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t. We de�ne a 
lass of greedy algorithms as a spe
ialization ofa form of Bran
h and Bound 
alled Global Sear
h. We show that our
lass generalizes a well-known 
hara
terization of greedy problems 
alledgreedoids, whi
h are themselves a generalization of matroids. Finally, wederive a 
hara
teristi
 re
urren
e from a statement of optimality, whi
h
an then be transformed into a program for our greedy 
lass, analogousto the Greedy Algorithm for matroids and greedoids.1 Introdu
tionA greedy algorithm repeatedly makes a lo
ally optimal 
hoi
e. For some prob-lems this 
an lead to a globally optimal solution. In addition to developingindividual greedy algorithms, there has been long-term interest in �nding a gen-eral 
hara
terization of greedy algorithms that highlights their 
ommon stru
-ture. Edmonds [Edm71℄ 
hara
terized greedy algorithms in terms of matroids. In1981, Korte and Lovasz generalized matroids to de�ne greedoids, [KLS91℄. Thequestion of whether a greedy algorithm exists for a parti
ular problem redu
esto whether there exists a translation of the problem into a matroid/greedoid.However, there are several problems for whi
h a matroid/greedoid formulationeither does not exist or is very di�
ult to 
onstru
t. For example, no knowngreedoid formulations exist for problems su
h as Hu�man Pre�x-free en
odingor A
tivity Sele
tion, [CLRS01℄.An alternative approa
h to 
onstru
ting algorithms is to take a very generalprogram s
hema and spe
ialize it with problem-spe
i�
 information. The result
an be a very e�
ient algorithm for the given problem, [SPW95,NC09℄. One su
h
lass of algorithms, Global Sear
h [Smi88℄, operates by 
ontrolled sear
h, where



at ea
h level in the sear
h tree there are a number of 
hoi
es to be explored.Under 
ertain 
onditions, this 
olle
tion of 
hoi
es redu
es to a single lo
allyoptimal 
hoi
e, whi
h is the essen
e of a greedy algorithm. In this paper weaxiomati
ally 
hara
terize those 
onditions. We 
all our spe
ialization of GlobalSear
h Greedy Global Sear
h (GGS). We also show that this 
hara
terization ofgreedy algorithms generalizes greedoids, and therefore also matroids. Our proofdoes not rely on any parti
ular algorithm, su
h as the greedy algorithm, but isbased solely on the properties of greedoid theory and GGS theory. Finally, wederive a re
urren
e equation from the statement of 
orre
tness of GGS whi
h
an be transformed into an exe
utable program through 
orre
tness-preservingprogram transformations. Su
h a program plays the same role for GGS theoryas the Greedy Algorithm does for greedoids.2 Ba
kground2.1 Spe
i�
ations and MorphismsWe brie�y review some of the standard terminology and de�nitions from alge-bra. A signature Σ = (S,F) 
onsists of a set of sort symbols S and a family
F = {Fv ,s} of �nite disjoint sets indexed by S∗ × S, where Fv ,s is the set ofoperation symbols of rank (v, s). We write f : v → s to denote f ∈ Fv,s for
v ∈ S∗, s ∈ S when the signature is 
lear from 
ontext. For any signature Σ the
Σ-terms are indu
tively de�ned in the usual way as the well-sorted 
ompositionof operator symbols and variables. A Σ-formula is a boolean valued term builtfrom Σ-terms and the quanti�ers ∀ and ∃. A Σ-senten
e is a 
losed Σ-formula.A spe
i�
ation T = 〈S,F , A〉 
omprises a signature Σ = (S,F) and a set of Σ-senten
es A 
alled axioms. The generi
 term expression is used to refer to a term,formula, or senten
e. A spe
i�
ation T ′ = 〈S′,F ′, A′〉 extends T = 〈S,F , A〉 if
S ⊆ S′, Fv ,s ⊆ F ′

v ,s for every v ∈ S∗, s ∈ S, and A ⊆ A′. Alternatively, we saythat T ′ is an extension of T . A model for T is a stru
ture for (S,F) that satis�esthe axioms.We shall use modus ponens, substitution of equals/equivalents, andother natural rules of inferen
e in T . The theory of T is the set of senten
es
losed under the rules of inferen
e from the axioms of T . We shall sometimesloosely refer to T as a theory. A senten
e s is a theorem of T , written T ⊢ s if sis in the theory of T .A signature morphism f : (S,F) → (S′,F ′) maps S to S′ and F to F 'su
h that the ranks of operations are preserved. A signature morphism extendsin a unique way to a translation of expressions (as a homomorphism betweenterm algebras) or sets of expressions. A spe
i�
ation morphism is a signaturemorphism that preserves theorems. Let T = 〈S,F , A〉 and T ′ = 〈S′,F ,′ A′〉 bespe
i�
ations and let f : (S,F) → (S′,F ′) be a signature morphism betweenthem. f is a spe
i�
ation morphism if for every axiom a ∈ A, f(a) is a theoremof T ′, ie. T ′ ⊢ f(a). It follows that a spe
i�
ation morphism translates theoremsof the sour
e spe
i�
ation to theorems of the target spe
i�
ation. The semanti
sof a spe
i�
ation morphism is given by a model 
onstru
tion: If f : T → T ′ isa spe
i�
ation morphism then every model M′ of T ′ 
an be made into a model



