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Although Breadth-First Search (BFS) has several advaataggr Depth-First Search (DFS) its pro-
hibitive space requirements have meant that algorithngdess often pass it over in favor of DFS.
To address this shortcoming, we introduce a theory of EfficBFS (EBFS) along with a simple
recursive program schema for carrying out the search. Témryhis based on dominance relations,
a long standing technique from the field of search algorithvis show how the theory can be used
to systematically derive solutions to two graph algorithmamely the Single Source Shortest Path
problem and the Minimum Spanning Tree problem. The solstane found by making small sys-
tematic changes to the derivation, revealing the connestietween the two problems which are
often obscured in textbook presentations of them.

1 Introduction

Program synthesis is experiencing something of a resuegi; (20, 4] [14/ 22] following negative
perceptions of its scalability in the early 90s. Many of therent approaches aim for near-automated
synthesis. In contrast, the approach we follow, we galded program synthesiglso incorporates a
high degree of automation but is more user-guided. The has&is to identify interesting classes of
algorithms and capture as mughnericalgorithm design knowledge as possible in one place.The use
instantiates that knowledge with problem-spedifienaininformation. This step is often carried out with
machine assistance. The approach has been applied to Sutlgederive scores of efficient algorithms
for a wide range of practical problems including schedu]it®], concurrent garbage collectian [13], and
SAT solvers|[19].

One significant class of algorithms that has been investig@t search algorithms. Many interesting
problems can be solved by application of search. In such proaph, an initial search space is par-
titioned into subspaces, a process caletitting, which continues recursively until feasiblesolution
is found. A feasible solution is one that satisfies the giveablem specification. Viewed as a search
tree, spaces form nodes, and the subspaces after a splitherchildren of that node. The process
has been formalized by Smith [15,/17]. Problems which canobeed by global search are said to be
in the Global Search (GS) class. The enhancements in GS taratasd branch-and-bound include a
number of techniques designed to improve the quality of éaech by eliminating unpromising avenues.
One such technique is referred to@aminance relations Although they do not appear to have been
widely used, the idea of dominance relations goes back teaat the 70s [5]. Essentially, a dominance
relation is a relation between two nodes in the search trele that if one dominates the other, then the
dominated node is guaranteed to lead to a worse solutionttieasiominating one, and can therefore be
discarded. Establishing a dominance relation for a giveilpm is carried out by a user. However this
process is not always obvious. There are also a variety ofwawhich to carry out the search, for
example Depth-First (DFS), Breadth-First (BFS), Besstrietc. Although DFS is the most common,
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BFS actually has several advantages over DFS were it ndsfekponential space requirement. The key
to carrying out BFS space-efficiently is to limit the sizelod frontier at any level. However, this has not
been investigated in any systematic manner up to now.

This paper has two main contributions:

e We show how to limit the size of the frontier in search usingniftance relations, thereby enabling
space-efficient BFS. From this formal characterization,desve a characteristic recurrence that
serves as the basis of a program schema for implementingaGlaiarch. Additionally, we show
that limiting the size of the undominated frontier to oneutssin a useful class ajreedyalgo-
rithms.

¢ We show how to derive dominance relations and demonstrayestitisfy the greediness conditions
for two graph problems, namely Single Source Shortest RadhMinimum Spanning Tree by a
systematic process, which though not automatic, we beliagghe potential to be automated.

2 Background To Guided Program Synthesis

2.1 Process

The basic steps in guided program synthesis are:

1. Start with a logical specification of the problem to be edlv A specification is a quadruple
(D,R,0,c) whereD is an input typeR an output or result typey : D x Ris a predicate relating
correct or feasible outputs to inputs, artd x R— Int is a cost function on solutions. An example
specification is in Ed.]1 (This specification is explained iorendetail below)

2. Pick an algorithm class from a library of algorithm clasé@8LO0BAL SEARCH, LOCAL SEARCH,
DIVIDE AND CONQUER, FIXPOINT ITERATION, etc). An algorithm class comprisegpeogram
schemaontaining operators to be instantiated ancgiomatic theoryof those operators (se€ [9]
for details). A schema is analogous to a template in Java/Gwith the difference that both the
template and template arguments are formally constrained.

