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A Production Rule Mechanism
for Generating LISP Code

ALAN W

Abstract - Production rule schemas are given which hold the basic
information necessary for coding recursive loops and branches in
LISP. Information from the user concerning the desired program is
used to instantiate the schemas to vield production rules, and then
these rules generate executable code in a strictly syntactic fashion.
Emphasis is placed on decomposing the synthesis problem into a
hierarchy of tasks which can each be solved by application of a
schema. The method is demoustrated by showing how programs can
be synthesized from examples of their inpui--output behaviors,

I. INTRODUCTION

HE COMPLEXITY of an automatic program synthesis
r?syslcm tends to explode as more facilities are added, and
the abilitics of the designer are heavily taxed in building,
debugging, and modifying the system so that it can function
reliably. The inmumerable special rules and procedures
needed to build herarchies of nested and combined loops
and branches with various kinds of variable handling,
condition checking, and so forth are enough to confuse the
best minds, and methods are needed to systematize and
properly modularze this knowledge so that it can be dealt
with in an orderly way. This paper will suggest a production
rule mechanism  for converting an intermediate-level
specification ol a program into executable code.

Production rule systems have been found to be usefulina
number of artificai mtelligence projects (see below). The
following definition s adapted from Davis and King [11]. A
production rule system (PRS) 1s composed of

1} a set of rules of the form a= f, where o and f are
strings of symbols,

2} a data string of symbols,

3) an interpreter or control program.

The interpreter scans the data string and whenever a
substring o is found which matches the left-hand side of a
rule, let us say o == f, then the substring 18 replaced by fin
the data string. The interpreter repeats this process until no
more rules are applicable to the data string. The left-hand
side of a rule is often called the nonterminal and the
right-hand side s called the generared string.

One variation of this definition of a PRS 15 to allow rules
with parameters called rule schemas. These production rule
schemas must be instantiated (thus becoming an ordinary
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rule) before they can be used. In this paper we define
production rule schemas which hold the basic information
about various programming constructs such as loops and
branches. Our approach to program synthesis uses this PRS
as follows.

1) The user supplies information about the desired
program.

2) This information is transformed into an intermediate-
level specification of a program which is used to
instantiate some rule schemas.

3) The control program applies the rules to an nitial
string, and the final string is the requested program.

In a production rule system the knowledge that the synthesis
system has about programming is encoded in the rules
making the system modular, precise, and easy to under-
stand. Note that a separation of the tasks of code generation
and control of the synthesis process is allowed by a PRS
Production rule systems have been used and dosertbed m
Waterman [28), Davis et al. [10], Feigenbaum [12] Lenat
[17], and Barstow [2].

Although it would seem that this approach is apphcable in
many domains, the particular problem arca considered here
1s the generation of LISP programs {rom examples of their
behavior. Thus we will assume that an example mput, such
as (4 B C D E), will be given with the output which the
desired program 1s to return, perhaps (4 ¢ E)in this case
The intermediate-level specification here 1s that a loop s

a time and generate the output along the way. The first
step in the generation of the goal program utilizes produc-
tion rule schemas which have the form
afm, Z)=> f(m, Z)
where m and Z represent information which must be given
by the mtermediate level specification. Suppose i this
example that m = 2 and Z = Z,. Then the final code
generated fron o known initial string in the usual syntactic
way':
initial slring{;-:»uintcrmcdiatc strin;_;y;flﬁnai code.
Of course, in general, many such rules may be derived from
the schemas, and code generation may involve many steps.
While this paper will assume that the user specifies the
program by giving examples, the approach would seem to be
equally valid if some other form of specification were used as
long as a translator to the intermediate level is available.
The approach discussed here emphasizes the use of

1979 ILEE



BIERMANN AND SMITHL PRODUCTION RUSES FOR ISP CODE

hierarchy to deal with complexity. In the synthesis of
programs {rom examples, a problem reduction techmque as
deseribed by Nilsson [22] is used to generate the code at the
lowest fevel of the hierarchy, then the next level, and so forth
until the task is complete. Hspecifications from the user were
available in a top-down form, then the rules could be used to
generate code top down.,

The range of programs that the current methodology can
handle consists of programs that are composed of arbitranily
deep nestings of loops, sequences of loops, and branches.
Also, the programs perform a purely structural mapping
from the input to the output so that any semantic informa-
tion present in the input atoms is ignored. Production rule
schemas are introduced for the following programming
constructs:

1} teardown loops
straight-line code

(in Section HI)

2) (in Section IT)

3) bmldup loops (in Section V)
4) if-then (in Section VII)
5) il-then-clse (in Section VII).

We see this as a step towards a general program synthesis
system which would include a more extensive set of rule
schemas. Many examples are presented in this paper which
show the flexibility of the schemas and their ability to handle
deep nestings of loops. Of the schemas presented, schemas 1,
2, and 3 above have been implemented on our experimental
system. This system accepts input—-output pairs from the
user and automatically produces an intermediate-level
specification. From the specification, the system instantiates
the appropriate schemas and finally produces LISP code.
Synthesis time for all examples in this paper is under 2 s.
Section V111 gives several examples of the use of the system.
A general survey of automatic programming literature
appears in Biermann [4]. One approach to automatic pro-
gramming that has been explored by Manna and Waldinger
[18] is the use of formal logic. A program is specified by a
statement in first-order logic, and its code is produced as a
byproduct of the proof of the validity of the specification. In
more recent work by the same authors [19], the program
specification is repeatedly decomposed into subgoals until
these subgoals can be satisfied by some program construct
or statement. An important aspect of this work is the
possibility of building a correctness proof of the program
during synthesis and also a proof of termination. Their
approach uses rules also, but the rules are designed to be
transformations  of segments of logical program
specifications (i.e., subgoals) into a simpler, more refined
form. Their rules encode knowledge about integers, the
target language, meanings of constructs in the specification,
and target language, besides programming constructs. Our
rules, of course, deal only with the latter. Another difference
is that our current system is driven by tl
output examples rather than by logical statements.
Another major approach to automatic programming
involves natural language dialogue between user and ma-
chine concerning the program specifications. Recent work in
this arca has been done by Green [14], Balzer er al. [1],
Martin et al. 20}, and Heidorn [16]. These systems tend to

e user’s input-
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be knowledge based, needing not only knowledge about
programming and the target language but also a significant
amount of knowledge about how to meaningfully accept
and output natural language statements. We consider the
relatively weak information about program behavior ex-
hibited by examples to be sufficient for our purposes. By
avoiding the large problem of natural language dialogue, we
can concentrate more on the program synthesis task.

Biermann [3] has studied the synthesis of programs from
example computations or traces. A user sits at a computer
CRT display and steps the system through a hand calcula-
tion. From this information the synthesis system can then
find the smallest program in some class which mimics the
users trace. This method, as with some of the others
described above, suffers from the search time required for
building programs of reasonable size. Gur current approach
attempts to improve the efficiency of such techniques by
restricting the search to a few tightly constrained control
structures.