of T by simply �forgetting� some stru
ture of M′. We say that T ′ spe
ializes
T . Pra
ti
ally, this means that any problem that 
an be expressed in T ′ 
an beexpressed in T .It is 
onvenient to generalize the de�nition of signature morphism slightly toallow the translations of operator symbols to be expressions in the target spe
i-�
ation and the translations of sort symbols to be 
onstru
tions (e.g. produ
ts)over the target sorts. A symbol-to-expression morphism is 
alled an interpreta-tion, notated i : T ⇒ T ′ where T and T ′ are the sour
e and target resp. of themorphism.Finally we note that spe
i�
ations and signature morphisms form a 
ategory.Colimits in this 
ategory are easily 
omputed.2.2 Matroids And GreedoidsMatroids date ba
k to the work of Whitney in the 1930's. Greedoids are a gen-eralization of matroids proposed by Korte and Lovasz, [KLS91℄. Both have beenextensively studied as important algebrai
 stru
tures with appli
ations in a va-riety of areas, [BZ92℄. Underlying both stru
tures is the notion of a set system:De�nition 21. A set system is a pair 〈S, I〉 where S is a �nite nonempty setand I is a nonempty 
olle
tion of subsets of SA matroid introdu
es 
onstraints on I:De�nition 22. A matroid is a set system 〈S, I〉, where the elements of I are
alled the independent subsets, satisfying the following axioms:Hereditary ∀Y ∈ I, ∀X ⊆ Y. X ∈ IEx
hange ∀X, Y ∈ I. ‖X‖ < ‖Y ‖⇒ ∃a ∈ Y − X. X ∪ {a} ∈ IThe Hereditary axiom requires that every subset of an independent set isalso independent. The Ex
hange axiom implies that all maximal (ordered by ⊆)independent sets are the same size. Su
h sets are 
alled bases. The 
lassi
 exampleof a matroid (and indeed the inspiration for matroids) is the set of independentve
tors (I) in a ve
tor spa
e (S). Another example is the 
olle
tion of a
y
li
subgraphs (I) of a an undire
ted graph (S). By asso
iating a weight fun
tion
w:S → Nat assigning a weight to ea
h item in S, there is a Greedy Algorithm[Edm71℄ that will 
ompute a (ne
essarily maximal) weighted independent set
z∗ ∈ I , i.e. z∗ su
h that z∗ ∈ I ∧ (∀z′ ∈ I · c(x, z∗) ≥ c(x, z′)) where c(z) =∑

i∈z w(i).Greedoids [KLS91℄ are a generalization of matroids in whi
h the Hereditaryaxiom ∀Y ∈ I, ∀X ⊆ Y. X ∈ I is repla
ed with a weaker requirement 
alledA

essibility.De�nition 23. A greedoid is a set system 〈S, I〉, where the elements of I are
alled the feasible subsets, satisfying the following axioms:A

essibility X ∈ I. X 6= ∅ ⇒ ∃a ∈ X. X − {a} ∈ I



Ex
hange ∀X, Y ∈ I. ‖X‖ < ‖Y ‖⇒ ∃a ∈ Y − X. X ∪ {a} ∈ IRemark. The Hereditary and A

essibility axioms are easier to 
ompare if theHereditary Axiom is written as:
∀X ∈ I, ∀a ∈ X. X − {a} ∈ Iwhi
h 
an be shown to be equivalent to the original formulation by indu
tion.Why are greedoids important? Consider the problem of �nding spanningtrees. It is true that given a matroid 〈S, I〉 where S is a set of edges forming a
onne
ted graph and I is the set of a
y
li
 subgraphs on that graph, the GreedyAlgorithm (see Se
tion 2.4) instantiated on this matroid with an appropriate
ost fun
tion, is equivalent to Kruskal's algorithm, [CLRS01℄ and returns a min-imum spanning tree. However, the 
olle
tion of trees (that is, 
onne
ted a
y
li
subgraphs) over a graph does not form a matroid, be
ause the Hereditary Axiomdoes not hold for a tree. To see this, 
onsider a set system where S is the set ofedges {(a, b), (a, c), (b, d)} (see Fig. 2.1) and I is the set of trees on this graph.Clearly S is feasible but the subset of edges {(a, c), (b, d)} is not. However, theweaker A

essibility Axiom does hold, so 〈S, I〉 where S is as above, and I is theset of trees on S forms a greedoid. Instantiated with this greedoid representa-tion of the problem, the Greedy Algorithm is equivalent to Prim's algorithm forMSTs,[CLRS01℄.
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Fig. 2.1. When the Hereditary axiom does not hold2.3 Greedoid LanguagesThe impli
ation of the weaker A

essibility axiom for greedoids is that feasiblesets should be 
onstru
ted in an ordered manner, sin
e it is no longer guaranteedthat a parti
ular feasible set is rea
hable from any subset. There is an alternativeformulation of greedoids that makes this order expli
it [BZ92℄ whi
h we willutilize. In what follows, a simple word over an alphabet S is any word in whi
hno letter o

urs more than on
e and S∗
s is the (�nite) set of simple words in S∗.De�nition 24. A greedoid language is a pair 〈S, L) where S is a �nite groundset and L is a simple language L ⊆ S∗

s satisfying the following 
onditions:Hereditary ∀XY ∈ L · X ∈ LEx
hange ∀X, Y ∈ L · ‖X‖ < ‖Y ‖ ⇒ ∃a ∈ Y. Xa ∈ L



The hereditary and ex
hange axioms are analogous to the 
orrespondingaxioms for matroids, subje
t to their appli
ation to words. That is, the hereditaryaxiom requires that any pre�x of a feasible word is also a feasible. The ex
hangeaxiom requires that a shorter feasible word 
an be extended to a longer feasibleone by appending a letter 
ontained in the longer word to the shorter one. As a
onsequen
e, all maximal words in L have the same length.Bjorner and Ziegler [BZ92℄ show that the set and language formulations ofgreedoids are equivalent, that is for every greedoid there is a unique isomorphi
greedoid language and v.v. Intuitively, this is be
ause the language version ofthe greedoid is just enfor
ing the 
onstru
tion order implied by the feasible setof the greedoid.2.4 The Greedy Algorithm and Admissible Cost Fun
tionsThe greedy algorithm, due to Edmonds [Edm71℄, is a program s
hema that isparametrized on a suitable stru
ture su
h as a matroid or greedoid. The followingshows the stru
ture of a pseudo-Haskell program for the greedy algorithm thathas been parametrized on a greedoid language. First we de�ne the 
on
ept of afeasible extensionDe�nition 25. Given a greedoid language 〈S, L〉, the set of feasible extensionsof a word A ∈ L, written ext(A) is the set {a | Aa ∈ L}.ga(x,y,w) =in if exts(ya) = ∅then yelse let m = arbPi
k(opt(w, exts(ya))) in ga(x,ym,w)opt(w, s) = {a: ∀a'∈ s . w(a) >= w(a')}where arbPi
k is a fun
tion that pi
ks some element from its argument set. Forthe the greedy algorithm to be optimal, the 
ost fun
tion must be 
ompatiblewith the parti
ular stru
ture, or admissible. Linear fun
tions are admissible formatroids, but unfortunately not for all greedoids. Admissibility for all greedoidsis de�ned as follows:De�nition 26. Given a greedoid language 〈S, L〉, a 
ost fun
tion c : L → R isadmissible if, for any A ∈ L, a ∈ ext(A), whenever ∀b ∈ ext(A) · c(Aa) ≥ c(Ab),the following two 
onditions hold:
∀b ∈ S, ∀B, C ∈ S∗ · ABaC ∈ L ∧ ABbC ∈ L ⇒ c(ABaC) ≥ c(ABbC) (2.1)and
∀b ∈ S, ∀B, C ∈ S∗ · AaBbC ∈ L ∧ AbBaC ∈ L ⇒ c(AaBbC) ≥ c(AbBaC)(2.2)The �rst 
ondition states that if a is the best 
hoi
e immediately after A thenit 
ontinues to be the best 
hoi
e. The se
ond 
ondition states that a �rst and

