transition

act → newAct if C

and suppose that the control point just before act has for-
mula V as the representation of possible policy variable val-
ues. Soundness of static analysis means that V characterizes
a superset of values that the policy variables can take on over
all possible system traces. As discussed above, the effect of
applying the transition transformation is to replace act with

if Cθ then newAct else act.

Simplifying Cθ with respect to V can simplify the whole
conditional, especially if Cθ reduces to true or false.

For example, suppose that Transpose is a system action
that satisfies dataop?. Then the AutoSave transition

{dataop?(act)} → {act; saveData} if cnt = 4

matches and it results in the replacement of Transpose by

if cnt = 4
then (Transpose; saveData)
else Transpose.

If the contextual property representation V is cnt ∈ {0..5},
then no simplification can be performed. If V is cnt ∈ {4},
then the conditional simplifies to just the then-branch.

Finally, any necessary synthesis is performed on pre/post-
condition specifications that have been inserted into the de-
sign. Aside from the synthesis subtasks, a TA can be applied
automatically.

Returning to the AutoSave example again, the net effect of
applying TA AutoSave to a design D0 resulting in design
D1 is to enforce the invariants, allowing us to assert

D1 ` 2 cnt = (length · dataop? . action ? hist) mod 6

and

D1 ` 2 cnt = 5 =⇒ data = file.

In this case it is also clear that D1 is a refinement of D0
because we have only used refinement-inducing transition
transformations.

5. MORE EXAMPLES
5.1 Access Control
Essentially, access control policies prescribe which agents are
allowed to access which resources. More elaborate policies
may also take into account the type of access, the time of
access, roles, and other features. Lampson’s permission ta-
bles [11] are the basic extensional way to represent a policy
– as a relation between agents/subjects/principals, and re-
sources/objects (and possibly action-type, time, etc.). Role-
Based Access Control [8] is a leading current approach to
represent the permissions tables in a rule-based way that
(1) is natural and compact and (2) allows easier mainte-
nance/evolution than a tabular/relational format.

Our overarching concern is to formally specify and enforce
cross-cutting requirements on a system. Many requirements
can be specified as state invariants that are given by a state
predicate that is required to hold before and after each sys-
tem action. Other requirements place constraints on the
order of system actions. Access control policies are require-
ments on both events (an action to access a protected re-
source) and state properties (the current permission table).

Intuitively, access control (or authorization) is a requirement
that whenever a system action act whose principal or agent
a accesses resource r, then a has current permission to ac-
cess r. Although the policy is easy to state in a positive

way (i.e. what behaviors are allowed), it is applied with the
understanding that the target design may not satisfy the
requirement, and there may be a need to deal with excep-
tions to it. If we think of the policy as expressing normal
behavior, then ultimately the specification of it must deal
with possible departures from normal behavior.

In order to formalize access control we need some way to
discuss the principal of an action, and current permissions.
Both of these are extra-computational entities, so we must
reify them in order to mention them in a formal requirement.

Reifying Agency and Permissions

To formalize access control, we must reify the agents who
are the initiators of system actions. To do so, we introduce
a finite type Agent, and label each action in a trace with an
Agent. Not all labelings make sense - there are constraints on
consistent labelings. The main constraint is that if system
action αi is labeled with agent a (meaning that a is the
principal behind action αi), and the control of the system
naturally flows from αi to αi+1, then αi+1 is also labeled
with agent a. Since each action in a trace has a unique
label, we write prin(act) to denote that label.

The semantics of the system is now all possible system traces
with all possible consistent labelings of system actions with
agents.

The other reification we need is the permissions. We add
a finite type Resource and a finite map ACP : Agent ×
Resource → Boolean (Access Control Permissions). We’ll
assume that ACP is a variable and that it can change from
system state to system state. It is not obvious what kinds
of constraints to put on these changes, so we won’t assume
any.

The semantics of the system is now all possible system traces
with all possible consistent labelings of system actions with
Agent s and with all possible values of ACP at system states.

Comments on this semantics:

1. Messages – A service (method) that passively waits for
control and data, acquires the agency of the invoker.
On the other hand, a process B that receives a message
from process A naturally continues on its course with
its agency unchanged.