3. Instantiate the operators of the program schema usingniattion about the problem domain and
in accordance with the axioms of the class theory. To ensureatness, this step can be carried
out with mechanical assistance. The result is an efficigmrihm for solving the given problem.

4. Apply low-level program transforms such as finite diffesimg, context-dependent simplification,
and partial evaluation, followed by code generation. Mahthese are automatically applied by
Specware 1], a formal program development environment.

The result of Step 4 is an efficient program for solving thebpgm which is guaranteed correct by con-
struction. The power of the approach stems from the facttkieatommon structure of many algorithms

is contained ironereusable program schema and associated theory. Of coerpeotjiram schema needs

to be carefully designed, but that is done once by the libdasigner. The focus of this paper is the
GLOBAL SEARCH class, and specifically on how to methodically carry out Stdépr a wide variety of
problems. Details of the other algorithm classes and stepavailable elsewhergl[7,15,/13].

Example 1. Specification of the Single Pair Shortest Path (SPSP) proldeshown in Fig[ 2]1 (The»
reads as “instantiates to”) The inpDtis a structure with 3 fields, namely a start node, end node and a
set of edges. The resiis a sequence of edgés. (] notation). A correct result is one that satisfies the
predicatepath? which checks that a pa#must be a contiguous path from the start node to the end node
( simple recursive definition not shown). Finally the cosaalution is the sum of the costs of the edges
in that solution. Note that fields of a structure are accessed the ’.’ notation.
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2.2 Global Search

Before delving into a program schema for Global

Search, it helps to understand the structures ovey +— (s:Nodee: Nodeedges {Edge)

which the program schema operates. [In| [15], a Edge= (f : Nodet : Nodew: Nat)

search spgce's represented by a descriptor ofR +— [Edgeé

some typeR, which is an abstraction of the result o +— A (x,2) - path?(z x.s,x.€)

type R.  The initial or starting space isAdenAoted path?(p,s, f) = ...

L. There are also two predicateplit D x RxR, ¢ — A(X,2) - Jedgez€dgEW

written M, andextract R x R, written x. Split de-

fines when a space is a subspace of another Spalagure 2.1: Specification of Shortest Path problem
and extract captures when a solution is extractable

from a space. We say a solutiaris containedin a spacey (written z € y) if it can be extracted af-
ter a finite number of splits. A feasible space is one thatainatfeasible solutions. We often write
M (x,y,y') asy iy Y for readability, and even drop the subscript when there isarfusion. Global
Search theory (GS-theoryl5] axiomatically characterizes the relation between ghedicates!l, m
and x, as well as ensuring that the associated program schemautesna result that satisfies the
specification. In the sequel, the symbﬁsL,m,x,@ are all assumed to be drawn from GS-theory.
A theory for a given problem is created by instantiating éheeyms, as shown in the next example.
Example 2. Instantiating GS-theory for the Single Pair Shortest Padblem. The type of solution
spaceRis the same as the result tyB@. A space is split by adding an edge to the current path - that is
the subspaces are the different paths that result from g@ddiredge to the parent path. Finally a solution
can be trivially extracted from any space by setting theltego the space. This is summarized in Fig.
[2.2 (] denotes the empty list, angt+ denotes list concatenation).

2.3 Dominance Relations

As mentioned in the introduction, a dominance re-

R —- R lation provides a way of comparing two subspaces
L = Ax- in order to show that one will always contain at
h = Axpp)-Jecxedges least as good a solution as the other. (Goodness

p = p++le in this case is measured by some cost function on
X — Azp)-p=z solutions). The first space is saiddominate(r>)

the second, which can then be eliminated from the
Path solution in a space, this can be formalized as (all
free variables are assumed to be universally quan-

tified):
y>y =c'(xy) <c(xY) (2.1)
Another way of expressing the consequen{ofl(2.1) is
VZ ey o(x,Z)=3Jzey 0(x,2) Ac(X,2) <c(x,2) (2.2)