b later is better than b �rst and a later. A 
ost fun
tion that does not depend



on the order of elements in a word immediately satis�es the se
ond 
ondition.Bottlene
k fun
tions (fun
tions of the form min{w(X) | X ∈ S}) are an exampleof admissible fun
tions. Any admissible 
ost fun
tion with a greedoid stru
tureis optimized by the greedy algorithm s
heme.De�nition 24 of a greedoid language along with De�nition 26of an admissible
ost fun
tion is what we 
all Greedoid Language Theory (GL).2.5 Global Sear
h and Problem Spe
i�
ationsGlobal Sear
h with Optimality (GSO) is a 
lass of algorithms that operate by
ontrolled sear
h. GSO has an axiomati
 
hara
terization as a spe
i�
ation,[Smi88℄. In the same way that the greedy algorithm is parametrized on a matroidor greedoid spe
i�
ation, the GSO 
lass has an asso
iated program s
hema thatis parametrized on the GSO spe
i�
ation. We will formalize a spe
i�
ation ofGGS that spe
ializes GSO. Before doing so, we will des
ribe a root spe
i�
ationthat GSO itself spe
ializes, 
alled an optimization problem spe
i�
ation (P).
P is a 6-tuple 〈D, R, C, i, o, c〉 spe
ifying the problem to be solved. D is thetype of problem inputs, R is the type of problem outputs, augmented with thedistinguished value None. (C,≤) is a total order representing some 
ost domain.

i : D → Boolean is an input 
ondition 
hara
terizing valid problem inputs overthe domain D, o : D×R → Boolean is the output 
ondition 
hara
terizing validor feasible solutions and c : D × R → C is a 
ost fun
tion that returns the 
ostof a solution. The intent is that any fun
tion that meets this spe
i�
ation willtake any input x : D that satis�es i and return a z : R that satis�es o for thegiven x.A given problem 
an be 
lassi�ed as an optimization problem by giving aninterpretation from the symbols of P to the terms and de�nitions of the givenproblem. Here for example is a morphism from P to the Minimum SpanningTree (MST) problem. The input is a set of edges, where ea
h edge is a pair ofnodes with a weight, and nodes are represented by numbers.
D 7→ {Edge}

Edge
.
= {a : Node, b : Node, w : Nat}

Node
.
= Nat

R 7→ {Edge}
C 7→ Nat
i 7→ λx. true

o 7→ λx, z. connected(z ) ∧ acyclic(z)
c 7→ λ(x, z).

∑
e∈x e.w

(2.3)
Appropriate de�nitions of 
onne
ted and a
y
li
 are assumed. Note that anoptimal solution to this problem (one that satis�es o and maximizes c) is auto-mati
ally a spanning tree.



3 Greedy Global Sear
h TheoryWe �rst give an axiomati
 spe
i�
ation of GGS. The interested reader may referto Se
tion 3.4 for the asso
iated program s
hema that is parametrized on thistheory.Sorts The sorts of a GGS theory are D, R, R̂ and C, where D, R, and Care inherited from P , the optimization problem theory, and R̂ is the sort ofspa
e des
riptors. A spa
e des
riptor is a 
ompa
t representation of a spa
e andrepresents all the possible solutions in that spa
e. It is 
ommon to make R̂ = R.Operations In addition to i, o, c whi
h are inherited from P , GGS theory addsadditional operators, as be�ts being a ri
her theory. As with P , a given problem
an be 
lassi�ed as a GGS problem by providing a morphism from the symbolsof GGS to the given problem. The operator ⋖ 
orresponds to the split operationmentioned in se
tion 2.5 and χ to the extra
t operation. Note that χ and γare de�ned as predi
ates for uniformity of reasoning in proofs. They are moreintuitively thought of as partial fun
tions, one possibly extra
ting a solutionfrom a spa
e and the other possibly greedily 
hoosing a subspa
e of a spa
e.
ẑ0 : D → R̂ initial spa
e

∈: R × R̂ → bool is the solution 
ontained in the spa
e?
⋖ : D × R̂ × R̂ → bool is the 1st spa
e a subspa
e of the 2nd spa
e?

χ : R × R̂ → bool is the solution extra
table from the spa
e?
γ : D × R̂ × {R̂} → bool su�
ient 
ond for the spa
e to greedily dominate the setFor ease of reading, ternary operators that take the input x as one of theirarguments will from here on be often written in a subs
ripted in�x form. Forexample,γ(x, ẑ, Z) will be written ẑ γx Z.Axioms Finally, the following axioms serve to de�ne the semanti
s of the op-erations. ⋖∗ denotes a �nite number of appli
ations of the ⋖ operator and isde�ned as

ŝ ⋖
∗
x r̂ = ∃i ≥ 0 · ŝ ⋖

i
x r̂where ŝ ⋖0

x r̂ = (r̂ = ŝ) and s ⋖i+1
x r̂ = ∃t̂ · t̂ ⋖x r̂ ∧ ŝ ⋖i

x t̂. All free variables areuniversally quanti�ed, and all variables are assumed to have their appropriatetype.A1. i(x) ∧ o(x, z) ⇒ z ∈ ẑ0(x)A2. i(x) ⇒ (z ∈ ŷ ⇔ ∃ẑ · ẑ ⋖∗
x ŷ ∧ χ(z, ẑ))A3. ẑ γx ss(x, ŷ) ⇒ (∃z ∈ ẑ, o(x, z), ∀ẑ′ ∈ ss(x, ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ ∧ c(x, z) ≥ c(x, z′))A4. i(x) ∧ (∃z ∈ ŷ · o(x, z)) ⇒