2. Delegation – The situation in which agent A temporar-
ily endows agent B with some of A’s permissions is
handled in traces by B temporarily gaining additional
permissions. What is not modeled is the situation in
which A passes her credentials to B so that B can act
as A – credentials are an implementation concept used
to satisfy requirements on authentication and access
control. The semantic model here is more abstract
and admits both credential-based implementations as
well as others.

3. Permission table modifications – Agent actions that
modify the ACP (permission table) are not modeled.

Again, the idea is to abstract away implementation
detail. A more elaborate semantical model would in-
clude (i) the principal behind the actions that change
the access control policy (ACP) and (ii) permissions
to effect such changes.

This is a fairly simple semantics for reifying identity in a
system. Doubtless a more elaborate model could be con-
structed. This one is accurate enough for present purposes.

Access Control Requirement

We can now specify the access control requirement on system
S; for each trace tr : Traces(S), transition 〈s, act, s′〉 ∈ tr,
and resource r : Resource:

access?(act, r) =⇒ s.ACP (principal(act), r)

where access?(act, r) holds if action act directly accesses
resource r. The requirement states that if the current action
directly accesses resource r, and the principal behind the
action is a, then ACP (a, r) holds in the prestate (i.e. agent
a has permission to access resource r). Naturally, there are
many variants and elaborations of this requirement, but this
form lets us treat the essential ideas.

The reader should not confuse a simple clear specification
with the ease of implementing it - accurate tracking of iden-
tity in a system is a notoriously difficult problem.

Enforcing the Requirement

In order to correctly realize the requirement in the target
code, we proceed by direct synthesis.

First, we can derive a joinpoint specification as a necessary
condition that a system action violates the requirement. We
instantiate the inference scheme in Figure 1 as follows.

assume: hist′ = hist :: 〈s, act, s′〉
simplify: ¬(access?(act, r) ⇒ s.ACP (prin(act), r))

and calculate a pointcut specification as follows:

¬(access?(act, r) =⇒ s.ACP (prin(act), r))

⇐⇒ { simplifying }

access?(act, r) ∧ ¬s.ACP (prin(act), r)

as one expects. The constraint on the system action,
access?(act, r) will serve as a joinpoint specification, and
the state predicate ¬s.ACP (prin(act), r) will serve as the
condition on a policy transition in a TA.

Next, suppose that the current action act satisfies the join-
point specification and has the particular specification

assume : P (x)
achieve : Q(x, x′)

then the code to enforce the requirement can be specified by
instantiating the inference scheme from Figure 2.

assume: P (x) ∧ access?(act, r)
∧ hist′ = hist :: 〈s, act, s′〉

achieve: Q(x, x′)
∧ (access?(act, r) ⇒ s.ACP (prin(act), r))

We refine the postcondition as follows:

Q(x, x′) ∧ (access?(act, r) ⇒ s.ACP (prin(act), r))

⇐⇒ { simplifying }

Q(x, x′) ∧ s.ACP (prin(act), r)

⇐⇒ { ordering the evaluation }

if s.ACP (prin(act), r)
then Q(x, x′)
else false.

We have derived a postcondition specification for an action
that would jointly realize both the current action and satisfy
the access control requirement. The fact that the postcondi-
tion is false in one case is the essence of the semantic problem
- we have deduced inconsistency between the current system
design and the access control policy. Although we have cal-
culated a correct refinement, it specifies a step in the design
that is unimplementable! Just as any specification refines to
the inconsistent specification, it is mathematically sound to
have an action specification refine to an inconsistent action
specification.

A transformation automaton to realize the policy as calcu-
lated above is

TA AccessControl {
Resource r
{access?(act, r)} → achieve [false]

if ¬ACP (prin(act), r)
}

What we can say is that if the source design D0 satisfies
invariant R; i.e. D0 ` 2R, and D1 results from the appli-
cation of TA AccessControl, then

D1 ` (R ∧AC) W false

where AC is the access control invariant and W is the unless
modality of temporal logic [12]. In words, D1 traces satisfy
the state/transition property R∧AC up to the point (if any)
that the transition has a false postcondition. Another way of
putting it is that the composition of the policy and D0 has
preserved its safety properties, but has possibly decreased
its liveness properties.