To derive dominance relations, it is often useful to firstivdern semi-congruence relation [15]. A
semi-congruence between two partial solutipasdy’, writteny ~ Y, ensures that any way of extending

lthere is a covariant relationship between an elemeiR afid ofR. For example, the initial space, corresponding to all
possible paths, is the empty list.
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y into a feasible solution can also be used to extgimto a feasible solution. Like, ~ is a ternary
relation overD x Rx R but as we have done with and many other such relations in this work, we drop
the input argument when there is no confusion and write it bary relation for readability. Before
defining semi-congruence, we introduce two concepts. Otheiglea ofuseabilityof a space. A space

is is useable, written* (x,y), if 3z x(y,2) Ao(X,z), meaning a feasible solution can be extracted from the
space. The second is the notion of incorporating sufficigiorination into a space to make it useable.
This is defined by an operatey : Rxt — Rthat takes a space and some additional information of type
t and returns a more defined space. The tygepends oR. For example iRis the type of lists, theh
might also be the same type. Now the formal definition of seamgruence is:

y~Yy =0 (XY €)= o (x,yde)

That is,y ~ Y is a sufficient condition for ensuring thatyf can be extended into a feasible solution
than so cary with the same extensiotf ¢ is compositional (that isz(s@t) = c(s) + ¢(t)) then it can be
shown [9] that ify ~ ¥ andy is cheaper thay/, theny dominates ‘y(writteny > y'). Formally:

y~ Yy Acxy) <cxy)=yry (2.3)

The axioms given above extend GS-theory [15].

Example 3. Single Pair Shortest Path. If there are two pattend p’ leading from the start node, [f
and p’ both terminate in the same node ther~ p’. The reason is that any path extens@(of type

t = [Edgé) of p’ that leads to the target node is also a valid path extensiop.fédditionally if p is
shorter tharp’ then p dominatesy’, which can be discarded. Note that this does not imply thatds
to the target node, simply that no optimal solutions areilosliscardingp’. This dominance relation is
formally derived in EgLB

Example 4. 0-1 Knapsack

The 0-1 Knapsack problem is, given a set of items each of whagha weight and utility and a
knapsack that has some maximum weight capacity, to packrtapsiack with a subset of items that
maximizes utility and does not exceed the knapsack capdgitien combinationg, K, if k andk’ have
both examined the same set of items &naeighs less thai’ then any additional items that can be
feasibly added t&' can also be added tq and thereforé ~ k'. Additionally if k has at least as much
utility ask’ thenk > K'.

The remaining sections cover the original contributionghed paper.

3 A Theory Of Efficient Breadth-First Search (EBFS)

While search can in principle solve for any computable fiomgtit still leaves open the question of how
to carry it out effectively. Various search strategies hbgen investigated over the years; two of the
most common being Breadth-First Search (BFS) and Dep#t-Biearch (DFS). It is well known that
BFS offers several advantages over DFS. Unlike DFS whichgeatrapped in infinite patEsBFS will
always find a solution if one exists. Secondly, BFS does rptire backtracking. Third, for deeper trees,
BFS will generally find a solution at the earliest possibl@anunity. However, the major drawback of
BFS is its space requirement which grows exponentially. thigrreason, DFS is usually preferred over
BFS.

2resolvable in DFS with additional programming effort
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Our first contribution in this paper is to refine GS-theory deritify the conditions under which a
BFS algorithm can operate space-efficiently. The key is ¢tavdtow the size of the undominated frontier
of the search tree can be polynomially bounded. Dominariaéaes are the basis for this.

In [15], the relatior! for | > 0 is recursively defined as follows:

yhly = (y=Y)
yhty = 3y yhy Ay dly

From this the next step is to define those spaces at a givetieirtevel that are not dominated. However,
this requires some care because dominance is a pre-orates ihsatisfies the reflexivity and transitivity
axioms as a partial order does, but not the anti-symmetrynaxiThat is, it is quite possible for to
dominatey’ andy’ to dominatey buty andy need not be equal. An example in Shortest Path is two paths
of the same length from the start node that end at the same rieatsh path dominates the other. To
eliminate such cyclic dominances, define the relatieny asy >y AY > V. Itis not difficult to show
that= is an equivalence relation. Now let theotient frontierat levell be the quotient sdtontier;/ ~

. For type consistency, let thepresentativdrontier rfrontier; be the quotient frontier in which each
equivalence class is replaced by some arbitrary membemabttass. The representative frontier is the
frontier in which cyclic dominances have been removed. IKirtaen theundominatedrontier undom

is rfrontier; — {y | 3y € rfrontier; - y > y}.