(∃z∗ · χ(z∗, ŷ) ∧ o(x, z∗) ∧ c(x, z∗) = c∗(ŷ)) ∨ ∃ẑ∗ ⋖x ŷ · ẑ∗ γx ss(ŷ)



A1 provides the semanti
s for the initial spa
e - it states that all feasiblesolutions are 
ontained in the initial spa
e.A2 provides the semanti
s for the subspa
e operator ⋖ - namely an outputobje
t z is in the spa
e denoted by ŷ i� z 
an be extra
ted after �nitely manyappli
ations of ⋖ to ŷ . For 
onvenien
e it is useful to de�ne a fun
tion ss(x, ŷ) =
{ẑ : ẑ ⋖x ŷ}.A3 
onstrains γ to be a greedy dominan
e relation. (Dominan
e relations havea long history in algorithm development and provide a way of qui
kly eliminat-ing subspa
es that 
annot possibly lead to optimal solutions, [BS74℄,[ANCK08℄,[NC09℄). That is, ẑ γx Z is su�
ient to ensure that ẑ will always lead to at leastone feasible solution better than any feasible solution in any spa
e ẑ′ in Z. Aswe will shortly demonstrate, A3 also provides a way of 
al
ulating the desired γby a pro
ess 
alled derived ante
edents.A4 pla
es an additional 
onstraint on γ when applied to the subspa
es of
ŷ: An optimal feasible solution in a spa
e ŷ that 
ontains feasible solutionsmust be immediately extra
table or a subspa
e of ŷ must greedily dominate thesubspa
es of ŷ. Note that extra
t is not 
on�ned to leaves of the sear
h tree: itis possible that a solution 
an be extra
ted from a spa
e that 
an also be splitinto subspa
es.Remark. A4 is a little stronger than ne
essary. In fa
t, in the 
ase that an optimalfeasible solution 
annot be immediately extra
ted from a spa
e, some subspa
eof that spa
e need only greedily dominate other subspa
es in the 
ase that the(parent) spa
e was itself the result of a series of greedy 
hoi
es. Weakening A4in this way would 
ompli
ate its statement without, we felt, mu
h of a bene�tin pra
ti
e.We will show that the 
lass of problems solvable by GGS-theory generalizesthe 
lass of problems for whi
h a greedoid representation exists. The way inwhi
h this is done is by de�ning a signature morphism from GGS theory toGL theory, showing the signature morphism is a spe
i�
ation morphism, andthen 
omposing that with the isomorphism between Greedoid Languages andGreedoids allowing us to 
on
lude that GGS generalizes Greedoids.3.1 A Signature Morphism From GGS theory to GreedoidLanguagesThe signature morphism from GGS to GL is shown in two parts - �rst thetranslation of symbols in GGS inherited from P and then the translation ofsymbols introdu
ed by GGS. Assume the target is a greedoid language 〈S, L〉with asso
iated weight fun
tion w and obje
tive fun
tion c. The translation of



P symbols is1: (the [] notation denotes the type of words over an alphabet)
D 7→ {S : {Id}, L : {[Id]}, w : Id → C}
R 7→ [Id]
C 7→ Nat
i 7→ λx. finite(x.S) ∧ x.S 6= ∅ ∧ x.L ⊆ (x.S)∗s ∧ x.L 6= ∅ ∧ hered(x.L) ∧ exchg(x.L)

hered(L) = ∀XY ∈ L · X ∈ L
exchg(L) = ∀X, Y ∈ L · ‖X‖ < ‖Y ‖ ⇒ ∃a ∈ Y. Xa ∈ L

o 7→ λx, z. z ∈ x.L
c 7→ cThe domain D along with the restri
tion i 
aptures the type of greedoids, andthe range R the type of a result, namely some set of obje
ts from the greedoid.The weight of a solution is 
al
ulated by c as the sum of the weights of theelements in the solution.The translation for the additional symbols introdu
ed by GGS is as follows:

R̂ 7→ [Id]
ẑ0 7→ []
∈ 7→ λz, ẑ · ∃u ∈ (x.S − ẑ)∗ · z = ẑu
⋖ 7→ λx, ẑ, ŷ · ∃a ∈ x.S − ŷ · ẑ = ŷa
χ 7→ λz, ẑ · z = ẑ
γ 7→ ?To 
omplete the morphism, a translation for γ has to be found, whi
h we willdo as part of the pro
ess of verifying this morphism is indeed a spe
i�
ationmorphism.3.2 Verifying the morphism is a spe
i�
ation morphismTo 
omplete the signature morphism and show it is a spe
i�
ation morphism,the translation of the GGS axioms must be provable in GL theory. Axiom A1holds trivially be
ause the empty list pre�xes any list, and A2 
an be proven byindu
tion.A3 To demonstrate A3, we will reason ba
kwards from the 
onsequent. Therequired assumption will form the greedy dominan
e relation. We must showthe existen
e of some z∈ ẑ for whi
h ∀ẑ′ ∈ ssx(ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ o(x, z) ∧

c(x, z) ≥ c(x, z′). We will �rst show ∀ẑ′ ∈ ssx(ŷ), ∀z′ ∈ ẑ′, ∃z ∈ ẑ · o(x, z′) ⇒
o(x, z) ∧ c(x, z) ≥ c(x, z′) and then show the existen
e of a z that does notdepend on ẑ′ and z′. Let ẑ =ŷa for some a ∈ x.S− ŷ, similarly ẑ′ =ŷu′

1 for some
u′

1 ∈ x.S − ŷ. Now let z′ = ẑ′U ′ for some U ′ ∈ S∗ be any solution 
ontained in
ẑ′ (See Fig 3.1). Reasoning forwards:1 This is greedoid theory from an optimization perspe
tive. Of 
ourse, other uses ofgreedoid theory exist
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Fig. 3.1. A solution z in bz 
ompared with a solution z
′ in bz