Of course, we cannot have a program with an unimple-
mentable action in it. The solution is to weaken the post-
condition to something implementable. The following TA
specifies the throwing of an exception

TA AccessControl1 {
Resource r
{access?(act, r)} → {throw new error(“...”)}

if ¬ACP (prin(act), r)
}

Current work on self-healing systems attempts to deal with
situations like this, albeit dynamically. Ideally, there is a
way to lift out of the black hole of an inconsistency and
take an action that allows the system to continue toward its
goals.

5.2 A Simple Information Flow Policy
Consider the following simple security policy which is adapted
from [19]. If a process ever reads from a particular file f , it
is henceforth not allowed to send any messages. The policy
states an information flow requirement. One might want to
automatically enforce an instance of this policy on an applet
downloaded onto a personal computer.

This example is distinguished from previous examples in
that it is a pure event ordering constraint, whereas AutoSave
is a state invariant and AccessControl constrains an action
and the state in which it executes.

The reification of history allows us to represent the event
ordering as a state invariant. If Send matches any send(..)
action and Readf matches any action that reads file f , then
the policy can be expressed as an invariant: for all traces
tr : Traces(S) and transitions 〈s, act, s′〉 ∈ tr

Send(act) ⇒ ¬∃(a)(a ∈ action ? hist ∧ Readf(a))

however, this seems less than straightforward. Constraints
on the order of events are often more naturally expressed us-
ing the tools of language theory: regular expressions, recog-
nition automata, grammars. Using regular expressions for
example allows the straightforward formulation

Send∗Readf∗

and a corresponding automaton is similarly clear. Note that
all of these formulations specify normal or allowed behaviors
but do not prescribe what to do with violations.

Our approach is to generate a TA that effects the specified
policy, allowing developers to fill in how to handle violations.

TA InfoFlow {
Boolean rf
{init} → achieve [rf ′ = false]
{Send} → ok if ¬rf
{Readf} → achieve [rf ′ = true]

}

where rf flags whether a Readf action has occurred. Using a
derivation similar to that for AutoSave and AccessControl,
we can derive the point of inconsistency (sending when con-
dition rf holds). Here we manually weaken the inconsistent
specification to abort resulting in

TA InfoFlow {
Boolean rf
{init} → achieve [rf ′ = false]
{Send} → abort if rf
{Readf} → achieve [rf ′ = true]

}

6. RELATED WORK
This work ties together research in a wide range of topic
areas. The refinement view offers the opportunity to ab-
stract aspects to the level of requirement specification and
to treat aspect weaving as a powerful new tool for generating
specification refinements. There is an opportunity to unify
aspect weaving with other related techniques, including in-
trusion detection [26], Software Fault Isolation [7], security
policy enforcement [19], and others, in addition to software
development by refinement.

Runtime verification is a recent field that foregoes full pro-
gram verification in favor of runtime monitoring of code with
respect to a specified property of interest [3, 9]. Transfor-
mation automata can be seen as a generalization of runtime
verification. Although we haven’t emphasized it, when static
analysis cannot decide whether a policy transition applies,
then the decision must be pushed to runtime when more
information is available. As such, runtime monitoring of a
property then becomes a special case of applying a TA in
which we defer all decisions to runtime. The static analy-
sis performed in our approach has the effect of optimizing
the runtime monitors - if we can prove statically that a cer-
tain property holds at a code location for all behaviors, then
there is no need to monitor it. Also, static analysis may be
able to simplify the monitoring code without eliminating it
entirely, resulting in lower overhead.

The next step is to both monitor the code and take action
when the policy is about to be violated. Schneider [19] de-
fines a class of enforceable security policies as a subclass of
safety properties, and uses a form of finite state machine
(labeled with an event vocabulary) to express them. The
effect of applying a security policy is to abort the system
whenever it is about to violate the policy. In [7] the authors
inject the policy automaton at each code location and then
use partial evaluation to optimize away all or most of the
inlined code. In [4] Colcombet and Fradet propose a similar
approach except that static analysis (vs partial evaluation)
is used to optimize away unnecessary runtime code. Static
analysis can exploit more context and can in general opti-
mize away more of the runtime monitoring code.