The generation of LISP programs from examples has
been studied by a number of researchers: Biermann [5],
Biermann and Smith {6}, Biggerstaff [8], Biggerstafl and
Johnson [9], Green er al. [13], Hardy [15], Shaw et al. [23],
Siklossy and Sykes [24], Smith [25], and Summers [26], [27].
The major point differentiating the current work {rom pre-
vious papers is the use of production rules which make it
possible to hierarchically generate nestings and composi-
tions of loops and branches to a high degree. Also a produc-
tion rule system allows for a separation of the synthesis
control structure from the domain knowledge encoded in
the rules.

After introducing notation in Section I, Sections HI and
IV show how production rules can be used to generate
looping code nested to any degree. Section V shows how to
modify the mechanism to deal with buildup variables, and
Section VI gives rules for branching code. Section VII
attempts to illustrate how production rules might be used as
part of a total program synthesis system for the creation of a
wide variety of programs. Section VIII briefly discusses
variations in the method that were studied and two pro-
grams that were written and run in the development of these
results. Many examples of generated programs are given
throughout the paper.

1. LISP aND SoME NOTATION
The basic LISP data structure used 1n this paper is the list

which is written (X; X, X, --- X,) where the X /s may be
LISP atoms or lists. Functions in LISP are written as lists
of the form (f X, X, - X,) where [ is the name of the
function and the X's are the arguments. The primary LISP
functions used in this paper are CONS, CAR, CDR, and ATOM
as defined in the LISP literature (McCarthy er al. [21]).
For example, if X is the list (4 B C), then

(CAR X)= A

(DR X) = (B C)
(cons X X) = ({4 B C)A4 B ())
(

ATOM X ) = NIL.
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It will somctimes be necessary to nest the cor function to
a considerable depth. In this case we will write (¢p*r X)
which means

(CDR (CDR {CDR -+

{cpr X))
where there are k different cor’s. (¢Dr X)) will be defined to
be simply X.
I GENERATING SCANNING FUNCTIONS

This paper will give a number of production rules which
can be used for the generation of LISP code. The first rule
that we will examine is a rule for generating a lowest level
routine. While most of the routines discussed in this paper
will do their work by calling other routines, the lowest level
routines are the ones which actually construct the output.

Rule 0 (Lowest Level Routine):

[PY, (XoXL), ncxt]» PoLXoXL)=
T
nonterminal

(cons (CAR X ) next)

generated string
Instantiated for each use of this rule:

w identifier for each instantiation,

XL  an unparenthesized list of arguments from higher
level routines,

the S-expression to which the current result is to be
appended.!

next

This rule has two parts, the nonterminal symbol [P,
(Xo XL), next] and the generated string (P%X,XL)=
(cons (car X,) next). The nonterminal symbol [PY,
(Xo XL), next] can be interpreted to say essentially that
program P, is to be defined with arguments (X o X L) and
that the result of its computation is to be appended onto
“next.” The arrow => means “generates” so that this rule can
be understood to say that the nonterminal symbol [P,
(X XL), next] with w, XL, and next properly instantiated
will generate the code given. Thus if [P9;, (Xo X4 X ), NIL]
ever appears during a code generation computation, then
the following code will be generated:

(P3X0X4Xe)= (CONS (CAR X ) NIL)

where w =23, XL = X4 X, and next == N1. Thus a func-
tion PY, has been defined with parameters X o, X 4, and X,
and the value 1s computed as shown.

Besides using production rules as described above, we will
also be using production rule schemas which can be partially
instantiated to produce a production rule and then further
instantiated in the generation of code. An example produc-
tion rule schema is Schema 1 for generating code which
scans an input list while generating the output. Schema [ will
generate code which recursively implements a loop as
follows. First, a function P!, is defined which checks a loop
mtry condijtion and exits if the loop cannot be executed. If

the loop is to be executed, then a series of routines P4y, P2,
Pl w Will be executed sequentially, and then control
will return to P, to complete the loop. This is illustrated in
Fig. 1.

It will be assumed that each P¥; will be called with

" Often “next™ will be expressed as a call to a LISP function
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Fig. 1. Flow of control for Schema I.

argument (CD"R X) as illustrated below. This means that h;
elements will be removed from the front of list argument X
before Py, is executed. The usefulness of this capability will
be apparent in some of the examples. Finally, when the loop
body has been executed, PL, will be called with its argument
decremented by m units: (PL(cp™r X)). The loop decrement
m must be greater than zero in order to avoid an infinite
loop.
Schema 1 thus has the following form:

[P, (X; X L), next]=

definition of P!, which either exits the loop or passes
control to P,

nonterminal for generating P} and then passing control

to Py}

nonterminal for generating P¥4 and then passing control
to

nonterminal for generating P%, and then returning con-
trol to P,,.

Hopefully this introduction is enough to make Schema 1
understandable.
Schema 1 {for Generating Scanning Code):

P X X L), next]=>
[P (
nou(ummal
(PLX, XL)=
(conp ((P entry check) next)
(TP (cp™r X)X, XL))
(PXy., (Xo, X, XL),
(Pih(epMr X)X, X L)

! generated string.
U)k szX X )
i)

w2

(PEs(epPr X)X X L))

[Pl (X3, X X L),

(PLcp™r X )X L))
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Instantiated to produce a production rule:
i = rule designation,

(P" entry check) = a predicate which yields true for the
exit condition,

(1",‘#, hy), j=1,2, 3, ris a sequence of calls of
subroutines P¥; with argument decrements h,

m == loop decrement.

Instantiated for each use of the resulting rule:

W identifier for each instantiation,
XL  an unparenthesized list of arguments supplied by

higher level routines,
the S-¢xpression to which the current result isto be
appended.

next

Rules of this form generate two things:

1) a LISPdefinition which uses the conditional coND and
2) a series of nonterminals of the form [P4;, (X, X, X L),

(-++)] which generates additional code.
The conp function is defined as follows:

5w

. if predicate p is true
(conn (p ST S) =" [P
2

otherwise.

Notice that when a function P¥; is defined, it is given
parameters X, X; XL, but when it is called, the substituted
arguments are X, X; X L. This means that the variable X
associated with PY; is loaded with the contents of X at the
time P¥; is called. The following example will illustrate this
and a number of other points.

Suppose it is desired to generate a program which reads a
list X=(ABCDEFG)and outputs Y =(BC A D E
C F G E). This might seem like very complicated behavior,
but a clear pattern emerges if the output is graphed as
shown in Fig. 2(a). In fact, three points placed in a kind of
triangle with respect to each other appear repeatedly in a
sloping path to the right. The next section will discuss how
to discover this pattern automatically, but for the current
purpose it is only necessary to realize this pattern may be
analyzed as shown in Fig. 3. Thus the three points are
distances hy = 1, h, = 2, and h, = 0 from the highest level
of the pattern, and the highest level of the next pattern
occurrence begins m = 2 units lower than the first pattern.

