INFORMATION PROCESSING 77, B. GILCHRIST, EDITOR
© IFIP, NORTH-HOLLAND PUBLISHING COMPANY (1977)

THE HIERARCHICAL SYNTHESIS OF LISP SCANNING PROGRAMS*

ALAN W. BIERMANN and DOUGLAS R. SMITH
Department of Computer Science, Duke University
Durham, North Carolina

Fnumerative techniques for program synthesis have the desirable property that they can reliably find the

minimum program which satisfies any given decidable requirements.
that the synthesis time is usually exponential on the size of the target program.

They have the disadvantage, however,
A method for attempt-

ing to retain the advantages of the approach while scaling the synthesis time down to manageable pro-
portions is to hierarchically decompose the problem into parts which can be individually solved enumera

tively.

This paper shows how this method may be used to generate at low cost LISP

"scanning' programs

of reasonable size and complexity from examples of their input-output behavior.

1. INTRODUCTION

An attractive method from a theoretical viewpoint for
automatically sythesizing a computer program is to
enumerate from the set of all candidate programs un-
til an acceptable one is found. (We assume accep-
tability is a decidable property.) If the enumera-
tion scans the whole set of possible programs in
order of their size, this technique will be guaran-
teed to find the minimum program which satisfies the
given requirements. The major barrier to practically
using this scheme is the high cost of the enumeration
which can become astronomical even for problems of
moderate size. For example, in [2], we describe a
system which uses this approach to synthesize "re-
gular LISP programs' from examples of their input-
output behavior. This system generates programs of
three lines or less in a fraction of a second, pro-
grams of length four or five in a few seconds, and
programs of length six or more in minutes or even
hours. Clearly the growth of synthesis time is ex-
ponential as a function of the target program size
which leads to a discouraging appraisal of the tech~
nique for problems of reasonable size.

However, if the synthesis task can be effectively
decomposed into a hierarchy of tasks, the exponential
growth rate can be reduced to linear growth making
possible the generation of large programs at reason-
able cost. That is, if a program is known to be de-
composable into routines of size n, and n,, the cost
of generating the complege program would %e approxi-

mately proportional to C using annenugeration

scheme but would be proportional to C 1'+C 2 if the
routines could be generated separately. This paper
shows how this effect may be used to generate large
programs at reasonable cost if task modularization
can be accomplished. In order to achieve easy task
decomposability, this paper will consider the "LISP
scanning programs' which produce an output list by
linearly (and repeatedly) scanning an input list in
the process of generating that output. The results
of each scan are clearly discernible in the output
of such programs so that the subroutine which pro-
duced any individual scan can be separately generat-
ed.

The synthesis technique thus begins with one or sev=-
eral examples of the desired input-output behavior.
It decomposes the desired output into segments which
can be individually generated by small routines and
then uses an enumerative procedure to create those
routines. The problem has been transformed into a

*Supported by National Science Foundation Grant No.
DCR 74~14445

41

new problem, synthesis from input-output behavior
where the output is a sequence of calls to the newly
created small routines. Next this sequence of calls
is broken down into segments which can be individu-
ally generated by small routines and those routines
are generated. The process thus proceeds hierarchi-
cally until the top level routine is generated and
the task is complete.)

This approach has the advantage that the very power-
ful enumerative procedure is still used for program
generation so that no restriction is placed on the
type of program which can be produced. Yet the
hierarchical break down of the synthesis task speeds
up the process tremendously. The central problem is
the creation of the task decomposition mechanlsm. In
this paper, we restrict out study to the LISP scann-
ing programs where task decomposition can be easily
accomplished.

The reader interested in other approaches to automa-
tic programming might wish to examine [1]. The LISP
synthesis problem has been studied by Green et al,
[4], Hardy, [5], Shaw et al, [6], Sikldssy and Sykes,
[7], and Summers, [8,9]. Our own work differs from
most of the other LISP efforts in that we tend to use
uniform methods and avoid heuristic techniques. Thus
we attempt to produce a system which is absolutely
reliable over a definable class of problems even if
that class 1s small.

