A Class of Greedy Algorithms And Its Relation
to Greedoids

Srinivas Nedunuri
Dept. of Computer Sciences
University of Texas at Austin
nedunuri@cs.utexas.edu
, Douglas R. Smith
Kestrel Institute
smith@kestrel.edu
, and William R. Cook
Dept. of Computer Sciences
University of Texas at Austin
cook@cs.utexas.edu

No Institute Given

Abstract. We define a class of greedy algorithms as a specialization of
a form of Branch and Bound called Global Search. We show that our
class generalizes a well-known characterization of greedy problems called
greedoids, which are themselves a generalization of matroids. Finally, we
derive a characteristic recurrence from a statement of optimality, which
can then be transformed into a program for our greedy class, analogous
to the Greedy Algorithm for matroids and greedoids.

1 Introduction

A greedy algorithm repeatedly makes a locally optimal choice. For some prob-
lems this can lead to a globally optimal solution. In addition to developing
individual greedy algorithms, there has been long-term interest in finding a gen-
eral characterization of greedy algorithms that highlights their common struc-
ture. Edmonds [Edm71] characterized greedy algorithms in terms of matroids. In
1981, Korte and Lovasz generalized matroids to define greedoids, [KLS91]. The
question of whether a greedy algorithm exists for a particular problem reduces
to whether there exists a translation of the problem into a matroid/greedoid.
However, there are several problems for which a matroid/greedoid formulation
either does not exist or is very difficult to construct. For example, no known
greedoid formulations exist for problems such as Huffman Prefix-free encoding
or Activity Selection, [CLRSO01].

An alternative approach to constructing algorithms is to take a very general
program schema and specialize it with problem-specific information. The result
can be a very efficient algorithm for the given problem, [SPW95,NC09]. One such
class of algorithms, Global Search [Smi88|, operates by controlled search, where

at each level in the search tree there are a number of choices to be explored.
Under certain conditions, this collection of choices reduces to a single locally
optimal choice, which is the essence of a greedy algorithm. In this paper we
axiomatically characterize those conditions. We call our specialization of Global
Search Greedy Global Search (GGS). We also show that this characterization of
greedy algorithms generalizes greedoids, and therefore also matroids. Our proof
does not rely on any particular algorithm, such as the greedy algorithm, but is
based solely on the properties of greedoid theory and GGS theory. Finally, we
derive a recurrence equation from the statement of correctness of GGS which
can be transformed into an executable program through correctness-preserving
program transformations. Such a program plays the same role for GGS theory
as the Greedy Algorithm does for greedoids.

2 Background

2.1 Specifications and Morphisms

We briefly review some of the standard terminology and definitions from alge-
bra. A signature X = (S, F) consists of a set of sort symbols S and a family
F ={F, s} of finite disjoint sets indexed by S* x S, where F, ; is the set of
operation symbols of rank (v,s). We write f : v — s to denote f € F, ;s for
v € S*, s € S when the signature is clear from context. For any signature X the
X-terms are inductively defined in the usual way as the well-sorted composition
of operator symbols and variables. A Y-formula is a boolean valued term built
from Y-terms and the quantifiers V and 3. A Y-sentence is a closed X-formula.
A specification T = (S, F, A) comprises a signature X' = (S, F) and a set of X-
sentences A called azioms. The generic term ezpression is used to refer to a term,
formula, or sentence. A specification 7" = (S", F', A’) extends T = (S, F, A) if
SCSF, s C F,Qs for every v € S*,s € S, and A C A’. Alternatively, we say
that 7" is an extension of T'. A model for T is a structure for (S, F) that satisfies
the axioms.We shall use modus ponens, substitution of equals/equivalents, and
other natural rules of inference in 1. The theory of T is the set of sentences
closed under the rules of inference from the axioms of 7. We shall sometimes
loosely refer to T as a theory. A sentence s is a theorem of T, written T'+ s if s
is in the theory of T'.

A signature morphism f : (S,F) — (S',F’) maps S to S’ and F to F’
such that the ranks of operations are preserved. A signature morphism extends
in a unique way to a translation of expressions (as a homomorphism between
term algebras) or sets of expressions. A specification morphism is a signature
morphism that preserves theorems. Let T = (S, F, A) and T = (S", F, A’) be
specifications and let f : (S, F) — (S’,F’) be a signature morphism between
them. f is a specification morphism if for every axiom a € A, f(a) is a theorem
of T, ie. T' F f(a). It follows that a specification morphism translates theorems
of the source specification to theorems of the target specification. The semantics
of a specification morphism is given by a model construction: If f : T — T’ is
a specification morphism then every model M’ of T’ can be made into a model

of T by simply “forgetting” some structure of M’. We say that T" specializes
T'. Practically, this means that any problem that can be expressed in T’ can be
expressed in T

It is convenient to generalize the definition of signature morphism slightly to
allow the translations of operator symbols to be expressions in the target speci-
fication and the translations of sort symbols to be constructions (e.g. products)
over the target sorts. A symbol-to-expression morphism is called an interpreta-
tion, notated i : T = T’ where T and T’ are the source and target resp. of the
morphism.

Finally we note that specifications and signature morphisms form a category.
Colimits in this category are easily computed.