The synthesis of the desired program proceeds by first
building a set of production rules for generating code and
then by expanding the rules to obtain the code. The first such
production rule will be Rule 0 for generating lowest level
routines PS. This rule, which is given the designation i = 0,
will generate the LISP code which produces the output of
Fig. 2(a). The program synthesis problem thus becomes
modified to that shown in Fig. 2(b). That is, a lowest level
routine P2 is to be called with an argument {B C D E F G),
then a PY is to be called with argument (C D E F G), then
one will be called with argument (4 B C D E F G), and
so forth. In other words, a point P at a level correspond-
ing to, let us say, an input C means call P9 with argument
(C DEFG).
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Fig. 2. Problem reduction of first example. (a) Graphing original prob-
lem. (b) Sequence of lowest level function calls after creating one pro-
duction rule. (¢} Sequence of function calls required after creating
second production rule.

l\3=0
T" R NA_.W“.“*:fi% MMMMMMMMMMM highest level of pattern 1
hl=l ‘I
1 hZ£2
l m=2
h3=0

i \\‘*_highest level of pattern 2

o

h,=2

|

Fig. 3. Analyzing pattern of Fig. 2(a).

A second production rule, designated i = 1, will be needed
to produce the LISP routine P, to generate the sequence of
calls in Fig. 2(b). This rule will be obtained by properly
instantiating Schema 1 as indicated above. For example, it is
necessary to find the sequence of calls which are to be
executed in one pass through the loop. In this case, it is
(P2, (cp'r X)), (P2,(cD?r X)), and (P)3(cDR X)), which
will be written for short (P2, 1), (PS5, 2), and (P5,0). Thus

wi»
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enough coRr’s are applied to X to account for the decrements
hy, hy, and hy shown in Fig. 3 before PO is executed in cach
case. Also we note that the next pattern of three points in Fig.
2(b)is m = 2 units below the first pattern, and this is the loop
decrement mentioned above. Thus the loop will be
completed by returning control to the looping routine Pl
with the argument decremented by 2: (PL{cp?R X )). Finally,
a predicate called (P' entry check) must be constructed
which will yield true and cause an exit if any of the above
calls would yield an error. That is, if (P(cD'r X)) is
executed when X is an atom or if (Pg(cD?R X)) is executed
when X or (cDr X) is an atom, then an error will result.
Therefore, (P! entry check) is ((AToM X ;) OR (ATOM (CDR
X)), which will be written in the paper as (ATom (cD© Dk
X 1)).In general, (P’ entry check ) will be (aToM (cp© » X)),
where j = max (hy, h,, -+, h,, m) — 1 and where the nota-
tion (0:j) designates the indices 0, 1, 2, -+, j. The composite
of all of these substitutions into Schema 1 results in the
following code production rule:

[PL, (X; XL), next] =
(PwX 1 XL) = (conD ((ATOM (cD VR X)) next)
(T(Py(cD'R X)X, XL)))
[Poy, (XoX, XL), (PS,(cp?r X)X, XL)]
[Pu2, (Xo X, XL), (PO3(cD’R X)X, XL)]
[PYs. (Xo X, XL), (PL(cD?R X)X L))
Substitutions made to produce this rule:
i=1
(P entry check) = (ATom (cD® VR X)),

Sequence of subroutine calls for the loop body:

(P, h )= (Pus, 1), (P2, hy) = (P32, 2),
and

(P33, ha) = (PU3, 0).

m=2

Necessary substitutions for each use of this rule:

w identifier for each instantiation,

XL unparenthesized list of arguments from higher
level routines,

S-expression to which the current result is to be
appended.

next

The creation of this second code generation rule reduces
the original problem to that shown in Fig. 2(c). That is, the
desired computation can be obtained by calling PL with
argument (4 B C D E F G). When the problem can be
reduced to one function call P as has been illustrated he e,
the desired LISP code can be generated by expanding to
termination the nonterminal [P, (X ), niL). In the current
problem, we expand [P*, (X ,), Ni] by making the substit .1-
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tion w=string of length zero, XL = null
next = NIk into the above production rule:

list, and
[PY (X)), NiL) =
(PIX) = (COND ((ATOM (D' 1R X)) NiL)
(T(P(coR X)X )
[(PY, (X0 X)), (PY(cD?R X)X ))]
[P2, (XoX 1), (PY(cDR X)X )]
[P3, (XoXy), (P'(co?r X))

This generation has produced three nonterminals which can
be expanded using Rule 0:

[P}, (XoX,), (P3(cD?R X)X )] =

(PY X0 X )= (CONS (CAR X,)(PY(CD?*R X )X,))
[P2, (XoX,), (Pcn®® X,)X,)]=

(P2 XoX )= (CONs (CAR X o)(PY(cD R X)X ,))

(P8, (XoX,), (PY(cD?R X,))] =
(P3XoX )= (CONS (CAR X, )(P'(cD2R X,))

The solution to the original problem is the collection of the
above code:

(P'X ) = (conD (((ATOM X,) OR (ATOM (CDR X ,))) NIL)
(T(Pi(cor X)X ,)))

(PYXoX,)= (CONS (CAR X,)(P3(CDDR X)X ,))

(P3X,X,) = (CONS (CAR Xo)(P3X, X,))

(P3X,X,)= (coNs (CAR X,)(P!(cDDR X,))).

The important point to be noted about Schema 1 is not
that it can generate code for a loop but that it:can produce
arbitrary nestings of loops in widely varying situations. The
additional examples of this paper should pamally illustrate
its power.

In order to demonstrate the operation of Schema 1 in a
deeper hierarchy, let us generate a program which inputs a
list such as X = (4 B C D) and outputs the result of two
nested scans Y = (4 BC D B C D C D D). Here the de-
sired function is graphed as shown in Fig. 4(a), and Rule 0
(designated i = 0) is introduced to reduce the problem to
that shown in Fig. 4(b). Here Schema 1 can be instantiated
to produce production rule i = 1 which accounts for the
four sequential scans of the list and which reduces the
problem as indicated in Fig. 4(c):

[P, (X, XL), next] =
(P, X, XL)= (COND ((ATOM X ) next)
(T(PRi(cDr X)X, XL)))

[Py, (Xo X, XL), (PLcD'R X,)XL)].
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Fig. 4. Reducing problem with three levels of hierarchy. (a) Original
problem. (b) After rule i = 0 is introduced. {c) After rules i = Oand i = |
are introduced. (d) After rules i =0, i = 1, and i = 2 are introduced.

Instantiated to produce this rule:
= |
(P' entry check) = (aAToM X ;)
Sequence of calls: (PXY, hy) = (Py,, 0)
m= 1.

To be instantiated for each use of this rule: w, XL, and next
as described above. Then Schema | can be instantiated again
to produce another production rule i = 2 which reduces the
problem to the single call given in Fig. 4(d):

[P, (X, X L), next]=
(PLX, XL)= (coND ((ATOM X,) next)
(T(Puy(cp"R X)X, X L))
[PL, (X, X, XL), (P3(CDR X,)XL)].
Instantiated to produce this rule:
P=2
(P’ entry check) = (ATOM X ;)
Sequence of calls: (P&, hy) = (PL,, 0)

m= 1.