2. THE CREATION OF A LISP SCANNING PROGRAM

Suppose it is desired to generate a program which
yields an output (ACEGIBEHCEGIDGJEG®G
I FIGIHTIUJ) from an input of (ABCDEF GHI
J). The complexity of the target program is beyond
the range of our enumerative synthesis system
(assuming realistic time constraints) and so a
hierarchical synthesis must be attempted. If one
graphs the desired output versus the input, the sim~
plicity of the task decomposition problem for LISP
scanning functions becomes apparent. The output, in
fact, divides naturally into elght sequential seg-
ments each one of which results from a scan of the
input: (ACE G TI), (BEH), (CEGTI), (DG,
(EGI), (F 1), (6GI), and (H I J). The synthesis
method involves finding for each segment a routine
which can generate that segment. Then a higher level
routine will be created which can call all of the
lower level routines in order. If necessary, many
levels of hierarchy can be solved sequentially in the
generation of a program.

If an input list has the form (Al A2 A3 "'Ak) we will

use the notation Ai~ to denote the portion of thelist

42 1977 1FIP Congress Proceedings

(Ai Ai+1 ...Ak). Thus in the current example F-

means (F G H T J). The first step of the syonthesis
is to generate the lowest level routine RO which

actually places each atom on the output list. We de-

fine (RO XO): (CONS (CAR XO) hXIiO) where hXJ]O is

a quantity to be later determined.

The next step is to create routines to generate the
eight segments given using R. as a lowest level rou-
tine. The first such segment is (A C E G 1) and a
routine R, will do this task by performing the fol-
Lowing n‘u’{,l,s: (R() A-Y, (RO C-Y, (RO E-), (Ro G~) and

(R, I-). The enumerative synthesizer, in fact, gen-

O
erates the following code for Rlz
(R, X) = (F) X)

(Fp X = Fy X X))

g = (CONS (CAR .
([O XO X[) (CONS (CAR XO) (Yl XI))

(Fi Xl> = (COND ((ATOM (CDDR Xl>) EXTT.)

1
(7 (Fl (CDDR Xl))))

RO is implemented in this code by the function FO

and R, is implemented by ¥, and Fi. This code con-~

b 1

tains a single loop which calls R, repeatedly as the

8]
argument X is broken down sequentially by the CDDR
function. The loop is exited when the predicate
(ATOM (CDDR XI>) yields true; the quantity EXT?W will

be determined later.

Next the second segment of the output must be ac-—
counted for and R, is run on this segment to see if
it is satisfactory. It fails, so a new routine RZ is
generated.

(R2 Xy = (142 X)

(Fy Xy) = (g Xy %)

o = (CONS (C !
([U XU Xz) (CONS (CAR XO) ([2 Xz))
(F; X?) = (COND ((ATOM (CDDDR XZ)) [QXI,'J'y)
(T (I"Z (CDDDR X?)))

Next the third segment is examined and it is found
that R, can execute it. R, can also execute the
fifth and seventh segments, and the fourth and sixth
segments can be executed by R if its exit condition
is modified to be (ATOM (CDR X2)> OR (ATOM
(CDDR X?)) OR (ATOM (CDDDR XZ)) All of these in-
dividual routines are well within the capabilities of
enumerative synthesis systems, [3]. Finally R,3 is
generated to account for the eighth segment.
= (F.

(R3 X) (3 X)

(Fy Xy = (Fy Xy Xg)
o) - 2 w 2] nal
(IO XO XB) (CONS (CAR XO) (I3 XB))
(F% Xg) = (COND ((ATOM (CDR X,)) EXIT.

(T (F,3 (CDR Xg)))

)

This leaves the problem to be solved hiervarchically
decomposed into the following problem: Tor the given
input (A BCDEF G H I J), construct a program
which executes the following sequence of calls;

(Rl A=), (R2 8-), (Rl Cc-) (R2 D-), <Rl £-), (R2 F-3,
(Rl G-), and (R3 H-). This again i1s a simple con-

struction and the resultant routine R/ has this form:
+

R, X) = (F, ¥

y = call axitine o
(14 XA) call (Rl XA) exiting to (}4 XA)
(r! 4 X/‘) = (COND ((ATOM(CDDDDR X(;))
LAV

(¥ 4 (ChR XZ;>))

(T (FZ (CDR X4>) N
(FX XA) = call (R? XA) exiting to (FZ' XA)
;»”' - " T
(14 Xé) (14 (CDR XA))

L

\Y o s . 2V
4 XA) = call (R3 XA) exiting to (l4 X4>

(F
v -
(F, X,) = NIL

This code has one loop which calls RI’ RZ’ Rl’ R2 re—
peatedly until the loop is exited after a call to R].