2.2 Matroids And Greedoids

Matroids date back to the work of Whitney in the 1930’s. Greedoids are a gen-
eralization of matroids proposed by Korte and Lovasz, [KLS91]. Both have been
extensively studied as important algebraic structures with applications in a va-
riety of areas, [BZ92]. Underlying both structures is the notion of a set system:

Definition 21. A set system is a pair (S, I) where S is a finite nonempty set
and [is a nonempty collection of subsets of S

A matroid introduces constraints on I:

Definition 22. A matroid is a set system (S, I), where the elements of I are
called the independent subsets, satisfying the following axioms:

Hereditary VY e [VX CY. X €1
Exchange VX, Y € I. | X| <|Y|=3aecY - X. XU{a} el

The Hereditary axiom requires that every subset of an independent set is
also independent. The Exchange axiom implies that all maximal (ordered by C)
independent sets are the same size. Such sets are called bases. The classic example
of a matroid (and indeed the inspiration for matroids) is the set of independent
vectors (I) in a vector space (S). Another example is the collection of acyclic
subgraphs (I) of a an undirected graph (S). By associating a weight function
w:S — Nat assigning a weight to each item in S, there is a Greedy Algorithm
[EdmT71] that will compute a (necessarily maximal) weighted independent set
z* €1 ,ie z*such that z* € ITA(Vz' € T - c(x,2*) > c(x,2)) where c¢(z) =
Eie.z w(l)

Greedoids [KLS91] are a generalization of matroids in which the Hereditary
axiom VY € ILVX C Y. X € [is replaced with a weaker requirement called
Accessibility.

Definition 23. A greedoid is a set system (S,), where the elements of I are
called the feasible subsets, satisfying the following axioms:

Accessibility X e I. X #0=3Jaec X. X —{a} €1

Exchange VX, Y € I. | X| <|Y|=3aecY - X. XU{a} eI

Remark. The Hereditary and Accessibility axioms are easier to compare if the
Hereditary Axiom is written as:

VX elVaeX. X —{a}el

which can be shown to be equivalent to the original formulation by induction.

Why are greedoids important? Consider the problem of finding spanning
trees. It is true that given a matroid (S, I) where S is a set of edges forming a
connected graph and [is the set of acyclic subgraphs on that graph, the Greedy
Algorithm (see Section 2.4) instantiated on this matroid with an appropriate
cost function, is equivalent to Kruskal’s algorithm, [CLRS01] and returns a min-
imum spanning tree. However, the collection of trees (that is, connected acyclic
subgraphs) over a graph does not form a matroid, because the Hereditary Axiom
does not hold for a tree. To see this, consider a set system where S is the set of
edges {(a,b), (a,c),(b,d)} (see Fig. 2.1) and I is the set of trees on this graph.
Clearly S is feasible but the subset of edges {(a,c), (b,d)} is not. However, the
weaker Accessibility Axiom does hold, so (S, I) where S is as above, and I is the
set of trees on S forms a greedoid. Instantiated with this greedoid representa-
tion of the problem, the Greedy Algorithm is equivalent to Prim’s algorithm for
MSTs,[CLRSO01].

Fig. 2.1. When the Hereditary axiom does not hold

2.3 Greedoid Languages

The implication of the weaker Accessibility axiom for greedoids is that feasible
sets should be constructed in an ordered manner, since it is no longer guaranteed
that a particular feasible set is reachable from any subset. There is an alternative
formulation of greedoids that makes this order explicit [BZ92] which we will
utilize. In what follows, a simple word over an alphabet S is any word in which
no letter occurs more than once and S7 is the (finite) set of simple words in S*.

Definition 24. A greedoid language is a pair (S, L) where S is a finite ground
set and L is a simple language L C S satisfying the following conditions:

Hereditary VXY €L - X € L
Exchange VXY € L - | X[<||Y||= Ja€Y. Xac L

The hereditary and exchange axioms are analogous to the corresponding
axioms for matroids, subject to their application to words. That is, the hereditary
axiom requires that any prefix of a feasible word is also a feasible. The exchange
axiom requires that a shorter feasible word can be extended to a longer feasible
one by appending a letter contained in the longer word to the shorter one. As a
consequence, all maximal words in L have the same length.

Bjorner and Ziegler [BZ92] show that the set and language formulations of
greedoids are equivalent, that is for every greedoid there is a unique isomorphic
greedoid language and v.v. Intuitively, this is because the language version of
the greedoid is just enforcing the construction order implied by the feasible set
of the greedoid.

2.4 The Greedy Algorithm and Admissible Cost Functions

The greedy algorithm, due to Edmonds [Edm71], is a program schema that is
parametrized on a suitable structure such as a matroid or greedoid. The following
shows the structure of a pseudo-Haskell program for the greedy algorithm that
has been parametrized on a greedoid language. First we define the concept of a
feasible extension

Definition 25. Given a greedoid language (S, L), the set of feasible extensions
of a word A € L, written ext(A) is the set {a | Aa € L}.

ga(x,y,w) =
in if exts(ya) = 0
then y
else let m = arbPick(opt(w, exts(ya))) in ga(x,ym,w)
opt(w, s) = {a: Va’es . w(a) >= w(a’)}

where arbPick is a function that picks some element from its argument set. For
the the greedy algorithm to be optimal, the cost function must be compatible
with the particular structure, or admissible. Linear functions are admissible for
matroids, but unfortunately not for all greedoids. Admissibility for all greedoids
is defined as follows:

Definition 26. Given a greedoid language (S, L), a cost function ¢ : L — R is
admissible if, for any A € L, a € ext(A), whenever Vb € ext(A) - c(Aa) > c(Ab),
the following two conditions hold:

Vb e S,VB,C € 8* - ABaC € LN ABVC € L = ¢(ABaC) > ¢(ABbC) (2.1)
and

Vb e S,VB,C € 8* - AaBbC € L N AbBaC € L = ¢(AaBbC) > ¢(AbBaC)
(2.2)
The first condition states that if a is the best choice immediately after A then
it continues to be the best choice. The second condition states that a first and
b later is better than b first and a later. A cost function that does not depend

on the order of elements in a word immediately satisfies the second condition.
Bottleneck functions (functions of the form min{w(X) | X € §}) are an example
of admissible functions. Any admissible cost function with a greedoid structure
is optimized by the greedy algorithm scheme.

Definition 24 of a greedoid language along with Definition 260f an admissible
cost function is what we call Greedoid Language Theory (GL).

2.5 Global Search and Problem Specifications

Global Search with Optimality (GSO) is a class of algorithms that operate by
controlled search. GSO has an axiomatic characterization as a specification,
[Smi88]. In the same way that the greedy algorithm is parametrized on a matroid
or greedoid specification, the GSO class has an associated program schema that
is parametrized on the GSO specification. We will formalize a specification of
GGS that specializes GSO. Before doing so, we will describe a root specification
that GSO itself specializes, called an optimization problem specification (P).

P is a 6-tuple (D, R,C,i,0,c) specifying the problem to be solved. D is the
type of problem inputs, R is the type of problem outputs, augmented with the
distinguished value None. (C, <) is a total order representing some cost domain.
1 : D — Boolean is an input condition characterizing valid problem inputs over
the domain D, o : D x R — Boolean is the output condition characterizing valid
or feasible solutions and ¢: D x R — (C'is a cost function that returns the cost
of a solution. The intent is that any function that meets this specification will
take any input x : D that satisfies ¢ and return a z : R that satisfies o for the
given x.

A given problem can be classified as an optimization problem by giving an
interpretation from the symbols of P to the terms and definitions of the given
problem. Here for example is a morphism from P to the Minimum Spanning
Tree (MST) problem. The input is a set of edges, where each edge is a pair of
nodes with a weight, and nodes are represented by numbers.

D — {Edge}
Edge = {a: Node,b: Node,w : Nat}
Node = Nat
R — {Edge}
C+— Nat
1= Az. true
0 — Az, z. connected(z) N acyclic(z)

e M@, 2). D 0w

(2.3)

Appropriate definitions of connected and acyclic are assumed. Note that an
optimal solution to this problem (one that satisfies 0 and maximizes ¢) is auto-
matically a spanning tree.

3 Greedy Global Search Theory

We first give an axiomatic specification of GGS. The interested reader may refer
to Section 3.4 for the associated program schema that is parametrized on this
theory.

Sorts The sorts of a GGS theory are D, R, R and C, where D, R, and C
are inherited from P, the optimization problem theory, and R is the sort of
space descriptors. A space descriptor is a compact representation of a space and
represents all the possible solutions in that space. It is common to make R = R.

Operations In addition to ¢, 0, ¢ which are inherited from P, GGS theory adds
additional operators, as befits being a richer theory. As with P, a given problem
can be classified as a GGS problem by providing a morphism from the symbols
of GGS to the given problem. The operator < corresponds to the split operation
mentioned in section 2.5 and x to the extract operation. Note that x and -~
are defined as predicates for uniformity of reasoning in proofs. They are more
intuitively thought of as partial functions, one possibly extracting a solution
from a space and the other possibly greedily choosing a subspace of a space.

0o:D—R initial space
€: R x R — bool is the solution contained in the space?
<:Dx Rx R — bool is the 1st space a subspace of the 2nd space?
x : R x R — bool is the solution extractable from the space?
v:D x R x {ﬁ} — bool sufficient cond for the space to greedily dominate the set

For ease of reading, ternary operators that take the input = as one of their
arguments will from here on be often written in a subscripted infix form. For
example,y(x, z, Z) will be written Z~, Z.

Axioms Finally, the following axioms serve to define the semantics of the op-
erations. <* denotes a finite number of applications of the < operator and is

defined as 4

S<ir=3i>0-5<.7
where § <07 = (F=35) and s <i"' 7 =3t - t <, 7 A5 <’ t. All free variables are
universally quantified, and all variables are assumed to have their appropriate
type.

Al. i(x) No(z,z) = 2z € Zp(x)
A2. i) = (zeye Iz - 2<tyAx(z72)
A3. 2y, s8(x,9) = (32 € Z,0(x, 2),VZ' € s8(x,9),V2' €Z' - o(x,2') = Nc(z,z) > e(x,2))

A4, i(x

S
JANEFz €y - oz, 2) =
(Fz* - x(z%,9) ANo(z, z*) A

():C(@\))vag<m§?’7wss(§)

Al provides the semantics for the initial space - it states that all feasible
solutions are contained in the initial space.