To be instantiated for each use of this rule: w, XL, and next
as described above. Introduction of these three rules has
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reduced the problem to the single call P2 so that the code
may be produced by «pr‘mc ing [P%, (X 5), NiL). Using rule
== 2, wesubstitute w == string of k,nz,,th zero, X L = null list,
and next = N to obtain

[P (X,), NiL) =
(P2X ;) = (conND ((aToM X,) NILY(T(P X, X))
[bl’ (X, X,) (Pz((‘l)R X))

This introduces one nonterminal which can be expanded
using rule 7= 1. The nccessary substitution is w = 1,

XL= X,, and next = (P*(cpr X,)):
[P, (X1 X3), (PP(cDRr X,))] =
(PLX | X;)= (conp ((aToM X )(P*(cDR X,)))
(T(PYL X X X2)))
[PV (X0 X, X,) (Pi(cpr X )X ,)]

Another nonterminal has been introduced which can be
expanded using rule =0 with substitutions w = 11,
XL= X, X, and next = (P}{(CDR X )X,):
(PP (X0 X, X,5) (PHeDR X ()X,)] =

(PnXoXle)“"‘

(cons (car X o) (PI(CDR X )X5)).

The final code thus becomes

(P2X ;) = (COND ((ATOM X ,) NIL)
(T(P1 X2 X))

(PY X, X,) = (conD ((ATOM X {)(P*(CDR X})))
(T(PYL X, X, X3)))

(PO, X0 X, X,)= (CONs (CAR X, )(PH{CDR X)X ;).

This section has introduced two schemas (Rule 0 and
Schema 1) for program creation and has illustrated their use
in the hierarchical generation of two programs. The follow-
ing section will give an algorithm which finds patterns of the
type shown in the above figures and then utilizes these
schemas to construct programs.

Before concluding this section, another schema will be
introduced which will be used for generating straight line
code. This is only a slight modification of Schema 1.

Schema 2 (for Generating Straight Line Code):

[P, (X; X L), next]=
(PL X, XL)y= (conD ((P' entry check) next)

(T(PEy(cpMr X)X, X L))

[Phn, (X, XX L), (P

[P (X XG X L), (P

(coMr X)X, XL)]
(coMr X)X, XL)]

[P4 (X, X;XL), next].
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Instantiated to produce a production rule:
i = rule designation

(P entry check) = a predicate which yields true for the
exit condition

(P4, h;),j=1,2, -, ris asequence of calls of subroutines
P% with argument decrements h;

m = loop decrement.

Instantiated for each use of the resulting rule: w, XL, and
next as described above.

1V. A SYNTHESIS ALGORITHM

Referring to Fig. 2(b), the triangular pattern of routine
calls is seen to appear three times, each one being m = 2
units below its neighbor to the left and the same distance
above its neighbor to the right. The question arises as to how
many repetitions of a pattern must occur before one can
infer that a loop should be constructed. We will assume that
either the system designer or the system user has set a
parameter M which specifies the required number of repeti-
tions and will construct our synthesis algorithm to build a
loop whenever M or more repetitions of a pattern appear. It
will always be assumed that M is greater than one.

A set of j sequential routine calls as in Fig. 2(b) will be
called an M segment group if j = r - M and the sequence of
calls has the following form for some X:

(P41(cpPiR X)), (P*(cD"R X), -+, (P*(cD"R X)),
(P¥(cp" *mr X)), (P*2(cp" ™R X)),

T (P'“(CD"’“"R X)),
(P¥1(cp" *2mp X)), (P22 (cp" * PR X)),

el (P‘"(CD"’*Z"'R X)),

(P4t (cptr* M= Dmg X)), -+, (Po(cpM ™M~ mg X)),
Thus for M = 3, the M segment group in Fig. 1(b) would be
(P°(cp'r X)), (P°(cD?R X)), (P°(cDR X)),
(P°(cpR X)), (P°(cp*r X)), (P°(cD?r X)),
(P°(cDR X)), (P°(cD®R X)), (P°(cD*R X))

After an M segment group is discovered, the synthesis
mechanism performs a loop reduction as is illustrated by the
transition from Fig. 2(b) to Fig. 2(c). Specifically, a produc-
.tion rule is generated using Schema 1 unless one already
exists to do the job, and all of the subroutine calls accounted
for by this rule are removed and replaced by the associated
routine name. '

There are other kinds of reduction. Thus a lowest level
reduction will refer to the conversion of the original problem:
into a sequence of calls of lowest level routines. A straight
line reduction will refer to the application of Schema 2 to
reduce a sequence of calls to just one call.

Before giving Algorithm 1 for program synthesis, it may
be helpful to illustrate the method for finding repeated
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Fig. 5. Sequence of problem reductions. (a) Problem. (b) After P reduc-

tion. (c) After P? reduction. (d) After two more reductions. (e) After P*
reduction. (f) Discovering another P? reduction.

patterns in a string. Suppose that M = 3, so that we are
looking for three repetitions of some patiern in some
example string ABCBCBCD, for example. The method will
be to advance an index j across the string examining the last
three, six, or nine, etc.,, symbols looking for three sequential
and identical substrings. If j = 3, the last three symbols are
ABC, which is not what is being searched for. As j increases,
additional strings are examined: j =4, BCB; j= 5, CBC:
j=6, BCB and ABCBCB. Finally at j = 7, the last three
symbols are CBC, and the last six are BCBCBC, which
satisfy the requirement of three sequential and identical
substrings. This is the method that Algorithm I uses to find
M segment groups.

Algorithm 1:

1) Do all possible lowest level reductions to produce a
sequence of subroutine calls using Rule 0.
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2} For j== M to the length of the sequence of subroutine
calls:
For k == M to j incrementing by M cach time:
If (starting from the jth call and moving back-
wards toward the beginning) the last k calls form
an M segment group, then do the associated loop
reduction uvsing Schema | and go to 2.

3) If the current sequence of routine calls has length
greater than one, do a straight line reduction using
Schema 2 to reduce the sequence to one call.

4) Assuming P’ is the last remaining subroutine call,
generate the code by expanding [P, (X ), NIL].

Assumingthat M = 3, we will examine the performance of
Algorithm 1 on the problem of Fig. 5(a). Step 1 changes all
the graph points to P%s as in previous examples, but for
simplicity this was not graphed. Step 2 proceeds to incre-
ment j looking for an M segment group when atj = 7,k = 6
it finds one as indicated by the circled points. So Schema 1 is
employed to create a rule which accounts for ten points and
reduces the problem as shown in Fig. 5(b). Step 2 begins
again, and this time at j= 6, k = 3 it finds another loop
reduction as shown in Fig. 5(c). The next two reductions
found by step 2 (Fig. 5(d)) can be accounted for by rules
already created, so no new rules have been generated. A later
entry of step 2 finds the repeated pattern P!, P°, P? and
produces the reduction of Fig. 5(¢). Notice that P* accounts
for all but the last five points in the graph. Finally, step 2
accounts for the last five points with P? yielding the problem
of Fig. 5(f) which can be reduced to one point P° by a
straight line reduction (step 3). Thus the final code can be
generated by expanding the nonterminal [P?, (X 5), NIL], and
the result is

(P*X ,) = (coND ((ATOM X ,) NIL)
(T(PS(cDR X,)X.))
(P§XoX4)= (CONS (CAR Xo)(P3X4X,4))
(P3X3X,)= (ConD ((ATOM X3)(P3X,X,))
(T(P3, X3X3X4)))
(P3X,X,)= (coND ((ATOM X,) NIL)
(T(P3, X2 X, X4)))