. X v
Then R, is executed and the last evaluation L4 ra-

3
turns NIL which is the atom used to terminate the
output list.

The composite of all of these routines is the solu-
tion to the original problem and is given below. The
internal variable handling follows these rules:
(1) Each routine Ri modifies and tests only its
own varlable Xi'
(2) FEach function F in routine Ri has as argu-
ments its own variable Xi and variables Xk

of routines hierarchically above it.
(3) When a routine Ri calls a routine R}, the

assignment Xj< Xi is made.

Following these rules we obtain the code for the de~
sirved program P.

® X = (F, 0

(P4 Xé) - (Pl X4 XQ)

() Xy %) = (Fy Xy Xy %)

n . ¥ N v nil
(IO X Xl Xl&) (CONS (CAR X()) (¥ 1 X1 Xl,))

0

({«‘1 X, XQ) = (COND
((ATOM (CDDR X1>) (FL Xa))
(T (Fl (CDDR xl) xa))

(P! X,) = (COND
44 v
((ATOM (CDDDDR XA)) (FA (CDR xA)))
. T .
(1 ([4 (CDR XA)) M
N = ([
(14 xa) (12 X4 xq)

(F2 X, XA) = (Fé %, x2 Xa)

(Fé XO X, X4> = (CONS (CAR Xo) (Fé X2 Xa))

(Fé Xz XA) = (COND
((ATOM (CDR Xz)) (FZ' Xa))
((ATOM (CDDR Xz)) (FZ' XA))
((ATOM (CDDDR Xz)) (FZ' XA))
(r (¥, mmmeﬂ %) Y

(FZ' xa) =(F4 (CDR XA))

AR CR RN

(Fy Xy %) = (Fg X3 X3 X,)

(FS xé X, Xa) = (CONS (CAR X.) (F% Xy Xa))
(Fé Xy X)) = (COND v
((ATOM (CDR xg)) (F& Xa))
(r (F, (CDR XB) XA)))
(Fa xa) = NIL

This code may be collapsed into more veadable form
but is left as primitive code so that its generation

The Hierarchical Synthesis of Lisp Scanning Programs 43

can be more easily understood. The generation of
programs of this complexity on our new prototype sSys—
tem requires less than one half second.

3. REVERSE SCANNING

If the output in the example solved in the previous
section had been reversed to become (J L H I G
E C A), the problem would have been no harder. The
output segmentation problem can be performed as be-
fore but now routines must be generated which place
the atoms on the output list in ascending order. This
is done with "build-up" routines which perform their
work by collecting the output on "build-up" variables.
(Thus all variables and routines in the previous sec~
tion become known as "teardown' variables and 'tear-
down'" routines.) Build-up routines are nearly iden-
tical to the tear-down routines except that:

(1) In a nesting of build-up routines there is
(in addition to the usual tear-down vari-
ables) one build-up variable upon which the
output is constructed.

(2) A build~up routine appends the results of
its computation onto its build-up variable
and returns that variable as its value
upon exit.

Rule (2) is illustrated by the function

(F X Y) = (COND ((ATOM X) Y)
(T (F (CDR X)
(CONS (CAR X) Y))))

where on the second line F calls itself appending its
result onto build-up variable Y and on the first line
F eventually returns Y as its value.

(3) Any routine which is hierarchically one
level below a build-~up routine appends its
result to the build-up variable, returns
that variable as its value, and then places
its result on the build-up variable in the
higher routine.

Suppose as an illustration of (3) that (F, X, Y) is
part of a build-up routine which 1s defined in terms
of (F2 X, X? ¥). Further suppose that the above de-

fined routine F is hierarchically one level belowl%.