′

o(x, z′)
= {unfold defn}
z′ ∈ x.L
= {abbreviation above}
ŷu′

1U
′ ∈ x.L

⇒ {let U ′ = U ′
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′
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′
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n, apply Lemma 31 for j = 0, if a ∈ ext(ŷ)}
ŷaU ′
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′
n}

∃z ∈ ẑ · o(x, z)Next we show that z is better than z′Under the assumption a ∈ ext(ŷ) ∧ ∀a′ ∈ ext(ŷ) · c(x, ŷa) ≥ c(x, ŷa′), thefollowing statements 
an all be shown: By Lemma 31, and property 2.2,
c(x, ŷaU ′
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n)and �nally by property 2.1
c(x, ŷu′

1U
′
1u

′
2U

′
2 · · · aU ′

n) ≥ c(x, ŷu′
1U

′
1u

′
2U

′
2 · · ·u

′
nU ′

n)and so, by transitivity, c(x, ŷaU ′
1u

′
1U

′
2u

′
2 · · ·U

′
n−1u

′
n−1U

′
n) ≥ c(x, ŷu′

1U
′
1u

′
2U

′
2 · · ·u

′
nU ′

n)ie. c(x, z) ≥ c(x, z′)⇐ a ∈ ext(ŷ) ∧ ∀a′ ∈ ext(ŷ) · c(x, ŷa) ≥ c(x, ŷa′).We 
an assert the existen
e of a single feasible z∗ that is better than anyfeasible z′ in ẑ′ by taking su
h a z∗ to be the best of every z derived above.Finally, 
olle
ting together the assumptions, we get a greedy dominan
e relationsatisfying A3: ŷa δx {ŷa′} = a ∈ ext(ŷ) ∧ ∀a′ ∈ ext(ŷ) · c(ŷa) ≥ c(ŷa).Notation: In what follows, A−B, where A and B are words over L, denotesthe asymmetri
 set di�eren
e of the two sets As and Bs where Ws is the setof symbols 
ontained in the word W , and ∏k

i=j Xi, for any Xj , · · · , Xk ∈ S∗,denotes the 
on
atenation Xj · · ·Xk.



Lemma 31. Given a greedoid 〈S, L〉, and Aa ∈ L, AB ∈ L for some A, B ∈
S∗, a ∈ S: B 
an be written ∏n

i=1 biBi for some B1, B2, · · · , Bn ∈ S∗, su
h that
∀j ∈ [0..n) · A(

∏j
i=0 biBi)a(

∏n−1
i=j+1 Bibi)Bn ∈ L.Proof. See AppendixA4 To demonstrate A4 holds, note that if a given word ŷ 
an be feasibly ex-tended, then, from the greedy dominan
e relation derived above, there will bea subspa
e that greedily dominates all subspa
es, satisfying the se
ond term ofthe disjun
tion. If no su
h extension exists, a feasible solution 
an be extra
tedat any time by taking χ(z, ẑ) = (z = ẑ) and at least one of those will be optimalin ẑ, satisfying the �rst term of the disjun
tion.This 
ompletes the spe
ialization of GGS by GL.To show a stri
t generalization, it is su�
ient to demonstrate a problemwhi
h 
an be solved in GGS theory but not using greedoids. One su
h problemis the A
tivity Sele
tion Problem [CLRS01℄,[NSC10℄:Suppose we have a set S = {a1, a2, . . . , an} of n proposed a
tivitiesthat wish to use a resour
e, su
h as a le
ture hall, whi
h 
an be usedby only one a
tivity at a time. Ea
h a
tivity ai has a start time siand �nish time fi where 0 ≤ si < fi < ∞. If sele
ted, a
tivity aitakes pla
e in the half-open time interval [si, fi). A
tivities ai and ajare 
ompatible if the intervals [si, fi) and [sj , fj) do not overlap. Thea
tivity sele
tion problem is to sele
t a maximum-size subset of mutually
ompatible a
tivities.The input is a set of a
tivities and a solution is subset of that set. Every a
tivityis uniquely identi�ed by an id and a start time (s) and �nish time (f). Theoutput 
ondition requires that a
tivities must be 
hosen from the input set, andthat no two a
tivities overlap. The problem spe
i�
ation is:

D 7→ {Activity}
Activity = {id : Nat, s : Nat, f : Nat}

R 7→ {Activity}
o 7→ λ(x, z) · noOvp(x, z) ∧ z ⊆ x

noOvp(x, z)
.
= ∀i, j ∈ z · i 6= j ⇒ i � j ∨ j � i

i � j = i.f ≤ j.s
c 7→ λ(x, z) · ‖z‖We will now show how the problem 
an be solved in GGS theory. Most ofthe types and operators of GGS theory are straightforward to instantiate. Wewill just set R̂ to be the same as R. The initial spa
e is just the empty set.The subspa
e relation ⋖ splits a spa
e by sele
ting an un
hosen a
tivity if oneexists and adding it to the existing partial solution. The extra
t predi
ate χ 
anextra
t a solution at any time:



R̂ 7→ R
ẑ0 7→ λx · ∅
⋖ 7→ λ(x, ẑ, ẑ′) · ∃a ∈ x − ẑ · ẑ′ = ẑ ∪ {a}
χ 7→ λ(z, ẑ) · z = ẑ
γ 7→ λ(x, ẑ, Z) · ∃ŷ, a ∈ x · Z = ss(ŷ) ∧ ẑ ∈ Z ∧ ẑ = ŷ ∪ {a} ∧ ŷ � {a}