TA’s generalize previous work in transformations in the fol-
lowing ways. The automaton provides behavioral context for
the transition transformations, thereby providing more flex-
ible and coordinated control over when they are applied. By
packaging a collection of related transformations and using
static analysis to explore the behaviors of the target system
code, a new range of global effects are enabled. Also, the use
of optional pre/post-condition specifications for both match-
ing and target code generation is unique to our knowledge,
although our Refine [17] system allowed a limited postcon-
dition capability in specifying target code.

Recent work in AOSD has extended AspectJ concepts in

various dimensions. Several authors have proposed general-
izing pointcuts to take behavioral context into account, e.g.
tracecuts [1], Jasco [25], PQL [13], [27], and our own pol-
icy automata [23]. Other works have increased the amount
of static and reflective context that can be picked up at
program points. TA’s generalize previous work on AOP, in-
cluding work on behavioral pointcut specifications. One can
include stacks and other data structures internally to gain
full computability power. Also, one could write TA’s that
have arbitrarily complex pre/post-conditions on their RHS
which would entail arbitrarily hard synthesis problems to
effect them. Effective implementations of TA’s would likely
place restrictions on the expressiveness to gain full automa-
tion of the enforcement process. As a special case, if no
synthesis tasks appear on the RHS of transitions, then ap-
plication of a TA can be fully automatic.

To our knowledge, the work on retrenchment by Poppleton
and Banach [16] is the only other work that confronts the
issue of transformations that impose limitations on a de-
sign from a refinement point-of-view. Their solution is to
define a generalization of refinement that allows precondi-
tions to strengthen and postconditions to weaken in some
situations. Their approach is broadly consistent with the
discussion above: enforcing a policy typically strengthens
the guards on actions, and in the case of a derived inconsis-
tency, we are forced to weaken an inconsistent postcondition
to make progress.

7. CONCLUDING REMARKS
This paper takes a step in the direction of integrating and
cross-fertilizing the two fields of AOSD and software devel-
opment by refinement. The unification requires generaliza-
tions of concepts from both fields.

This paper advocates the following process for enforcing
global system requirements. First, a natural specification of
a requirement is translated, via some deductive calculation,
into a transformation automaton. Static analysis simulates
the TA over the target system design, and then applies the
component transformations of the TA. The resulting trans-
formed design satisfies the given requirement, and under cer-
tain conditions, is a refinement of the starting design. The
composition process preserves the invariants of the starting
design, but may reduce its liveness. That is, the enforcement
of safety and security policies on a design may result in the
curtailment of some behaviors that violate the policies.

This overall process enriches previous approachs to refine-
ment by offering an automated technique for folding require-
ments into a design. The refinement process starts by focus-
ing on a subset of requirements, say, to meet key functional
and performance needs. Then, one can add in other re-
quirements incrementally. Feedback from the enforcement
process informs the revision of earlier design decisions, hope-
fully leading to designs that satisfy all requirements under
a broader range of conditions.

Acknowledgements: This work benefited from discussions
with Klaus Havelund, Dusko Pavlovic, Peter Pepper, and
from comments from the reviewers. This work was par-
tially supported by the Office of Naval Research under Grant
N00014-04-1-0727 and by the US Department of Defense.

8. REFERENCES
[1] Allan, C., Avgustinov, P., Christensen, A. S.,

Hendren, L. J., Kuzins, S., Lhotk, O., de Moor,
O., Sereni, D., Sittampalam, G., and Tibble, J.
Adding trace matching with free variables to AspectJ.
In Proceedings of OOPSLA (2005), pp. 345–3640.

[2] Brat, G., and Venet, A. Precise and scalable static
program analysis of NASA flight software. In
Proceedings of the 2005 IEEE Aerospace Conference
(2005).

[3] Cohen, D., Feather, M. S., Narayanaswamy, K.,
and Fickas, S. S. Automatic monitoring of software
requirements. In ICSE ’97: Proceedings of the 19th
international conference on Software engineering
(1997), ACM Press, pp. 602–603.

[4] Colcombet, T., and Fradet, P. Enforcing trace
properties by program transformation. In Proc. 27th
ACM Symp. on Principles of Programming Languages
(Jan. 2000), pp. 54–66.