Then F satisfies the first part of (3) because it
appends its result to the build-up variable Yand re-
turns Y as its result. Concerning the second part of
(3), its result is left on the build-up variable of

the higher level routine F1 if Fl is defined as

(Fl Xl Y) = (F2 Xl X2 (F Xl Y)). The meaning of

these rules will become clearer if the example is
completed.

The lowest level routine R, may be created as before
except that rule (3) for build-up variables applies.
R. appends its result to the build-up variable Y as
follows: (RO X0 Y) = (CONS (CAR XO) Y). The value
that RO returns is placed on Y by the build-up rou-

tine immediately above RO. Such a routine is RL

which is required to generate the segment (I G E C A).
This routine is created as 1n the previous section
except that the rules for build-up routines are
followed:

(R1 XY) = (Fl X Y)

g = o) o
(Fl X1 Y) (Fl Xl (10 Xl X1 Y))
(FO XO X1 Y) = (CONS (CAR XO) Y)
o ! =
(Il Xl Y) (COND

((ATOM (CDDR xl)) Y)

(T (Fy (CDDR xl) Y))

Routine R] is again a one loop program with control

being passed back and forth between F] and Fi. Each

time around the loop, FO is called and its result is

placed on build-up variable Y.

3 and R4 can be generated in a similar
manner and assembled to yield the following code:

Routines RZ’ R

(P X) = (FZ+ X NIL)
(F4 X, Y) = (F4 X4 (F1 X4 X4 ¥))

A
o) - ral ;
(F, X X, Y) = (F] X, X, (Fy Xy X X, Y))
(Fy X X X, ¥) = (CONS (CAR X)) Y)
ot =
(F] X X, Y) = (COND
((ATOM (CDDR X1)> Y)
(T (F, (CDDR X)) X, Y))

(Fg X, Y) = (COND
((ATOM (CDDDDR xq))

w .
(F4 (CDR XA) ¥))

(r (FZ (CDR XA) Y) »

@ %, 0 = (FZ' X, &, X, X, ¥))
(¥, X, X, V) = (¥} X, X, (Fy X, X, X, ¥))
(Fl Xy X, X, Y) = (CONS (CAR Xy) ¥)
(¥, X, X, Y) = (COND

((ATOM (CDR X,)) Y)

((ATOM (CDDR Xz>> Y)

((ATOM (CDDDR X,)) Y)

(T (F, (CDDDR X)) X, ¥)))
(FZ' X, Y) = (F, (CDR X)) ¥)

. =Y -
(F," X, V) = (F, X, (Fy X, X,)

n = ' ~adl
(Fy Xy X, V) = (Fy X3 X, (Fy Xy Xy X, YD
(F) Xy Xy X, Y) = (CONS (CAR Xy) ¥)
il =
(T3 Xy X, V) (COND
((ATOM (CDR X)) Y)
(T (Fy (CDR X) X, ¥))
v B
(F, X, Yy = Y

4. COMPOSTTIONS OF BUILD-UP AND TEAR-DOWN ROUTINES

If the outputs of the previous two sections were con-
catenated, the difficulty of the synthesis would
still not increase greatly. That is, let W repre-
sent the desired output for the program of section
2, let W represent the desired output for the pro-
gram of section 3, and let (W,W) represent the con-
catenation of the two lists. Then the current goal
is to generate programs P1 and P2 which will respec-—

tively convert the input list (A B J) to (w,wr)

r .

and (W ,W). This is done by carrying out the steps
of sections 2 and 3 as before generating the rou-
tines R4 and Ri and then producing a highest level
routine R5 to call them sequentially. The construc-
tion of R5 must follow these concatenation rules:

1) The output of a tear-down routine 1s
concatenated to the left of any 1list by ap-
pending the routine's result to that list
as the routine is exited.

2) The output of a build-up routine is con-
catenated to the left of any list by

44 1977 TFIP Congress Proceedings

initializing its build-up variable with that
list before the computation begins.