(P, X, X;X,)= (coND ((ATOM X | )(P9, X3 X, X,))
(T(P21 X1 X1 X3 X4)))
(P92 XX 3X4)= (CONS (CAR X)(P33X3X;3X,))
(P33 X, X5 X )= (COND ((aTOM X ;)
(P3(cDR X 3)X 4))
(T(PY3, X, X, X1 X,)))
(PS, XoX,X,4) = (CONs (CAR X () (P3(CDR X,)X,))
(P91 X0 X1 X3X,)=(cONS (CAR X o)(P912 X X, X3 X))
(P12 X0 X X3X,)= JeprR X)X X,)
(

(coNSs (CAR X )(P
PO Xo X, X3X,)= o) (P35(CDR X3)X3X4))

(CoNs (Ccar X ) (P3
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The exccution time lor a synthesis algorithm is sometimes
50 great as to severely hmit its uscfulness. For Algorithm |
most of the running time occurs in step 2. Step 1is actually
mncluded only as a conceptual aid to the reader of this paper
and need never be executed ona real system. [ts only effect is
to generate rule i = 0, which 1s known a priori, and to label
the points on the graph as calls to PY. Steps 3 and 4 will have
running times approximately proportional to the length of
the target program. Step 2 involves two major costs: the
indexing and testing in the inner loop and the cost of the
reduction for each M segment group found. It is shown in
the Appendix that the number of comparisons required to
generate a complete program is  proportional to
NI}(M + 1), where N is the number of looping subroutines
and L is the length of the largest one. The time required for
the reduction will be primarily absorbed by the runuing of
the generated loop routine to see what points it accounts for.
In summary, it appears that the time required to create a
program from an example input-output pair will be approx-
imately proportional to NI*(M + 1)? plus the time required
to execute the target program to generate the example
output.

V. BulLDuUp VARIABLES

While the previous sections show how to generate code to
repeatedly scan an input list in generating an output list, it
may be desired to build up a list on a buildup variable and
return its contents as the results. For example, one can scan
an input list and create its reversal by appending each item
to the front of a buildup list as it is encountered. A schema
for generating this kind of code can be obtained by slightly
modifying Schema 1 as follows.

Schema 3 (for Generating Buildup Code):

[PL,, (X, XL), next] =
(PLX; XL Y) = (coND ((P* entry check)Y)
(T(Pi(co™r X )XL—-

(P (coMRr X)X, XL Y))))
[Pey, (X, X, XL Y), (PX3(cD™R X)X, XL Y)]
[Py, (X, X, XL Y), (PX3(cD"Rr X)X, XL Y)]
[P, (X, X, XL Y), Y]
Instantiated to produce a production rule:

i = rule designation

(P entry check) = a predicate which yields true for the
exit condition

(P hy)j= 1,2,

Wi hy) ris a sequence of calls of subroutines
P¥; with argument decrements h;

m = loop decrement.

Instantiated for each use of the resulting rule: w, XL, and
next as defined above. ¥ means include the buildup variable
Y here if this routine is not nested below some other buildup
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Fig. 6. Problem reduction for list reversal program. (a) Input-output
information. (b) After lowest level reduction. {c) After loop reduction.

routine which has already introduced a buildup variable,
and X L— means remove any buildup variable in X L.

Fig. 6 shows a utilization of Schema 3 to generate the
reverse routine. Fig. 6(a) gives the example input-output
pair and Fig. 6(b) and (c) shows the reduced problem after
utilizing Rule 0 and Schema 3. The proper instantiation of
Schema 3 yields the following rule:

[Py, (X{ XL), next] =
(PLX, XLY) = (conD ((ATOM X,)Y)
(T(PL(cor X )X L—
(PS) X, X, XLY))))

[Po, (Xo X, XLY), Y]
Substitutions made to produce this rule:
=1

(P" entry check) = (ATOM X;)
Sequence of subroutine calls: (P3,, 0)
m==1,

The program is generated from an expansion of the nonter-
minal [P!, (X ), NoL]:

(P'X,Y)= (coND ((ATOM X )Y)
(T(P'(cDR X )(PYX X, V)
(POX o X, Y) = (CONS (CAR X,)Y).

Then if it is desired to reverse list Z, one uses P! with Y
initialized to N (P'Z win) will yield the reversal of Z.
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Problem involving both buildup and teardown reductions. (a)
Problem. (b) After buildup and teardown reductions.

Fig. 7.

It turns out that all of the above Schemas 1,2, and 3 havea
shortcoming which we will now examine and then repair.
The problem appears when teardown routines of the type
generated by Schema 1 are mixed with buildup routines,
This will be illustrated by attempting the synthesis of Fig,
7(a) which includes both buildup and teardown segments in
the output. Application of Schema 3 to reduce the first half of
the output yields the rule given above. Application of
Schema 1 reduces the second half and yields the following
rule:

[PL, (X, XL), next] =>
(PLX, XL)= (COND ((ATOM X,) next)
('I‘(Pgl XZ )(2 XL)))
[P, (Xo X, XL), (PL(cDR X,)XL)]
Substitutions to produce this rule:

P=2

(P! entry check) = (ATOM X ;)

Sequence of subroutine calls: (PS,, 0)

m= 1.

These reductions yield the problem of Fig. 7(b), where
Schema 2 is now applicable to generate this rule:
[P, (X3 XL), next] =
(P2 X3 XL)= (COND ((ATOM X 4) next)
(T(Py X3 XX L))

[P, (X1 X3 X L), (PL, X3 X5 X L))

[PL,, (X, X3 XL), next].
This reduces the problem to one point on the graph, which
means the correct code should be generated from [P, (X ),
NiL]. Examining the resulting code, one finds that p?
properly calls P} but that P2 is never entered. A mechanism
must be included to add a result to the right-hand end of a
buildup segment, and the proper way is to put that result on
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P{’s buildup variable before P} begins its computation. The
desired code 1s

(PPX 5) = (CoND ((ATOM X ) NIL)
(T(PLX X {(P2X X))
(PIX X, Y) = (COND ((ATOM X )Y)
(T(PHeDR X)X (PN X, X, Y))
(PYy XX X, Y) = (CONS (CAR X )Y)

(’1‘(1"2’, X, X, X000
(P9 XX, X 3) = (CONS (CAR X )(PIcDR X)X 5))

Notice that neither the buildup routine P nor its subroutine
P{, ever transfers control to the teardown routine P3.
However, when Pl ois called in the second line of P?, its
buildup variable Y has been initialized with the result of P3.
In order to obtain this behavior, all subroutine calls in
Schemas 1, 2, and 3 of the form (P4 (cp™r X )X, XL) are
now written as (call (P4, h}), -, (P%,. h,); next), which
means
1) (Pi(cp"r X)X, XL), if PY; is a teardown routine,
2) (P(cphr X)X, XL— (P, X, X XL)), if P4 is
buildup and Pk 1, is teardown,
3) (PY(cpMr X)X, XL— (P& by (cptror X)X, X L—
(P (cptuar X)X, X L)), if P&, and Py, are
buildup and P’,‘;{j,f’z, is teardown,

and so forth. A more complete definition of the (call -)
notation appears in Appendix B along with revised
definitions for the three schemas. The modified schemas will
be denoted 1A, 2A, and 3A, and will be used in all future
examples instead of the ones given above.