A2 provides the semantics for the subspace operator < - namely an output
object z is in the space denoted by 7 iff z can be extracted after finitely many
applications of < to § . For convenience it is useful to define a function ss(z,y) =
{Z:Z2<, 9y}

A3 constrains 7 to be a greedy dominance relation. (Dominance relations have
a long history in algorithm development and provide a way of quickly eliminat-
ing subspaces that cannot possibly lead to optimal solutions, [BS74],|]ANCKO0S],
[NCO09]). That is, Z, Z is sufficient to ensure that z will always lead to at least
one feasible solution better than any feasible solution in any space 2z’ in Z. As
we will shortly demonstrate, A3 also provides a way of calculating the desired ~y
by a process called derived antecedents.

A4 places an additional constraint on v when applied to the subspaces of
y: An optimal feasible solution in a space 7 that contains feasible solutions
must be immediately extractable or a subspace of § must greedily dominate the
subspaces of 7. Note that extract is not confined to leaves of the search tree: it
is possible that a solution can be extracted from a space that can also be split
into subspaces.

Remark. A4 is alittle stronger than necessary. In fact, in the case that an optimal
feasible solution cannot be immediately extracted from a space, some subspace
of that space need only greedily dominate other subspaces in the case that the
(parent) space was itself the result of a series of greedy choices. Weakening A4
in this way would complicate its statement without, we felt, much of a benefit
in practice.

We will show that the class of problems solvable by GGS-theory generalizes
the class of problems for which a greedoid representation exists. The way in
which this is done is by defining a signature morphism from GGS theory to
GL theory, showing the signature morphism is a specification morphism, and
then composing that with the isomorphism between Greedoid Languages and
Greedoids allowing us to conclude that GGS generalizes Greedoids.

3.1 A Signature Morphism From GGS theory to Greedoid
Languages

The signature morphism from GGS to GL is shown in two parts - first the
translation of symbols in GGS inherited from P and then the translation of
symbols introduced by GGS. Assume the target is a greedoid language (S, L)
with associated weight function w and objective function ¢. The translation of

P symbols is!: (the [] notation denotes the type of words over an alphabet)

D — {S:{Id},L:{[Id},w:Id— C}
R — [Id]
C+— Nat
i — X\x. finite(x.S) Nx.S #OANx.L C(x.5)5 Ax.L # O A hered(x.L) A exchg(x.L)
hered(L) =VXY eL - X €L
exchg(L) =VX,Y € L - | X||<|Y|]|=3JacY. Xac L
o Ar,z. z € x.L
crc

The domain D along with the restriction 7 captures the type of greedoids, and
the range R the type of a result, namely some set of objects from the greedoid.
The weight of a solution is calculated by ¢ as the sum of the weights of the
elements in the solution.

The translation for the additional symbols introduced by GGS is as follows:

ﬁ’—)[_[d]

Zo +—]

€E— Az, 2 -Jue(xS—2) - z=Zu
<= Ar,z,y - dac€x.S—y-zZ=7ya

X A2, 2 2=2
v

To complete the morphism, a translation for v has to be found, which we will
do as part of the process of verifying this morphism is indeed a specification
morphism.

3.2 Verifying the morphism is a specification morphism

To complete the signature morphism and show it is a specification morphism,
the translation of the GGS axioms must be provable in GL theory. Axiom Al
holds trivially because the empty list prefixes any list, and A2 can be proven by
induction.

A3 To demonstrate A3, we will reason backwards from the consequent. The
required assumption will form the greedy dominance relation. We must show
the existence of some z€ Z for which V2’ € ss,(y),Vz' € 27 - o(x,2") = o(z,z) A
c(x,z) > c(x,z"). We will first show VZ' € ss,(9),Vz' € 27,32 € Z - o(x,2') =
o(z,z) A c(x,z) > c(x,2') and then show the existence of a z that does not
depend on 2’ and z’. Let Z =ya for some a € 2.5 —7, similarly 2’ =yu] for some
u) € 2.5 — 7. Now let 2/ = Z’U’ for some U’ € S* be any solution contained in
z’ (See Fig 3.1). Reasoning forwards:

! This is greedoid theory from an optimization perspective. Of course, other uses of
greedoid theory exist

\
\
<
\
\
\

-0 e

\

Fig. 3.1. A solution z in Z compared with a solution 2’ in 2’

o(z,2")

= {unfold defn}

Z € wx.L

= {abbreviation above}

yuU' € x.L

= {let U' = UjubU, - - ul, U}, apply Lemma 31 for j =0, if a € ext(y)}
yaUiu Ubuly--- U} _jul,_ U € x.L

= {let z = gaUju Ululy--- U} _jul, U}

ez o(x,2)

Next we show that z is better than 2’
Under the assumption a € ext(y) A Va' € ext(y) - c(x,ga) > c(x,ya’), the
following statements can all be shown: By Lemma 31, and property 2.2,

c(a, aUyuy Uyuly -+ Uy, _yuy, 1 Uy) = (@, juyUraUguy -+ Uy _yug, Uy
and by By Lemma 31, and property 2.2 repeatedly,
c(a, Jui Utalsusy -+ Uy, gy, 1 Uy) = (@, JuiUlugUs - -~ aly)
and finally by property 2.1
c(a, guyUgupUy - - aly,) = cl@, Jui UjupUs - - u, Uy)

and so, by transitivity, ¢(z, gaU{u Ubuly - - - U!, _qul,_U}) > c(z, yuy UjubUS - - !, U))
ie. c(z,2) > c(x,2')< a € ext(y) AVd' € ext(y) - c(x,ya) > c(z,ya’).