Now given a problem in the GS class, if it can be shown thatdoml|| for any| is polynomially
bounded in the size of the input, a number of benefits accrl)eBFS can be used to tractably carry
out the search, as implemented in the raw program schemagoffil(2) The raw schema of Ald.] 1
can be transformed into an efficient tail recursive form, hiak the entire frontier is passed down and
(3) If additionally the tree depth can be polynomially boaddwhich typically occurs for example in
constraint satisfaction problenw CSPs[[3]) then, under some reasonable assumptions dlgowbtrk
being done at each node, the result is a polynomial-timerigthgo for the problem.

3.1 Program Theory
A program theory for EBFS defines a recursive function whiclerg a space, computes a non-trivial
subset(y) of the optimal solutions contained yn where

Fx(y) =opte{z|ze yAO(x,2)}

opt is a subset of its argument that is the optimal set of solat{@nr.t. the cost functioe), defined as
follows:
optS={z]|ze SA(VZ €S- ¢(2) <c(Z))}

Also letundonty) beundonyy .1 N {yy|yhyy} wherel(y) is the level ofy in the tree. The following
proposition defines a recurrence for computing the feasitligtions in a space:

Proposition 5. Let (D, R, ﬁ, o,c, L,m, x,>,®) be a well-founded GS-Theory w.r.t. the subspace relation
M and let k(y) = {z|z€ yA0(x,2)} be the set of feasible solutions contained in y andy= {z|

X(¥,2) Ao(X,2) } UUyyy Gx(YY) } be arecurrence. Then,@/) = Fx(y) for any y
Proof. Seel([15]. O

Finally he following theorem defines a recurrence that candeel to comput& Oy(y):
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Theorem 6. Letrh be a well-founded relation of GS-theory and let &) = opt.{z| x(y,2) AO(X,2) } U
Uyyeundonty) GOx(yy)) be a recurrence. Then GOQ/) C FOx(y)

Proof. By generalized induction. The base case is those space#$ wbioot have subspaces. Then
GO(y) =opt{z| x(V,z) A0(x,2)}. By Prop[B{z| x(y,2) Ao(x,2)} = {z|ze yAo0(X,2)}. The inductive
case is as follows:

FO(y)

= {defn}
opt{z|zeyAno(x,2)}
= {defn of K}
opt(F(Y))
= {F(y) = Gx(y) by Profl}
opt({z| x(¥,2) A 0(%,2) } UUyyy Cx(YY))
= {Gx(yy) = Fx(yy) by Prof.
opt{z] X(¥:2) A 0(x, 2} UUyny Fe(yy)
= {distributivity of opt}
opt(opt{z | x(¥,2) Ao(x, )} Uopt(Uymyy Fx(YY))) by
= {distributivity and idempotence afpt}
OPt({z X(%,2) A 0(% 2)} Ulynyy OPL(Fx(YY)))
= {unfold defn off, fold defn of F Oy}
opt({z| x(¥,2) A0(%,2)} UUyyy FOx(¥Y))
2 {yy € undonty) =y rh yy}
Op'[({Z | X(y, Z) A O(X, Z)} U Uyyeundon(y) F OX(yy))
2 {induction hypothesi&Ox(yy) 2 GO(yy) }
Op'[({Z | X(y, Z) A O(X, Z)} U Uyyeundon(y) GOx(yy))
= {fold defn of GO}
GO(y)
U

The theorem states that if the feasible solutions immelgliatéractable from a spageare combined
with the solutions obtained fro 0, of each undominated subspagg and the optimal ones of those
retained, the result is a subsetr®y(y). The next theorem demonstrate non-triviﬁim‘ the recurrence
by showing that if a feasible solution exists in a space, traawill be found.

Theorem 7. Leth be a well-founded relation of GS-Theory and (i@ defined as above. Then

FOx(y) # 0= GO(y) # 0

Proof. The proof of Theorernl6 is a series of equalities except fordteps. It is sufficient to show that
both of these steps preserve non-triviality. The proof igimdpy induction over the subspace relation.
The first refinement reducég,,, F Ox(yY) t0 Uyycundonty) F Ox(YY). Supposelyy- y thyyA FOx(yy) # 0.