These new schemas can now be used together to buiid
arbitrarily complicated concatenations and nestings of

buildup and teardown code. This can be partially illustrated

by solving the problem of Fig. 8(a) which requires a buildup
routine nested within a teardown routine which is nested
within a buildup routine. After the P° reduction, the lowest
level looping characteristic is buildup so P! will be gener-
ated by Schema 3A:

[PL, (X XL), next]=
(PLX, XLY)= (ConD ((ATOM X ,)Y)
(T(PLCOR X )X L~
(PS, X X, XLY)))

[P0, (Xo X, XLY), Y].

wls
Substitutions made to produce this rule:
j =1
(P entry check) = (ATOM X )
Sequence of subroutines calls: (P, 0)

m = 1.
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Fig. 8. Generating program which uses both buildup and teardown

code. {a) Problem which requires both Schemas 1 and 3. (b) After P°
and buildup reduction P (¢) After teardown reduction P2 (d) After
buildup reduction P3.

This reduction converts the problem to that shown in Fig.
8(b), where Schema 1A is applicable. In fact, the generated
rule is

[P, (X, XL), next] =
(PLX,XL)= (COND ((ATOM X,) next)
(T(PLy X, X, XL~
(PL(cor X,)X L))
[Phi, (X X, XL), (Pi(coR X,)X L))
Substitutions to produce this rule:
j=2
(P entry check) = (AToM X,)
Sequence of subroutine calls: (PL,, 0)
m= 1.

The remaining problem is shown in Fig. 8(c), where Schema
3A is again applicable to generate a rule:

[P}, (X, XL), next] =
(P X3 XLY) = (COND ((ATOM X))
(T(P3(coR X 3)XL—
(P2 X3 X3 XLY))
[PZ,, (X, X, XLY) Y]
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Fig. 9. Sequential reductions discovered by Algorithm 1.

Instantiated to produce this production rule:
=3
(P’ entry check) = (ATOM X 3)
Sequence of subroutine calls: (PZ,, 0)
m== 1,

This reduces the problem to one point so the code may be
generated by expanding the nonterminal [P?, (X 3), NIL] to
obtain the following:

(P3X,Y) = (conD ((ATOM X 3)Y)

(T(P*(coR X3)(P2 XX 3 )
(P}X,X,Y)=(coND ((ATOM X,)Y)

(T(P}1 X, X, X3(PH(CDR X,)X3Y))))
(P1,X,X,X,Y) = (conD ((aATOM X ,)Y)

(T(Pi(coR X)X, X3(PP X1 X1 X2 X5 Y)))
(P$;, XoX X, X3Y)=(CONS (CAR X,)Y).

Algorithm 1 is applicable for discovering both buildup
and teardown reductions as long as one understands that the

[PL, (X, X L), next] =
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loop reductions can be of either kind. That is, if the
M-segment group found by Algorithm | proceeds in
the forward direction relative to the example input, then
Schema 1A for teardown code is selected. If the pattern is in
the reverse direction, then Schema 3A for buildup loops is
selected. In order to illustrate its operation, the problem of
Fig. 8 will be analyzed again concentrating on the operation
of Algorithm 1 in finding the appropriate reductions. The
total synthesis process turns out to be slightly more com-
plicated than was indicated in the previous section.
Assuming M = 2, step 2 of the algorithm begins scanning
from left to right looking for two segment groups separated
from each other by m > 0 vertical units. Step 2 finds two
groups of length one and calls for a P! reduction as shown
near the left end of Fig. 9(a). Then step 2 is reentered two
more times giving the additional P! reductions in the middle
of Fig. 9(a). The next entrance to step 2 discovers the M
segment group made up of the middle two P! points and
calls for a P? reduction as shown in Fig. 9(b). Then in Fig.
9(c), two more P! reductions are discovered, then the P?
reduction of 9(d), and finally a P* reduction based on the
two P%s that have been found. The P* reduction accounts
for all of the rest of the points and completes the synthesis.

VI. RULES FOR BRANCHING CODE

The generation of a program which converts
(A B C(D)(E)F) to (A B C F) is quite simple if rules are
available for generating conditional branches. This section
will introduce two schemas, one for an IF~THEN construc-
tion and one for an IF-THEN-ELSE construction, and will
give examples to illustrate their use.

Schema 4 (17-THEN Code):

[va, (X; X L), next]=>
(PL,X,XL)= (conD ((P' condition check)
(P (co™Rr X)X, X L))
(T next))
[PYy, (X, X X L), next].
Instantiated to produce a production rule:
i = rule designation
(P* condition check)
(PXy, hy), the routine to be conditionally executed.
Instantiated for each use of the resulting rule:
w, XL, and next as defined above.

Schema 5 (1F~THEN-ELSE Code):

(PLX,;XL)= (conp ((P' condition check)(P&4(cD"' R X)X X L))
{(T(P*y(cp"r X)X, X L))

[P4: (X, X, X L), next]
P, (X, X X L), next].
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Fig. 10. Synthesis including 1#-1HEN code. (a) Problem. (b) Extrapola-

tion of loop after P! reduction.

Instantiated to produce a production rule:
i = rule designation
(PL,, condition check)
(P&, hy), the routine to be conditionally executed

(PX%, hy), the BLSE routine to be executed if the condition
fails.

Instantiated for each use of the resulting rule:
w, XL, and next as defined above.

Suppose the problem of Fig. 10(a) is to be solved. With
M = 2 or M = 3, the loop-finding mechanism of Algorithm
t will discover a loop, but the execution of that loop will
result in an error at the fourth element of the input. Here we
suspect that conditional code is appropriate and call a
predicate formation mechanism to see whether it can find a
difference between the fourth input item and the first three.
Predicate formation will not be discussed in this paper since
the reader can find a number of reasonable methods
described in Biermann [5], Biggerstaff and Johnson [9],
Smith [25], Summers [26], and others. In this case, it is clear
that an item is to be added to the output if (AToM (CAR X)) is
true. Introduction of a conditional rule P! using Schema 4
makes it possible to extrapolate the loop as shown in Fig.
10(b) and to complete the synthesis:

(P*X,) = (ConD ((ATOM X ;) NIL)
(T(P1 X, X5))

(conD ((aAToM (CAR X ))(PT,
(T(P*(cpr X,))))
) = (CONS (Car X, )(P*(cpRr X,))).

(PiX,X;p)= X, X, X3))

(PY1Xo X, X,
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Fig. 11. Synthesis including 1F-THEN-BLSE code. (a) Problem. (b)
Straight-line code P' reduces two pairs of points. (¢) IF-THEN-ELSE code
prepares for introduction of loop.

If the original problem had been to generate an output
(F C B A) from the above input, the synthesis would have
been essentially the same except that buildup code would be
generated. Clearly because of the generality of the schemas,
much more complicated nestings and compositions of code
can be generated, as has been demonstrated in earlier
sections. The loop-finding mechanism when conditionals
are allowed is a much more complicated problem than has
been indicated here and deserves additional study.