We can assert the existence of a single feasible z* that is better than any
feasible 2’ in Z’ by taking such a z* to be the best of every z derived above.
Finally, collecting together the assumptions, we get a greedy dominance relation
satisfying A3: ya d, {ya'} = a € ext(y) AVad' € ext(y) - c(ya) > c(ya).

Notation: In what follows, A — B, where A and B are words over L, denotes
the asymmetric set difference of the two sets A; and By where Wy is the set
of symbols contained in the word W, and Hf:j X, for any X;,---, Xy € 5%,
denotes the concatenation X; --- Xp.

Lemma 31. Given a greedoid (S,L), and Aa € L,AB € L for some A,B €
S*,a € S: B can be written [[;_, b;B; for some By, Ba,--- , B, € S*, such that
Vj € [0.n) - A([Ti—o biBi)a(IT},4, Bibi)Bn € L.

Proof. See Appendix O

A4 To demonstrate A4 holds, note that if a given word y can be feasibly ex-
tended, then, from the greedy dominance relation derived above, there will be
a subspace that greedily dominates all subspaces, satisfying the second term of
the disjunction. If no such extension exists, a feasible solution can be extracted
at any time by taking x(z,2) = (z = 2) and at least one of those will be optimal
in Z, satisfying the first term of the disjunction.

This completes the specialization of GGS by GL.

To show a strict generalization, it is sufficient to demonstrate a problem
which can be solved in GGS theory but not using greedoids. One such problem
is the Activity Selection Problem [CLRS01],[NSC10]:

Suppose we have a set S = {aj,as,...,a,} of n proposed activities
that wish to use a resource, such as a lecture hall, which can be used
by only one activity at a time. Each activity a; has a start time s;
and finish time f; where 0 < s; < f; < oo. If selected, activity a;
takes place in the half-open time interval [s;, f;). Activities a; and a;
are compatible if the intervals [s;, f;) and [sj, f;) do not overlap. The
activity selection problem is to select a maximum-size subset of mutually
compatible activities.

The input is a set of activities and a solution is subset of that set. Every activity
is uniquely identified by an id and a start time (s) and finish time (f). The
output condition requires that activities must be chosen from the input set, and
that no two activities overlap. The problem specification is:

D — {Activity}
Activity = {id : Nat,s: Nat, f : Nat}

R — {Activity}

o0 ANz, z) - noOvp(x,z) Nz Cx
noOvp(z,2) =Vi,j€z - i#£j=i=3jV j=<i
i<j=if<js

¢ Ao2) - I

We will now show how the problem can be solved in GGS theory. Most of
the types and operators of GGS theory are straightforward to instantiate. We
will just set R to be the same as R. The initial space is just the empty set.
The subspace relation < splits a space by selecting an unchosen activity if one
exists and adding it to the existing partial solution. The extract predicate x can
extract a solution at any time:

R+~ R

Zor— Az - 0

< Nx,2,2") - Ja€x—7Z -2 =ZU{a}

X+ ANz,2) - z2=2

vy XN, 2, Z) - g, acx - Z=ss(Y)NZ€ZNZ=5U{a} Ny =<{a}
NV(yUd)e Z - y=<{d}=af<d.f

It can be shown that this instantiation satisfies the axioms of GGS theory
[NSC10]. To see that the problem cannot be solved with a greedoid representa-
tion, consider a set of three activities {a1, as,as} in which a; overlaps with both
as and ag, neither of which overlap each other. Then two feasible solutions are
{a1} and {az, a3}, but neither as nor az can be used to feasibly extend {a;},
thus failing to satisfy the Exchange axiom.

Finally, note that another way in which GGS generalizes greedoids is that
while the Greedy Algorithm requires an admissible cost function over greedoids,
GGS theory places no such restrictions a priori on the cost function.

3.3 A Program Theory for GGS

Starting from a statement of what is desired, namely to compute an optimal
feasible solution, we will first formally derive a recurrence, which is then correct
by construction. The recurrence can then be transformed into an executable
program.

Define
Fgdy(z,z,9) =z € opt{z |z €yAo(x,z)}
This is a specification of a function Fgdy to be derived.opt. is a subset of its

argument that is the optimal (w.r.t. the cost function ¢ and a w.f.o. >), defined
as follows:

Vz-zeopt.S=2€SANZ €S - c(z,z) > c(z,2))

In the sequel we will assume that the order drop the subscript ¢ when it is clear
from context

Theorem 32. Let <D,R,§, C,i,0,¢,20,€,<,X,7) be a GGS-Theory as defined
above. Then the following characteristic recurrence holds for all x and z:

Fgdy(z,r,y) < 2 € opte{z |
z€optdz|e(z,y) No(x,2))} V(FZ <y - Zv, ss(x,y) A Fgdy(z,2,2))}

Proof.