Then in the generation of P. which is to output

1
(W,Wr), routine R, is to call R

5 4 (
tine) followed by RL (a build-up routine). Follow—

ing rule 1) above, R4 would be created as in section

a tear~down rou~

2 except that the NIL at exit would be replaced by a
call to Ri. R; would be the routine generated in
+

section 3 as gilven with 1ts build-up variable ini~
tialized to NIL.

- s - v : r
In the generation of P, which is to output (W ,W),
28 P

2
routine RS is to call RL (a build-up routine) follow~
ed by Ra (a tear down routine). Following rule 2)

t
4
that Y would not initlalized with NIL as shown. In-
stead, it would be dnitialized with the result of

routine RZ as given in section 2.
+

above, R would be constructed as in section 3 except

We now have enough tools to tackle truly difficult
problems. For example, i1f the input is (A B C D) and
the output is (DDDCDDDDCDDDCBDCDD
CDDDDCDDDCBDCDDCDDDCRBADCRSR
DCDDCBDCDDCDDDDDCDDDDCDDDC
BDCDDCDDDDDCDDD) for the desired pro-
gram, the system must be able to properly discover
and construct nested loops to a depth of six. But
the program 1s constructed trivially using the method
given above.

The lowest level routine R, will be called by abuild
~up routine and thus will Bave this form:
(RO X Yl) = (FO X Yl)
i Y.) = (CONS
(FO XO ,]) (CONS (CAR XO) Yl)

This decomposes the original problem to generating
the buildup routine R] which can make the following

series of calls: (RO D), (RU D-), <RO D), (RO C~),

(RO D), ... R} is generated as follows:

(Rl XY) = (F1 XY)
() Xy Y = (% (g Xy Xy Y)
(FO X() X], Y.l) = (CONS (CAR XO) Y],)
(Fi Xl Yl) = (COND

({(ATOM (CDR Xl)) Yl>

(T (F1 (CDR Xl) Y])))
This reduces the problem to generating the following
(shorter) sequence of calls: (R1 D-), <R1 D-),
(Rl C-), (Rl b-),
can find subsequences of the form (Rl A-), (Rl B-Y,

. Examining this sequence one

(Rl c-), (Rl D-) indicating that the next level of
hierarchy requires a tear-down routine. So R2 is
generated which repeatedly calls Rl as desired:
X) = (F2 X)
(¥ X2) = (Fl X2 X2 (Fé Xz))
(Fy Xy Xy Yy = (B X Xy (Fp Xp %) X, ¥p))
(FO XO X1 X2 Yl) = (CONS (CAR XO> Yl)
(Fi Xl X2 Yl) = (COND
((ATOM (CDR Xl)) Yl)
(T (FL (CDR Xl) X2 Yl))D)
= (COND

rhs
(F) X))

((ATOM (CDR X2)) EX[Tz)
(1 (bz (CDR kz)) »
As in the other cases, R2 is a one loop program with

control moving back and forth between F? and Fé.

Notice that in the definition of FZ’ FL'S build~up
variable Y, is initialized with the segment which is

1
to follow F1's result, namely (Fé X2>' This is in

accordance with rule 2) for compositions.

This synthesis process may continue by generating R

(build-up), R

3

(tear—down), R (build-up), and

4 5

finally the highest level routine R, (tear-down).

6
Following rule 1) for build-up routines, the highest
level build-up routine in a nesting of such routines
introduces a build-up variable which is used by all
members of the nesting. Thus routines RS and R] in-
troduce builld-up variables Y5 and Y] which are used
in the two separate nestings of the build-up routines.
The final program is:

(P X) = (F6 X)
(F, X} = (F X6 X6 (Fé X6))

6 %6 5
e = (F! o

(Fg X5 Xo Vo) = (Fg Xg X (Fy Xg Xg Xg Y5))
ol = il ¢

(I, X, Xg Xg Yo) = (F) X, Xg X

(F3 X4 X4 XS X6 YS))
(F, X, X X5 X6 Y5> = (Pz X, X, X4 X5 X6 YS)

3 %5 %, 3 Xg
(Fy Xy Xy X, X5 X Yg) =
Iy X, X) Xy X, Xg X
nil Y
(I X, Xg X, Ko X Yo) ¥o)
Wy X Xy Xy X, Xg X ¥y Vo) =
“'
() Xy X, X5 X, Xg Xg