Suppose a program is to be generated which converts
(A BC(D)E)F)to (A B C( YDYE)E)F). This time a com-
plete 1F-THEN-ELSE rule is needed as can be produced from
Schema 5, and the synthesis is outlined by Fig. 11. The
straight-line schema is used to reduce two pairs of points to
single routine calls P'. Then Schema 5 is used to give the
loop generator a regular sequence of calls, and the code is
produced in the usual way:

(P?X4) = (COnND ((ATOM X ;) NIL)
(T(PTX;X,))
(COND ((ATOM (CAR X ,))(P
(T(P1, X, X;X3))
(cons (CAR X o} (P*(cDR X3)))
(conD ((aTOM X )(P3(CDR X,)))
TP, X1 X, X, X5))
(P, XX X3 X3) = (CONs (car X )Py X X, X, X3))
(P22 XoX X, X3)= *(cDR X 3))).

(I)§X2X3)$ ?IXZXZX:‘))

(PR XoX,X3) =
(P12 X X, X5) =
(

(CONS (CAR X )(P
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VI PropucTion RULES AS A PART OF A
LARGER SYSTEM

Of course, the production rules given in this paper do not
alone constitute a program synthesis system, but they do
form a good set of building blocks. Specifically, they are able
to form the loops and branches of a program, but most
programs of interest need specially adapted lowest level
routines and occasionally some special variable handling.
The additional problem-dependent coding must come either
directly from the user or from higher level routines in the
program synthesis system. Techniques for automatically
generating special-purpose lowest level routines are a matter
for further research, but a few ideas follow. The purpose of
the lowest level routine is to retrieve information from a
variable and use it for constructing the output. For ali the
examples above we have used

(CONs (CAR X)) oUTPUT).

An automatic mechanism might be constructed which ap-
propriately modifies this routine using a data base of
replacement functions.

Suppose, for example, it is desired to add a list of numbers.
Then the lowest level production rule should be

[P%, (X o X L), next]= (Po X, XL) = (PLUS (CAR X,) next).

Here we have replaced cons with prus. The standard
teardown routine will provide the looping behavior. The
program is generated from the nonterminal [P, (X,), 0]:

(P'X ) = (conD ((aTOM X,) 0)

(T(PYX 1 X1)))
(PYX X )= (PLUS (CAR Xo)(P'(cDR X ,))).
Another modification to the lowest level routines would
be a more complex retrieval from the variable. For example,
suppose it is desired to find all of the values associated with
Z in a list. That is, input list ((Z B1)(4 B2)(Z B3)(Z B4)
(B BS)) is to yield (Bl B3 B4). Here the lowest level rule
should be modified to pick out the second item of each

pair that is chosen. It is a small matter to automatically
construct CADAR to retrieve Bl, resulting in the rule:
[PS, (X oXL), next] =
(P X o XL)= (CONS (CADAR X ) next).

A conditional routine at the next higher level checks whether
the first item in a pair 18 Z:
[PL, (X XL), next]=
(PLX, XL) = (cOND ((BQUAL (CAAR X ;)(QUOTE Z))
(P, X, X, XL))
(T next)) ‘
[PS1, (X o X XL), next].

The next higher routine P? is the usual teardown routine,
and the code is generated normally. It is possible that only
one pair will appear with Z as the first item, and the user
might want only that one associated value. Then the lowest
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level rule would be
[PO, (Xo X L), next]=>

(P2 X, XL)= (CADAR X ).

Suppose a data base holds information of the following
kind, where Z means “supports™:

(((rype CUBE)(NAME B1)(Z B2)(Z BS))

(TYPE BLOCK)(NAME B2)(Z BT)(COLOR GREEN))
(

(

(
((ryPE CUBE)(NAME B3)(Z B9))

((rypE BALL)(NAME B7)(COLOR RED))).

That is, object Bl is a cube which supports B2 and B5 and so
forth. Suppose it is desired to find all of the objects sup-
ported by cubes so that the above input should yield
(B2 B5 BY). Here the three lowest level production rules
would be identical to those of the previous paragraph, and
the fourth rule P* would be an 1--THEN form that checks for
the condition (BQUAL (CADAAR X ,)(QUOTE cusg)). The
highest level routine P* would be teardown, and the gen-
erated code would be as follows:

(P*X,) = (COND ((ATOM X,) NIL)
(T(PIX 4 X4)))
(P}X,X,)= (COND ((EQUAL (CADAAR X 3)(QUOTE CUBE))
(P1i(cAR X3)X3X,))
(T(P*(cDr X4))))
(P?, X, X3X,)= (COND ((ATOM X,)(P*(CDR X ,)))
(T(P111 X2 X, X3X4)))
(P11 X1 X, X3 X,)=(COND ((EQUAL (CAAR X )(QUOTE Z))
(P(;XXIXlXI XZ‘XSX4))
(T(P}i(cDR X)X 3X,)))
(P?1,1X9X1X2X3X4) = (CONS (CADAR X,)
(P}i(cDR X)X 3 X 4)).

Further examples may be found in Biermann and Smith [7].

VIII. VARIATIONS ON THE METHOD

It should be made clear that the mechanism described
here is the result of studies over about a two-year period and
that a great deal of information has been omitted for the sake
of clarity. Many variations were tried on the form of the
algorithm and the details of the generated programs, but a
lengthy description here does not seem necessary.

For example, a program was written to test variable
addition mechanisms in nested loops. This particular system
was more economical in its generation of additional var-
iables than the system described in this paper, but inclusion
of those economies would have unpleasantly increased the
complexity of our notation. This system generated execut-
able code for our local LISP processor, and many programs
were created from examples such as the following.

Example Al: This involves three nested buildup routines:

Input: (A BCD)
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Output: DDLCDODDCDCBDDCDCBDC

B A4).
Example A2:This involves two nested teardown routines
on top of a buildup routine:

Input: (4 B C D).
Qutput: DCBADCBDCDDCBDCDDC
D D).

Example A3: This involves a nesting from top to bottom
of six loops (teardown, buildup, buildup, teardown, tear-
down, and buildup):

Input:
QOutput:

(4 B C D).
ODDDCDDDDCDDDCBDCDD
CDDDDCDDDCBDCDDCDDD
CBADCBDCDDCBDCDDCDD
PDDCDDDDCDDDCBDCDDC
DDDDDCDDD)

The actual code generated by our system is given for the next
example.

Example A4: This involves a teardown routine on top of
two nested buildup routines:

Input: (4 B C D)
OQutput: DDCDCBDCBADDCDCBDD
C D).

(¥ (LaMBDA (x)(R6 x)))
(R6 (LAMBDA (a)

(conD

(T(RS a)))
(R5 (LAMBDA (a)

(conD

{(aTOM a) NIL)

(T(R3 a)))
(R3 (LAMBDA (a)

(conD

(T(R4 a(R5 (cOR a))))
(R4 (LAMBDA (a v)

(conD

((aToM a))

(T(R4 (cDR @)(R1 a v))))
(R1 (LAMBDA (a v)

(conpD

(T(R2 a v)))))
(R2 (LAMBDA (a v)

(conD

((aTOM a)

(T(R2 (DR a)(RO a v))))))
(RO (LAMBDA (a v)

(coND

(T(cons (car a)))))).

The code for each example in this section was generated in°

less than a second. These and other programs generated by
the system may be found in Biermann and Smith [7].