If yye undonty) then we are done. Otherwiseyif is dominated, then there is somyg > yy and by the
property of dominances Ox(yY) # 0, SOUyycundonty) F Ox(YY) # 0. The second refinement follows again
by induction, using the induction hypothe§i©y(yy) # 0 = GO(yy) # 0. O

From the characteristic recurrence we can straightforyaterive a simple recursive functiasts
to compute a non-trivial subset Bf for a giveny, shown in Alg.[1

3Non-triviality is similar but not identical to completersesCompleteness requires theateryoptimal solution is found by
the recurrence, which we do not guarantee.
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Algorithm 1 pseudo-Haskell Program Schema for EBFS (schema paramettdined)

solve :: D -> {E}
solve(x) = bfs x {initial(x)}

bfs :: D -> {RHat}-> {R}
bfs x frontier =
let localsof y = let z = extract x y
in if z!={} && o(x,z) then z else {}
locals = (flatten.map) localsof frontier
allsubs = (flatten.map) (subspaces x) frontier
undom = {yy : yy€allsubs &&
(yy’Esubs && yy’ ‘dominates® yy = yy==yy’)}
subsolns = bfs x undom
in opt(locals U subsolns)

subspaces :: D -> RHat -> {RHat}
subspaces x y = {yy: split(x,y,yy))

opt :: {R} -> {R}
opt zs = min {c x z | z €zs}

The final program schema that is included in the Specwarariitis the result of incorporating a
number of other features of GS such as necessary filtersdbdaests, and propagation, which are not
shown here. Details of these and other techniques arelin [15]

3.2 Aclass of strictly greedy algorithms (SG)

A greedy algorithm[[2] is one which repeatedly makes a lgcafitimal choice. For some classes of
problems this leads to a globally optimum choice. We can getaaacterization of optimally greedy
algorithms within EBFS by restricting the sizewidom for anyl to 1. If undom # 0 then the singleton
membery* of undom is called thegreedychoice. In other work [12] we show how to derive greedy
algorithms for a variety of problems including Activity &etion, One machine scheduling, Professor
Midas’ Traveling Problem, Binary Search.

4 Methodology

We strongly believe that every formal approach should bempanied by a methodology by which it
can be used by a competent developer, without needing gitghts. Guided program synthesis already
goes along way towards meeting this requirement by cagfai@sign knowledge in a reusable form. The
remainder of the work to be done by a developer consists tdntiating the various parameters of the
program schema. In the second half of this paper, we denad@dtow carrying this out systematically
allows us to derive several related graph algorithms, tagaonnections that are not always obvious
from textbook descriptions. We wish to reiterate that ofeedominance relation and other operators
in the schema have been instantiatimd result is a complete solution to the given prohléie focus
on dominance relations because they are arguably the malftroffing of the operators to design. The
remaining parameters can usually be written down by viswggdection.

The simplest form of derivation is to reason backwards frbendonclusion of ~ y = o*(x,y &
e) = o*(x,y®e), while assuming*(x,y & e) . The additional assumptions that are made along the way
form the required semi-congruence condition. The follgnexample illustrates the approach.
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o' (x,y@de)

= {defn of 0*}

Jz- x(y®ez) Ao(X,2)

= {defn of x }

ox,yde)

= {defn ofo}

path?(y & e,x.s,X.e)

= {distributive law forpath?}

dn- path?(y,x.s,n) A path?(e,n,x.e)

< {o*(x,y @ e), iedm- path?(y,x.s,m) A path?(e,m,x.e). Let mbe witness fon}
path?(y,x.s,m) A path?(e,m,x.e)

= {m=last(y).t, (wherelast returns the last element of a sequerjce)
last(y).t = last(y').t A path?(y,x.s,n)

Figure 4.1: Derivation of semi-congruence relation forgrPair Shortest Path

Example 8. Derivation of the semi-congruence relation for Single Ffiortest Path in Eg[]1 is a
straightforward calculation as shown in Eigl4.1. It reli@stbe specification of Shortest Path given in
Eg.[d and the GS-theory in Eg. 2.

The calculation shows that a patlis semi-congruent tg' if y andy both end at the same node and
additionallyy is itself a valid path from the start node to its last node c8itihe cost function is compo-
sitional, this immediately produces a dominance relayiony = last(y) = last(y') A path?(y,x.s,n) A
Y edgecy €dgEW < 3 qqecy €dgé.w. Note the use of the distributive law fpath? in step 4. Such laws are
usually formulated as part of a domain theory during a dordeoovery process, or even as part of the
process of trying to carry out a derivation such as the ontesjusvn. Given an appropriate constructive
prover (such as the one in KIDS |16]) such a derivation conlthct be automated. Other examples that
have been derived using this approach are Activity Seledfidl], Integer Linear Programming [115], and
variations on the Maximum Segment Sum problemn [10].