(Fo Xy X X, X3 X,

Yy Yg) =

Xg Xg ¥y Yg) ¥o)

(Fo Xy ¥y ¥y X3 X, Xy X
(CONS (CAR XO) Y])
(F) X)) Xy Xy X, Xy X ¥y V) = (COND
((ATOM (CDR X])) Y])
(T (Fl (CDR Xl) X2 X3 X4 X5 X6 Y1 YS) »
‘{' £ N
(Fz X2 X3 XA X5 X6 YS) (COND
m ~ ot
((ATOM (CDR XZ)) (13 X3 X4 X5 X6 YS))
(T (F2 (CDR X2) X3 XA X5 X6 \5)))
! =
(13 X3 X4 X5 X6 YS) (COND
((ATOM (CDR X3)) YS)
(T (F3 (CDR X3) X4 X5 X6 YS)))
el =
(]4 X4 X5 X6 YS) (COND
((ATOM (CDR Xh)) YS)
(T (F4 (CHR Xé) X5 X6 YS)))
ol - v
(15 X5 X6 YB) (COND
((ATOM (CDR XS)) YS)
(T (PS (CDR XS) X6 YS))
W - y
(F6 X6) (COND
((ATOM (CDR X6)) NIL)
(T (Fg (CDR %)))
Our implementation of this synthesis procedure pro-
duces nicer code than what is shown here after a

The Hierarchical Synthesis

of Lisp Scanning Programs

total computation time of about one half second.
5. DISCUSSION

This paper shows how relatively large and complicat-
ed programs can be generated economically from
examples of input-output behavior if the synthesis
task is decomposable. The class of scanning programs
that can be created using this technique could be
defined precisely (as was done for the "regular"
LISP programs in [2]) although their general nature
should be clear from the discussions given. Tt is
needless to say that all of the programs appearing
in this paper and most of the programs in the other
literature on LISP synthesis [2,4,5,6,7,8,9] are
scanning programs.

The LISP code which appears in this paper is more
ugly and primitive than it need be but is left in
that form so that the method of generation is clear.
We are currently implementing a system that generates
more readable code and will report on it at a later
time.

REFERENCES

[1] A. W. Biermann, Approaches to automatic pro-
gramming, in Advances in Computers, vol. 15,
(Iids. M. Rubinoff and M. Yovits), Academic
Press, 1976, 1-63.

[2] A. W. Biermann, Regular LISP programs and their
automatic synthesis from examples, Report CS-
1976-12, Computer Science Department, Duke
University, Durham, North Carolina, 1976.

[3] A. W. Biermann, R. I. Baum, and F. E. Petry,
Speeding up the synthesis of programs from
traces, LEEE Transactions on Computers, vol.
C-24, no. 2, 1975, 122~136.

[4] C. C. Green, R. J. Waldinger, D. R. Barstow,

R. Elschlager, D. B. Lenat, B. P. McCune,

D. F. Shaw, and L. I. Steinberg, Progress report
on program understanding systems, Memo AIM-240,
Stanford Artificial Intelligence Laboratory,
Stanford, California, 1974.

[5] S. Hardy, Synthesis of LISP functions from
examples, Advance Papers of the Fourth Inter-
national Joint Conference onArtificial Intelli-

[6] D. Shaw, W. Swartout, C. Green, Inferring LISP
programs from examples, Advance Papers of the
Fourth International Joint Conference on
Artificial Intelligence, Tbilisi, Georgia,
USSR, Sept. 1975, 260-267.

{71 L. Sikldssy and D. A. Sykes, Automatic program

of the Fourth International Joint Conference on
Artificial Intelligence, Thilisi, Georgia,
USSR, Sept. 1975, 268-273.

[8] P. D. Summers, Program construction from
examples, Doctoral Dissertation, Yale Univer-—
sity, New Haven, Conn., 1975.

[9] P. D. Summers, A methodology for LISP program
construction from examples, Proceedings of the
Third ACM Symposium on Principles of Program-

68-76. Also in Journal of the ACM, vol. 24,
no. 1, 1977, 161-175.