In another series of studies, attempts were made to
separate the task segmentation computation from the rou-
tine generation portion of the synthesis. That is, instead of
the algorithm given in this paper, one might wish to have one
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program which decomposes the output into parts and a
separate program which generates the routines to account
for those parts. Many techniques were tried, but none was as
successful as the method given here which combines both
functions. That is, after step 2 finds an M segment and
creates a routine, it runs that routine to see which points it
has accounted for. Then it looks for another M segment and
generates another routine.

Some examples of the behavior of a system which
separated the problem-segmentation and  routine-
generation phases are given below. The first phase scanned
the example output looking for rises and falls which could be
accounted for by buildup and teardown routines. The
second phase generated the routines, and then control
would return to the first phase to look for a new set of
segments. Note that in the code that appears here a slightly
more complicated conditional was used than described
above. Unfortunately, the number of different subroutines
tended to be unnecessarily large, and a post-processor
would be useful to clean up the code.

Example A5;

Input: (4 BC D E).

Output: (EDCBABCDEDCB A).
Example A6:

Input: (4 B C D).

Output: (AAABBCCDDDDCRBA).

Example A7:

(4 BCDEFG).
(ABCDEFGACEGBCDEFGBD
FCDEFGCEGDEFGDFEFGE
G FGFGG).

The code generated by our system for Example A7
follows:

Input:
Output:

(DEF FLY (LAMBDA (x)(FLYS x}})
(DEF FLYS5 (LAMBDA (a)

(conp

(1(rLv4 @)
(DEF FLY4 (LAMBDA (a)

(conD

((aToM (CDDR a))(FLY6 a a))

(t(FLY1 a a)))))
(DEF FLY2 (LAMBDA (a)

(conD

(t(FLYO a a))))
(DEF FLY8 (LAMBDA (a)

(conD

(t(cons (cAr a) NIL)))))
(DEF FLYT (LAMBDA (a b)

(conD

(t(cons (car a)(FLY8 (CDR b))
(DeF FLYO (LAMBDA (a b)

{(conD

(t(cons (CAR a)(FLYT (CDR b)b))))))
(DEF FLY6 (LAMBDA (a D)

(conD

((aATom a)(rLY2 b))

(:(F1.Y9 a b))
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(DEF FLYY (LAMBDA (ab)

(COND

(L{CONS (CAR a)(FLYO (CDR a)b))))))
(DEF FLY3 (LAMBDA (¢ b)

(coND

((AToM a)(rLy4 (cpr b)))

((ATOM (CDR @))(rLY11 a b))

(((rLY 10 ¢ b))
(DEF FLY1T (LAMBDA (a b)

(conD

(t(cons (car a)(rrLy4 (CDRr b))
(DEF FLY10 (LAMBDA {(a b)

(coND

(t(CONS (CAR a)(FLY3 (CDDR a)b))))))
(pEF FLY1 {LAMBDA (a b)

(conD

((ATom a)(¥LyY3 b b))

(r(FLY12 a b)))))
(DEF FLY12 (LAMBDA (a b)

(conD

(t(cons (CAR a)(kLY1 (CDR a)b)))))).

It appears that other modifications such as increased
predicate-building facilities and the ability to handle
multiple-argument functions can be built into the system
described here without changing its basic structure.

IX. CONCLUSION

This paper has presented a study of production rules as a
systematic mechanism for generating code in automatic
programming systems. Production rule systems allow a
clearer separation of the synthesis control structure from the
code generation and programming knowledge thanin other
approaches. By localizing knowledge into rule schemas we
feel that a program synthesis system will be easier to
understand, debug, and extend. With the few schemas we
have used here there is no problem of choosing the appro-
priate schema at a given point. With a larger rule set, the
problem of rule choice may indeed become significant.
During the first year of this research, code generation rules
were written as long lists of English language statements
such as, “Any routine that is hierarchically one level below a
buildup routine appends its result to the buildup variable.”
The production rule mechanism has made it possible to
reduce these lists to amuch simpler and uniform representa-
tion which is easier to understand and to implement. All
conventions having to do with hierarchy are coded into the
mechanism of the nonterminals and the subscripting
technique. The variable addition rules are handled by the
argument mechanism, and the flow of control is imbedded in
the nonterminal conventions and the substitutions for the
parameter “next.”

No attempt has been made to include enough rules here to
comprise a complete program synthesis system. It is hoped,
however, that enough rules have been given to illustrate the
flexibility and the power of the method. It is also clear that
the rules that have been given could be modified in many
ways to generate a wider variety of programs and to
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Fig. 12.  Algorithm 1 discovering loop.

generate, in some cases, more efficient code. For the sake of
readability of this paper, most of these added complexities
have been omitted. By constraining the range of allowed
programming constructs to a select few we have greatly
reduced the amount of search, which is a basic limitation of
many approaches to program synthesis. Thus this approach
is very efficient over the class of programs that it is designed
to handle. The use of production rule systems is a current
topic in artificial intelligence projects, and it is not yet
possible to say what limits exist on the extendibility or
applicability of this technique.

APPENDIX A
THE NUMBER OF COMPARISONS REQUIRED TO
FIND AN M-SEGMENT GROUP

Consider the operation of Algorithm 1 in discovering the
longest routine in a particular program. We understand
routine length L in this discussion to be the number of
subroutine calls which are made by the routine. The
discovery of the routine comes from finding an M-segment
group as shown in Fig. 12. Algorithm 1 finds this group in
step 2 by advancing j to the point shown and incrementing k
until it equals LM. Q is less than L because we are assuming
the M-segment group is associated with the longest routine.
So the outside loop of step 2 which advances j is entered
approximately Q + LM times. We approximate this with
(M + 1)L > Q + LM,since Q < L.Theinner loop is entered
L times with k = M, 2M, -+, LM. Within the inner loop,
approximately k comparisons are made each time to check
whether an M-segment group has been found. Assume that
approximately LM comparisons are made each time which
is an upper bound to k. Then the total number of compari-
sons made is the product of the number of entries into the
outer loop times the number of entries into the inner loop
times the number of comparisons:

(M + 1L« Lx LM < (M + 1)*L*.

If N routines must be found, the total number of compari-
sons is less than N(M + 1)*L2.
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AprpENDIX B Schema 34 (for Generating Buildup Code)
REVISED SCiiemMas 1, 2, aAND 3 L ) :
. ' . [PL. (X, XL), next] =
First, the call notation must be defined. Let € = (call

(P, hy), (P25, hy), -, (PY,. hy); nextl) where (PLX XL Y) = (COND ((P" entry check)Y)
‘ (P, m), for teardown routines (T(P(cD™R X)X L~
nextl = <Y, for buildup routines (call (PLy, ), o, (P h); Y)))
{ncxt, for straight-line routines. [Py (Xi, XX L), (call (P, hy), o (P h); YY)
If P4, is not a buildup routine, then C is defined to be (PR (Xi, XX L), (call (P, hy), ooy (Pl h); Y))
C= (Py(epMr X)X, XL Y). ’
If Py, is the leftmost nonbuildup routine for 1 < j < r, then [Pl (X4, X X L), (call; Y)).

C is defined to be
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