∧∀(ŷ ∪ a′) ∈ Z · ŷ � {a′} ⇒ a.f ≤ a′.fIt 
an be shown that this instantiation satis�es the axioms of GGS theory[NSC10℄. To see that the problem 
annot be solved with a greedoid representa-tion, 
onsider a set of three a
tivities {a1, a2, a3} in whi
h a1 overlaps with both
a2 and a3, neither of whi
h overlap ea
h other. Then two feasible solutions are
{a1} and {a2, a3}, but neither a2 nor a3 
an be used to feasibly extend {a1},thus failing to satisfy the Ex
hange axiom.Finally, note that another way in whi
h GGS generalizes greedoids is thatwhile the Greedy Algorithm requires an admissible 
ost fun
tion over greedoids,GGS theory pla
es no su
h restri
tions a priori on the 
ost fun
tion.3.3 A Program Theory for GGSStarting from a statement of what is desired, namely to 
ompute an optimalfeasible solution, we will �rst formally derive a re
urren
e, whi
h is then 
orre
tby 
onstru
tion. The re
urren
e 
an then be transformed into an exe
utableprogram.De�ne

Fgdy(z, x, ŷ) = z ∈ optc{z | z ∈ ŷ ∧ o(x, z)}This is a spe
i�
ation of a fun
tion Fgdy to be derived.optc is a subset of itsargument that is the optimal (w.r.t. the 
ost fun
tion c and a w.f.o. ≥), de�nedas follows:
∀z · z ∈ optcS = z ∈ S ∧ (∀z′ ∈ S · c(x, z) ≥ c(x, z′))In the sequel we will assume that the order drop the subs
ript c when it is 
learfrom 
ontextTheorem 32. Let 〈D, R, R̂, C, i, o, c, ẑ0,∈, ⋖, χ, γ〉 be a GGS-Theory as de�nedabove. Then the following 
hara
teristi
 re
urren
e holds for all x and z:

Fgdy(z, x, ŷ) ⇐ z ∈ optc{z |

z ∈ optc{z | e(z, ŷ) ∧ o(x, z))} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}



Proof.
Fgdy(z, x, ŷ)

= {unfold defn of Fgdy}
z ∈ optc{z | z ∈ ŷ ∧ o(x, z))}

= {provable from A2}
z ∈ optc{z | [χ(z, ŷ) ∨ (∃ẑ · s(x, ŷ, ẑ) ∧ z ∈ ẑ)] ∧ o(x, z)}

= {distributivity of set 
omprehension and opt}
z ∈ optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ z ∈ optc{z | ∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z)}}

⇐ {Lemma 33}
z ∈ optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}Lemma 33.

optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ z ∈ optc{z | ∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z)}}
⊇

optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}Proof. See AppendixLemma 34. If ∃ẑ ∈ ss(x, ŷ), ∃z ∈ ẑ · o(x, z) then for any z∗

(∃ẑ ∈ ss(x, ŷ) · z∗ ∈ ẑ ∧ o(x, z∗))
∧

(∀ẑ′ ∈ ss(x, ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ o(x, z∗) ∧ c(x, z∗) ≥ c(x, z′)
⇐

∃ẑ ∈ ss(x, ŷ) · ẑ γx ss(x, ŷ) ∧ z∗ ∈ optc{z | z ∈ ẑ ∧ o(x, z))}Proof. See AppendixNon Triviality Finally, to demonstrate non-triviality2 of the re
urren
e weneed to show that if there exists an optimal solution, then one will be found.That is:
(i(x) ∧ ∃z · Fgdy(z, x, ŷ)) ⇒ ∃z ∈ optc{z |

z ∈ optc{z | (z, c, χ(z, ŷ) ∧ o(x, z))} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}Proof. See Appendix.2 This is similar but not identi
al to 
ompleteness. Completeness requires that everyoptimal solution is found by the re
urren
e, whi
h we do not guarantee.



Algorithm 1 Program S
hema for GGS Theory--given x:D satisfying i returns optimal (wrt. 
ost fn 
) z:R satisfying o(x,z)fun
tion solve :: D -> {R}solve x =if Φ(br0(x)) then (gsolve x br0(x) {}) else {}fun
tion gsolve :: D -> bR -> {R} -> {R}gsolve x spa
e soln =let gsubs = {s | s∈subspa
es x spa
e ∧ ∀ss ∈ subspa
es x spa
e,s δx ss}soln' = opt 
 (soln ∪ {z | χ(z,spa
e) ∧ o(x,z)})in if gsubs = {} then soln'else let greedy = arbPi
k gsubs in gsolve x greedy soln'fun
tion opt :: ((D,R) -> C) -> {bR}-> {bR}opt 
 {s} = {s}opt 
 {s,t} = if 
(x,s)>
(x,t) then {s} else {t}fun
tion subspa
es :: D -> bR-> { bR}subspa
es x br = {bs: bs ⋖x br∧Φ(x,bs)}3.4 Abstra
t ProgramBy the appli
ation of 
orre
tness preserving transforms, the re
urren
e provedabove 
an be transformed into the abstra
t program shown in Alg. 1, written ina pseudo-Haskell style. The program for GGS belongs in a 
lass of algorithmsthat operate by 
ontrolled sear
h. That is, given a spa
e of 
andidate solutions toa given problem (some of whi
h may not be optimal or even feasible solutions),a GGS algorithm partitions (splits) the spa
e into subspa
es (also 
alled partialsolutions), ea
h of whi
h is re
ursively sear
hed in turn for optimal solutions.(Su
h an approa
h is also the basis of bran
h-and-bound algorithms, 
ommonin AI). At any point, a solution 
an possibly be extra
ted from a spa
e, and if
orre
t, 
ompared with the best solution found so far. The pro
ess terminateswhen no spa
e 
an be further partitioned. The starting point is an initial spa
eknown to 
ontain all possible solutions to the given problem. The result, if any,is an optimal solution to the problem. The key insight that makes for an e�
ientalgorithm is the in
orporation of spe
i�
 sear
h 
ontrol operators at the abstra
tlevel, that, suitably instantiated with problem spe
i�
 information 
an drasti-
ally redu
e the amount of sear
h and thereby lead to very e�
ient algorithmsfor a given problem. A summary of Global Sear
h theory is 
ontained in theAppendix. Further details are in Smith's papers, [Smi88,Smi90℄.In addition, optimizations su
h as 
ontext-dependent simpli�
ation, �nitedi�eren
ing, and data stru
ture sele
tion often have to be 
arried out beforearriving at a �nal e�
ient program. One su
h optimization is for problems (su
has those whi
h satisfy greedoid axioms) for whi
h only maximally sized solutionsneed be extra
ted. Spe
ware [S℄, a tool from Kestrel Institute, provides supportfor 
arrying out su
h 
orre
tness preserving program transformations.