Fgdy(z,x,y)

= {unfold defn of Fygdy}
z€opt{z|zeyno(x,z))}
= {provable from A2}
z€optefz | [x(2,9)V (3z - s(2,4,2) Az € Z)] Ao(x, 2)}
= {distributivity of set comprehension and opt}
z€optdz |z €opte{z | x(2,9) No(x,2)} V z € opt{z | 32 € ss(x,y) - z€ ZNo(x,z)}}
= {Lemma 33}
ze€optdz |z €€optdz| x(2,9) No(z,2)} V (FZ <y - Z7, s8(x,y) A Fgdy(z,x,2))}

O

Lemma 33.

opte{z | z € opte{z | x(2,9) No(x,2)} V z € opt{z | 32 € ss(x,y) - z € ZNo(x,2)}}
2
opte{z | z € opte{z | x(2,9) No(w,2)} V (32 < ¥ - Zya ss(,Y) A Fgdy(z,2,2))}

Proof. See Appendix O

Lemma 34. If 3z € ss(x,y),3z € Z - o(x, z) then for any z*
(3z € ss(x,y) - 2" € ZANo(z, %))
N
(VZ' € ss(x,9),Vz' €2 - o(x,2") = o(x, 2*) A c(z,z*) > c(z,2)
=
3z € ss(x,Y) - Zyz ss(x,y) Nz* €opte{z | z€ZNo(z,2))}
Proof. See Appendix O
Non Triviality Finally, to demonstrate non-triviality? of the recurrence we

need to show that if there exists an optimal solution, then one will be found.
That is:

(i(x) N3z - Fgdy(z,2,7)) = 3z € opt{z |
zeopte{z | (z,¢,x(2,9) Aoz, 2))} V (F2 <G - Ze ss(w,§) A Fgdy(z, 7, %))}

Proof. See Appendix. O

2 This is similar but not identical to completeness. Completeness requires that every
optimal solution is found by the recurrence, which we do not guarantee.

Algorithm 1 Program Schema for GGS Theory

--given x:D satisfying i returns optimal (wrt. cost fn c) z:R satisfying o(x,z)
function solve :: D -> {R}
solve x =

if @(To(x)) then (gsolve x 7o (x) {}) else {}

function gsolve :: D -> R -> {R} -> {R}
gsolve x space soln =
let gsubs = {s | sEsubspaces x space A Vss € subspaces x space,s 0, ss}
soln’ = opt ¢ (soln U{z | x(z,space) A o(x,z)})
in if gsubs = {} then soln’
else let greedy = arbPick gsubs in gsolve x greedy soln’

function opt :: ((D,R) -> C) -> {R}-> {R}

opt ¢ {s} = {s}

opt ¢ {s,t} = if c(x,s)>c(x,t) then {s} else {t}
function subspaces :: D -> §—> {E}

subspaces x 7 = {§: § <, FAD(x,8)}

3.4 Abstract Program

By the application of correctness preserving transforms, the recurrence proved
above can be transformed into the abstract program shown in Alg. 1, written in
a pseudo-Haskell style. The program for GGS belongs in a class of algorithms
that operate by controlled search. That is, given a space of candidate solutions to
a given problem (some of which may not be optimal or even feasible solutions),
a GGS algorithm partitions (splits) the space into subspaces (also called partial
solutions), each of which is recursively searched in turn for optimal solutions.
(Such an approach is also the basis of branch-and-bound algorithms, common
in AI). At any point, a solution can possibly be extracted from a space, and if
correct, compared with the best solution found so far. The process terminates
when no space can be further partitioned. The starting point is an initial space
known to contain all possible solutions to the given problem. The result, if any,
is an optimal solution to the problem. The key insight that makes for an efficient
algorithm is the incorporation of specific search control operators at the abstract
level, that, suitably instantiated with problem specific information can drasti-
cally reduce the amount of search and thereby lead to very efficient algorithms
for a given problem. A summary of Global Search theory is contained in the
Appendix. Further details are in Smith’s papers, [Smi88,Smi90].

In addition, optimizations such as context-dependent simplification, finite
differencing, and data structure selection often have to be carried out before
arriving at a final efficient program. One such optimization is for problems (such
as those which satisfy greedoid axioms) for which only maximally sized solutions
need be extracted. Specware [S], a tool from Kestrel Institute, provides support
for carrying out such correctness preserving program transformations.

4 Related Work

Greedoids arose when Korte and Lovasz noticed that the hereditary property
required by matroids was stronger than necessary for the Greedy Algorithm of
Edmonds to be optimal. However, the exact characterization of the accessible set
systems for which the greedy algorithm optimized all linear functions remained
an open one until Helman et al. [HMS93| showed that a structure known as
a matroid embedding was both necessary and sufficient. Matroid embeddings
relax the Exchange axiom of greedoids but add two more axioms, so they are
simultaneously a generalization and a specialization of greedoids. We have shown
that GGS strictly generalizes greedoids.

In earlier work, Helman [Hel89] devised a framework that unified branch-and-
bound and dynamic programming. The framework also incorporated dominance
relations. However, Helman’s goal was the unification of the two paradigms, and
not the process by which algorithms can be calculated. In fact the unification,
though providing a very important insight that the two paradigms are related
at a higher level, arguably makes the derivation of particular algorithms harder.
Our interest is ultimately in the systematic derivation of algorithms.

Curtis [Cur03] has a classification scheme intended to cover all greedy al-
gorithms. There is a top-level catch-all class and three subclasses. Each class
has a some conditions that must be met for a given problem to belong to that
class. In general, verifying those conditions gets easier the lower the class in the
hierarchy. However, fewer problems qualify the lower in the hierarchy. Once clas-
sified, however, the greedy algorithm is then automatically correct and optimal
for that problem. Unlike Curtis, we are not attempting a complete classification
(although our characterization of greedy algorithms is comparable to Curtis’s top
level category of Best Global, and in that sense covers all greedy algorithms).
Curtis also does not relate any of the greedy categories to matroids or greedoids.
Another difference between our work and that of Curtis is that while Curtis’s
work is targeted specifically at greedy algorithms, for us greedy algorithms are
just a special case of a more general problem of deriving effective global search
algorithms. The same work applies to both. In the case that the dominance re-
lation really does not lead to a singleton choice at each split, it can still prove
to be highly effective. This was recently demonstrated on some Segment Sum
problems we looked at. Although the dominance relation we derived for those
problem did not reduce to a greedy choice, it was nonetheless key to reducing the
complexity of the search (the width of the search tree was kept constant) and led
to a very efficient breadth-first solution that was much faster than comparable
solutions derived by program transformation, [NC09].