[5] Cousot, P., and Cousot, R. Abstract
interpretation: a unified lattice model for static
analysis of programs by construction or approximation
of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (1977), ACM,
pp. 238–252.

[6] Dijkstra, E. W. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, NJ, 1976.

[7] Erlingsson, U., and Schneider, F. SASI
enforcement of security policies: A retrospective. In
Proceedings of the New Security Paradigms Workshop
(Ontario, Canada, September 1999).

[8] Ferraiolo, D., and Kuhn, D. Role based access
control. In 15th National Computer Security
Conference (1992).

[9] Havelund, K., and Rosu, G. Monitoring Java
programs with Java PathExplorer. In Electronic Notes
in Theoretical Computer Science (2001), K. Havelund
and G. Rosu, Eds., vol. 55, Elsevier.

[10] Kiczales, G., and et al. An Overview of AspectJ.
In Proc. ECOOP, LNCS 2072, Springer-Verlag
(2001), pp. 327–353.

[11] Lampson, B. W. Protection and access control in
operating systems. Operating Systems, Infotech State
of the Art Report 14 (1972), 309–326.

[12] Manna, Z., and Pnueli, A. The Temporal Logic of
Reactive and Concurrent Systems. Springer-Verlag,
New York, 1992.

[13] Martinand, M., Livshits, B., and Lam, M.
Finding application errors and security flaws using
pql: a program query language. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN
conference on Object Oriented Programming Systems
Languages and Applications (2005), ACM Press.

[14] Paige, R., and Koenig, S. Finite differencing of
computable expressions. ACM Transactions on
Programming Languages and Systems 4, 3 (July 1982),
402–454.

[15] Pavlovic, D., and Smith, D. R. Composition and
refinement of behavioral specifications. In Proceedings
of Sixteenth International Conference on Automated
Software Engineering (2001), IEEE Computer Society

Press, pp. 157–165.

[16] Poppleton, M., and Banach, R. Retrenchment:
Extending the reach of refinement. In Proceedings of
the Fourteenth Automated Software Engineering
Conference (1999), IEEE Computer Society Press,
pp. 158–165.

[17] Reasoning Systems, Palo Alto, CA. The
REFINETM User’s Guide, 1985.

[18] Reps, T., Horwitz, S., and Sagiv, M. Precise
interprocedural dataflow analysis via graph
reachability. In Conference Record of the
Twenty-Second ACM Symposium on Principles of
Programming Languages (1995), ACM, pp. 49–61.

[19] Schneider, F. Enforceable security policies. ACM
Transactions on Information and System Security 3, 1
(February 2000), 30–50.

[20] Smith, D. R. KIDS – a semi-automatic program
development system. IEEE Transactions on Software
Engineering Special Issue on Formal Methods in
Software Engineering 16, 9 (1990), 1024–1043.

[21] Smith, D. R. Mechanizing the development of
software. In Calculational System Design, Proceedings
of the NATO Advanced Study Institute, M. Broy and
R. Steinbrueggen, Eds. IOS Press, Amsterdam, 1999,
pp. 251–292.

[22] Smith, D. R. Aspects as invariants. In Automatic
Program Development: a Tribute to Robert Paige
(2006), O. Danvy, F. Henglein, H. Mairson, and
A. Pettorosi, Eds., Springer-Verlag LNCS. (earlier
version in Proceedings of GPCE-04, LNCS 3286,
39-54).

[23] Smith, D. R., and Havelund, K. Automatic
enforcement of error-handling policies. Tech. rep.,
Kestrel Technology, September 2004.

[24] Smith, D. R., and Havelund, K. Enforcing safety
and security policies. Tech. rep., Kestrel Technology,
December 2005.

[25] Vanderperren, W., Suvee, D., Cibran, M., and
de Fraine, B. Stateful aspects in JAsCo. In
Proceedings of SC 2005 (2005), Springer-Verlag LNCS.

[26] Vigna, G., and Kemmerer, R. NetSTAT: A
Network-based Intrusion Detection System. Journal of
Computer Security 7, 1 (1999), 37–71.

[27] Walker, R., and Viggers, K. Implementing
protocols via declarative event patterns. In SIGSOFT
Foundations of Software Engineering (FSE04) (2004),
ACM Press, pp. 159–169.