4 Related WorkGreedoids arose when Korte and Lovasz noti
ed that the hereditary propertyrequired by matroids was stronger than ne
essary for the Greedy Algorithm ofEdmonds to be optimal. However, the exa
t 
hara
terization of the a

essible setsystems for whi
h the greedy algorithm optimized all linear fun
tions remainedan open one until Helman et al. [HMS93℄ showed that a stru
ture known asa matroid embedding was both ne
essary and su�
ient. Matroid embeddingsrelax the Ex
hange axiom of greedoids but add two more axioms, so they aresimultaneously a generalization and a spe
ialization of greedoids. We have shownthat GGS stri
tly generalizes greedoids.In earlier work, Helman [Hel89℄ devised a framework that uni�ed bran
h-and-bound and dynami
 programming. The framework also in
orporated dominan
erelations. However, Helman's goal was the uni�
ation of the two paradigms, andnot the pro
ess by whi
h algorithms 
an be 
al
ulated. In fa
t the uni�
ation,though providing a very important insight that the two paradigms are relatedat a higher level, arguably makes the derivation of parti
ular algorithms harder.Our interest is ultimately in the systemati
 derivation of algorithms.Curtis [Cur03℄ has a 
lassi�
ation s
heme intended to 
over all greedy al-gorithms. There is a top-level 
at
h-all 
lass and three sub
lasses. Ea
h 
lasshas a some 
onditions that must be met for a given problem to belong to that
lass. In general, verifying those 
onditions gets easier the lower the 
lass in thehierar
hy. However, fewer problems qualify the lower in the hierar
hy. On
e 
las-si�ed, however, the greedy algorithm is then automati
ally 
orre
t and optimalfor that problem. Unlike Curtis, we are not attempting a 
omplete 
lassi�
ation(although our 
hara
terization of greedy algorithms is 
omparable to Curtis's toplevel 
ategory of Best Global, and in that sense 
overs all greedy algorithms).Curtis also does not relate any of the greedy 
ategories to matroids or greedoids.Another di�eren
e between our work and that of Curtis is that while Curtis'swork is targeted spe
i�
ally at greedy algorithms, for us greedy algorithms arejust a spe
ial 
ase of a more general problem of deriving e�e
tive global sear
halgorithms. The same work applies to both. In the 
ase that the dominan
e re-lation really does not lead to a singleton 
hoi
e at ea
h split, it 
an still proveto be highly e�e
tive. This was re
ently demonstrated on some Segment Sumproblems we looked at. Although the dominan
e relation we derived for thoseproblem did not redu
e to a greedy 
hoi
e, it was nonetheless key to redu
ing the
omplexity of the sear
h (the width of the sear
h tree was kept 
onstant) and ledto a very e�
ient breadth-�rst solution that was mu
h faster than 
omparablesolutions derived by program transformation, [NC09℄.Another approa
h has been taken by Bird and de Moor [BM93℄ who showthat under 
ertain 
onditions a dynami
 programming algorithm simpli�es intoa greedy algorithm. Our 
hara
terization 
an be 
onsidered an analogous spe-
ialization of (a form of) bran
h-and-bound. The di�eren
e is that we do notrequire 
al
ulation of the entire program, but spe
i�
 operators, whi
h is a lessonerous task. Also, as pointed out by Curtis [Cur03℄, the 
onditions required byBird and de Moor are not easy to meet.



Charlier [Cha95℄, also building on Smith's work, proposed a new algorithm
lass for greedy algorithms that dire
tly embodied the matroid axioms. Using this
lass, he was able to synthesize Kruskal's MST algorithm and a solution to the
1/1/

∑
Ti s
heduling problem. However he reported di�
ulty with the equivalentof the Augmentation (
omparable to the Ex
hange) axiom. The di�
ulty witha new algorithm 
lass is often the la
k of a repeatable pro
ess for synthesizingalgorithms in that 
lass, and this would appear to be what Charlier ran upagainst. In 
ontrast, by spe
ializing an existing theory (GSO), we 
an apply allthe te
hniques that are available su
h as bounds tests, �lters, propagators, et
.We are also able to handle a wider 
lass of problems than belong in matroids.Referen
es[ANCK08℄ A Allahverdi, C T Ng, T C E Cheng, and M K Kovalyov. A survey ofs
heduling problems with setup times or 
osts. European J. of OperationalRes., 187:985�1032, 2008.[BM93℄ R. S. Bird and O. De Moor. From dynami
 programming to greedy algo-rithms. In Formal Program Development, volume 755 of Le
ture Notes inComputer S
ien
e, pages 43�61. Springer-Verlag, 1993.[BS74℄ K.R. Baker and Z-S. Su. Sequen
ing with due-dates and early start timesto minimize maximum tardiness. Naval Resear
h Logisti
s, 21(1):171�176,1974.[BZ92℄ Anders Björner and Günter M. Ziegler. Introdu
tion to greedoids. In NeilWhite, editor, Matroid Appli
ations. Cambridge University Press, 1992.[Cha95℄ B. Charlier. The greedy algorithms 
lass: formalization, synthesis and gen-eralization. Te
hni
al report, 1995.[CLRS01℄ T Cormen, C Leiserson, R Rivest, and C Stein. Introdu
tion to Algorithms.MIT Press, 2nd edition, 2001.[Cur03℄ S. A. Curtis. The 
lassi�
ation of greedy algorithms. S
i. Comput. Program.,49(1-3):125�157, 2003.[Edm71℄ J. Edmonds. Matroids and the greedy algorithm. Math. Programming,1(1):127�136, 1971.[Hel89℄ P. Helman. A 
ommon s
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 programming and bran
h andbound algorithms. J. ACM, 36(1):97�128, 1989.[HMS93℄ P. Helman, B. M. E. Moret, and H. D. Shapiro. An exa
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Appendix: Proofs of LemmasLemma 31:Given a greedoid 〈S, L〉, and Aa ∈ L, AB ∈ L for some A, B ∈ S∗, a ∈ S:
B 
an be written ∏n

i=1 biBi for some B1, B2, · · · , Bn ∈ S∗, su
h that ∀j ∈

[0..n) · A(
∏j

i=0 biBi)a(
∏n−1

i=j+1 Bibi)Bn ∈ L.Proof. By indu
tion on the length m of B.Base 
ase: m = 1: B is just a single symbol b, written bε and result holds byassumption.Indu
tive 
ase: Assume the result for B of length m, and let Xj for any
j ∈ [0..n) denote A(