Another approach has been taken by Bird and de Moor [BM93] who show
that under certain conditions a dynamic programming algorithm simplifies into
a greedy algorithm. Our characterization can be considered an analogous spe-
cialization of (a form of) branch-and-bound. The difference is that we do not
require calculation of the entire program, but specific operators, which is a less
onerous task. Also, as pointed out by Curtis [Cur03], the conditions required by
Bird and de Moor are not easy to meet.

Charlier [Cha95], also building on Smith’s work, proposed a new algorithm
class for greedy algorithms that directly embodied the matroid axioms. Using this
class, he was able to synthesize Kruskal’s MST algorithm and a solution to the
1/1/ > T; scheduling problem. However he reported difficulty with the equivalent
of the Augmentation (comparable to the Exchange) axiom. The difficulty with
a new algorithm class is often the lack of a repeatable process for synthesizing
algorithms in that class, and this would appear to be what Charlier ran up
against. In contrast, by specializing an existing theory (GSO), we can apply all
the techniques that are available such as bounds tests, filters, propagators, etc.
We are also able to handle a wider class of problems than belong in matroids.

References

[ANCKO8] A Allahverdi, C T Ng, T C E Cheng, and M K Kovalyov. A survey of
scheduling problems with setup times or costs. European J. of Operational
Res., 187:985-1032, 2008.

[BM93| R. S. Bird and O. De Moor. From dynamic programming to greedy algo-
rithms. In Formal Program Development, volume 755 of Lecture Notes in
Computer Science, pages 43—61. Springer-Verlag, 1993.

[BS74] K.R. Baker and Z-S. Su. Sequencing with due-dates and early start times
to minimize maximum tardiness. Naval Research Logistics, 21(1):171-176,
1974.

[BZ92] Anders Bjoérner and Giinter M. Ziegler. Introduction to greedoids. In Neil
White, editor, Matroid Applications. Cambridge University Press, 1992.

[Cha95] B. Charlier. The greedy algorithms class: formalization, synthesis and gen-
eralization. Technical report, 1995.

[CLRSO01] T Cormen, C Leiserson, R Rivest, and C Stein. Introduction to Algorithms.
MIT Press, 2nd edition, 2001.

[Cur03] S. A. Curtis. The classification of greedy algorithms. Sci. Comput. Program.,
49(1-3):125-157, 2003.

[Edm71] J. Edmonds. Matroids and the greedy algorithm. Math. Programming,
1(1):127-136, 1971.

[Hel89] P. Helman. A common schema for dynamic programming and branch and
bound algorithms. J. ACM, 36(1):97-128, 1989.

[HMS93] P. Helman, B. M. E. Moret, and H. D. Shapiro. An exact characterization
of greedy structures. SIAM J. on Discrete Math., 6:274-283, 1993.

[KLS91] B. Korte, L. Lovasz, and R. Schrader. Greedoids. Springer-Verlag, 1991.

[NCO09] S. Nedunuri and W.R. Cook. Synthesis of fast programs for maximum
segment sum problems. In Intl. Conf. on Generative Programming and
Component Engineering (GPCE), Oct. 2009.

[NSC10] S. Nedunuri, D. R. Smith, and W. R. Cook. Synthesis of greedy algorithms
using dominance relations. 2nd NASA Symp. on Formal Methods, 2010.

[S] Specware. http://www.specware.org.

[Smi88] D. R. Smith. Structure and design of global search algorithms. Tech. Rep.
Kes.U.87.12, Kestrel Institute, 1988.

[Smi90] D. R. Smith. Kids: A semi-automatic program development system. IEEE
Trans. on Soft. Eng., Spec. Issue on Formal Methods, 16(9):1024-1043,
September 1990.

[SPWO95] D.R. Smith, E. A. Parra, and S. J. Westfold. Synthesis of high-performance
transportation schedulers. Technical report, Kestrel Institute, 1995.

Appendix: Proofs of Lemmas

Lemma 31:

Given a greedoid (S, L), and Aa € L,AB € L for some A,B € S*,a € S:
B can be written []}_, b;B; for some By, Bs,---,B, € S*, such that Vj €
[0..n) - A(TT_o biBi)a(I1}=,', , Bibi)Bn € L.
Proof. By induction on the length m of B.

Base case: m = 1: B is just a single symbol b, written be and result holds by
assumption.

Inductive case: Assume the result for B of length m, and let X7 for any
j € [0.n) denote A(TTI_, biBi)a(H?':_lerl B;b;)B,, € L. If AB cannot be ex-
tended we are done. Otherwise, extend AB with a symbol b such that ABb € L.
Then since ABb — X7 = {b,b,} (for any j € [0,n)), by the exchange axiom,
a feasible extension of X7 is either b or b,. If the extension is b then re-
characterize Bb as (H?;ll b;B;)b, Bl, where Bl, = B,b and then since X7b € L,
Xib = A(TT]_, biBi)a(H?:_lerlBibi)B;L € L for any j € [0,n) as required. If
the extension of X7 (for any j € [0,n)) is by, that is X7b,, € L, then write Bb
as by B1baBs - - by By byi1Bpy1 where b, 1 = b and By41 = € and it is clear
that X7b, = A([]_, biBi)a(H?:jH B;b;)B,+1 € L as required. To complete
the proof we need to show that the j = n case also holds (because the number
of separators B; is now n + 1), that is A(T]}_, b;B;)aBy+41 € L:

A(H?:l biBi)aBn+1 el
= {Bn+1 = 5}
A(H?:l biBi)a eL
< {Exchange Axiom}
AT, b:B;) € L A AT}~ biBi)aB, € L
= {A([];., b:B;) = AB € L, by assumption}
A([T1=) b:iBi)aB, € L
= {A(1}=) b:Bi)aB,, = X"}
true

Lemma 33

opte{z | z € opte{z | x(2,9) No(x,2)} V z € opt{z | 32 € ss(x,y) - z€ ZNo(x,2)}}

2

optefz | z € opte{z [x(2,9) No(w,2)} V(2 <Y - 2y ss(z,§) A Fgdy(z,2,2))}

Proof. Note that z € opt.{z | z € optc{z | x(2,9) No(x,2)} V z € opt.{z |
3z € ss(x,y) - z € ZAo(x,2)}} iff 2 € opt{z | x(2,9)} A e(x,z) = c*(y) or
z €opt{z| Iz € ss(x,y) - z € ZNo(x,2)} Ae(x, z) = ¢*(y). Therefore if some =z

satisfies x(z,9) A o(x, z) A c(z, z) = ¢*(y) then the result follows. Otherwise, by

A4 we have 32 <y - Z7; ss(x,9), if i(z) Az €7 - o(x, z). Then:

z €optdz| Iz € ss(x,y) - z€ZNo(x,2)}
= {defn of opt}
(Fz € ss(x,y) - z € ZNo(x, 2))
A
(V2" - (327 € ss(x,y) - 2 € 2 No(x, 2")) = c(x,2) > ¢(x, 2)))
= {change quantifier}
(3z € ss(x,y) - z € ZNo(x, 2))

A
(VZ' € ss(x,9),Vz' € 2 - o(x,2") = c(x, 2) > c(x,2))
= {logic}
(3z € ss(x,y) - z € ZNo(x, 2))
A\
(VZ' € ss(x,9),Vz' € Z - o(x,2') = o(x, 2) A c(x,2) > c(x,2"))
= {lemma 34}

3z € ss(x,9) - Zyuss(x,y) Nz €opte{z | z € ZN0(2,2))}
= {defn of Fgdy}
3z € ss(x,Y) + Zvyz ss(x,y) A Fgdy(z, 2, 2)

Lemma 34:

If 32 € ss(x,y), 3z € Z - o(x, z) then for any z*
(3z € ss(x,y) - z* € ZANo(z, z%))

A
(Vz' € ss(x,9),Vz' €2 - o(x,2") = o(x, 2*) A c(z,2*) > c(z,2)
=
Iz € ss(x,y) - Zyess(x,y) Nz* €opt{z|z€ZNo(x,2))}

Proof. From the characterization of greedy dominance (A3), 3z € ss(z,y) -
Zvy ss(x,y) implies 3z € Z,VZ' € ss(x,7),Vz' € 2/ - o(x,2') = o(x,z) A ez, 2) >
¢(z, z'). By assumption, some subspace of 4 contains a feasible solution, so the
consequent follows from z* € opts.{z | z € Z AN o(z,2)}. O

Non-triviality

(i(x) N3z - Fgdy(z,2,7)) = 3z € opt{z |
zeopte{z | (z,¢,x(2,9) Aoz, 2))} V (F2 <G - 2z ss(a,§) A Fgdy(z,x,2))}

= {defn of Fgdy}
() NJz€opt{z|z€PNo(x,2)}
= {property of opt.}
Jz - i(x) ANz €y No(x, z)
= {Axioms A4, A2}
Jz - (x(z,9)V(EZ <y - Zyps8(x,9) ANz €Z)) ANo(x, 2)
= {distributivity of A}
(Fz - x(z,9) No(z,2))V (T2, 2 <Y - Zz ss(z,9) Nz € Z A o(x, 2))
= {property of opt.}
3z - x(z,9) No(z,2)) vV (32,2<y - Zyz ss(z,) Nz € opt{z|z€ZNo(x,2)})
= {defn of Fgdy}
3z - x(z,9) No(x,2)) V(32,2 <Y - Zyz ss(x,9) A Fgdy(z,x,2))
= {property of opt.}
3z € opte{z | x(2,9) No(z,2)} V (32,2 <Y - Zv, s5(2,Y) A Fgdy(z, , %))
= {distributivity of 3}
Jdz -z € Optc{z | X(Zaﬂ) A 0(:3, Z)} v (32< 27 : 2’79: Ss(x,@ A ngy(za x,?))
= {property of opt.}
Jze€opt{z]| z€opt{z| x(z,9) No(x,2)} V(IZ <Y - Z, ss(x,y) A Fgdy(z,x,2))}

O