∏j

i=0 biBi)a(
∏n−1

i=j+1 Bibi)Bn ∈ L. If AB 
annot be ex-tended we are done. Otherwise, extend AB with a symbol b su
h that ABb ∈ L.Then sin
e ABb − Xj = {b, bn} (for any j ∈ [0, n)), by the ex
hange axiom,a feasible extension of Xj is either b or bn. If the extension is b then re-
hara
terize Bb as (
∏n−1

i=1 biBi)bnB′
n where B′

n = Bnb and then sin
e Xjb ∈ L,
Xjb = A(

∏j

i=0 biBi)a(
∏n−1

i=j+1 Bibi)B
′
n ∈ L for any j ∈ [0, n) as required. Ifthe extension of Xj (for any j ∈ [0, n)) is bn, that is Xjbn ∈ L, then write Bbas b1B1b2B2 · · · bnBnbn+1Bn+1 where bn+1 = b and Bn+1 = ε and it is 
learthat Xjbn = A(

∏j
i=0 biBi)a(

∏n
i=j+1 Bibi)Bn+1 ∈ L as required. To 
ompletethe proof we need to show that the j = n 
ase also holds (be
ause the numberof separators Bi is now n + 1), that is A(

∏n

i=1 biBi)aBn+1 ∈ L:
A(

∏n

i=1 biBi)aBn+1 ∈ L
= {Bn+1 = ε}

A(
∏n

i=1 biBi)a ∈ L
⇐ {Ex
hange Axiom}

A(
∏n

i=1 biBi) ∈ L ∧ A(
∏n−1

i=0 biBi)aBn ∈ L
= {A(

∏n

i=1 biBi) = AB ∈ L, by assumption}
A(

∏n−1
i=0 biBi)aBn ∈ L

= {A(
∏n−1

i=0 biBi)aBn = Xn−1}
trueLemma 33

optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ z ∈ optc{z | ∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z)}}
⊇

optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}Proof. Note that z ∈ optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ z ∈ optc{z |
∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z)}} i� z ∈ optc{z | χ(z, ŷ)} ∧ c(x, z) = c∗(ŷ) or
z ∈ optc{z | ∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z)} ∧ c(x, z) = c∗(ŷ). Therefore if some z



satis�es χ(z, ŷ) ∧ o(x, z) ∧ c(x, z) = c∗(ŷ) then the result follows. Otherwise, byA4 we have ∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ), if i(x) ∧ ∃z ∈ ŷ · o(x, z). Then:
z ∈ optc{z | ∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z)}

= {defn of opt}
(∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z))

∧
(∀z′ · (∃ẑ′ ∈ ss(x, ŷ) · z′ ∈ ẑ′ ∧ o(x, z′)) ⇒ c(x, z) ≥ c(x, z′))

= {
hange quanti�er}
(∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z))

∧
(∀ẑ′ ∈ ss(x, ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ c(x, z) ≥ c(x, z′))

= {logi
}
(∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z))

∧
(∀ẑ′ ∈ ss(x, ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ o(x, z) ∧ c(x, z) ≥ c(x, z′))

⇐ {lemma 34}
∃ẑ ∈ ss(x, ŷ) · ẑ γx ss(x, ŷ) ∧ z ∈ optc{z | z ∈ ẑ ∧ o(x, z))}

= {defn of Fgdy}
∃ẑ ∈ ss(x, ŷ) · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ)

Lemma 34:If ∃ẑ ∈ ss(x, ŷ), ∃z ∈ ẑ · o(x, z) then for any z∗

(∃ẑ ∈ ss(x, ŷ) · z∗ ∈ ẑ ∧ o(x, z∗))
∧

(∀ẑ′ ∈ ss(x, ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ o(x, z∗) ∧ c(x, z∗) ≥ c(x, z′)
⇐

∃ẑ ∈ ss(x, ŷ) · ẑ γx ss(x, ŷ) ∧ z∗ ∈ optc{z | z ∈ ẑ ∧ o(x, z))}Proof. From the 
hara
terization of greedy dominan
e (A3), ∃ẑ ∈ ss(x, ŷ) ·
ẑ γx ss(x, ŷ) implies ∃z ∈ ẑ, ∀ẑ′ ∈ ss(x, ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ o(x, z) ∧ c(x, z) ≥
c(x, z′). By assumption, some subspa
e of ŷ 
ontains a feasible solution, so the
onsequent follows from z∗ ∈ optsc{z | z ∈ ẑ ∧ o(x, z)}.Non-triviality

(i(x) ∧ ∃z · Fgdy(z, x, ŷ)) ⇒ ∃z ∈ optc{z |

z ∈ optc{z | (z, c, χ(z, ŷ) ∧ o(x, z))} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}



Proof.
i(x) ∧ ∃z · Fgdy(z, x, ŷ)

= {defn of Fgdy}
i(x) ∧ ∃z ∈ optc{z | z ∈ ŷ ∧ o(x, z)}

= {property of optc}
∃z · i(x) ∧ z ∈ ŷ ∧ o(x, z)

⇒ {Axioms A4, A2}
∃z · (χ(z, ŷ) ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ z ∈ ẑ)) ∧ o(x, z)

= {distributivity of ∧}
(∃z · χ(z, ŷ) ∧ o(x, z)) ∨ (∃z, ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ z ∈ ẑ ∧ o(x, z))

= {property of optc}
(∃z · χ(z, ŷ) ∧ o(x, z)) ∨ (∃z, ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ z ∈ optc{z | z ∈ ẑ ∧ o(x, z)})

= {defn of Fgdy}
(∃z · χ(z, ŷ) ∧ o(x, z)) ∨ (∃z, ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))

= {property of optc}
∃z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃z, ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))

= {distributivity of ∃}
∃z · z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))

= {property of optc}
∃z ∈ optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}