While this dominance relation could in principle be used amputer Single Source Shortest Path
using a Best-First search (such as A*) it would not be vergieffit as every pair of nodes on the frontier
would need to be compared. In the next section, a more polxdnfininance relation is derived which can
be used in a Breadth-First search, and even more importaetghown to be in the SG class, resulting in
a very efficient greedy algorithm. The dominance relatiet lerived is still utilized, but in a subsidiary
role.

5 More complex derivations: A family of related algorithms

5.1 (Single Source) Shortest Path

Previously in Eg[B we derived a dominance relation for thel{tected) single pair shortest path prob-
lem. To solve the problem of finding all shortest paths fronivem start node to every other node in
the graph it is convenient to consider the output as a setgdsthat form what is called@ath tree a
subgraph of the input graph which forms a spanning tree doatt¢he start node. The desired output is a
path tree in which every path from the root is the shortese Jpecification of Single Pair Shortest Path
in Fig. [2.1 is revised as shown in Fig._b.1 The revised ing#ah of Global Search theory is shown
in Fig. [5.2 In what follows, the extends operatoris shown by simple concatenation. The goal is to
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D — (s:Nodeedges {Edgée)

Edge= (a: Nodeb: Nodew: Nat)
{Edge

A(X,z) - connectedx,z) A acycligx, z)
A (X, Z) ) Zpe pathsFronx.s) C/( p)

c(p) = zedg§pedgew

o
111

Figure 5.1: Specification of Shortest Path problem

R —» R

1L — Ax-{}

M —  A(X p,pe) - Jec x.edges pe= pU{e}
X = Alzp)-p=z

& - U

Figure 5.2: GS instantiation for Shortest Path

show that there is at most one undominated child followingld ef a partial solutiona. Let ae and
a€ be two children following a split ofr, that is the grapha with edgee added and that witl added.
Without loss of generality (w.l.0.g.) assume neitheror € are already contained im and both connect
to a. LetZ = a€w be a feasible solution derived frooe'. The task is to construct a feasible solution
z from ae and discover the conditions under which it is cheaper thaiVe will use the definition of
general dominancé (2.2), repeated here for convenience:

VZ ey o(x,Z)=Jzey 0(x,2) Ac(X,2) <c(x,2)

Establishingo(aew) requiresconnectedaew) andacycliq aew).

In guided program synthesis, it is often useful to write ddawas [16] that will be needed during the
derivation. Some of the most useful laws are distributivesland monotonicity laws. For example the
following distributive law applies tayclic:

acycliqaB) = acycliga) A acyclio3) Anac(a, B)
whereac defines what happens at the “boundary’ooand3:
ac(a,B) =vmn-3Ipe€ a*- path?(p,m.n) = —-3q € B* - path?(q,m,n)

requiring that ifp is a path ina (a* is a regular expression denoting all possible sequencedgefsen
a) connectingm andn then there should be no path betwearandn in 3. Examples of monotonic-
ity laws areacycliqaf3) = acycliqa) and connecteda) A connecte@B) A nodega) Nnodegf) #

0 = connecteda ). By using the laws constructively, automated tools sucKI&S [16] can often
suggest instantiations for terms. For instance, aftergoid connecteda€ «'), the tool could apply
the monotonicity law forconnectedto suggestonnecte@ae€w'), that is to tryw = €w’. With this
binding for o we can attempt to establigttycliq aew), by expanding its definition. One of the terms
is...ac(e,a€ ) ... which fails becauseonna€ w’) implies path?(a€ /', e.a,e.b) so adding edge
creates a cycle. The witness to the failure is some péta €;...e whereej.a=eaAe.b=eb.
One possibility is thaej = e = e, that is«w' containse. If so, let o' = ey’ for somey’. Then
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Figure 5.3: Feasible solutiome' w/

Z=0€dw =afey = aedy’. Let w= €y and nowz=Z. Otherwise, w.l.0.g assume thaton-
nects witha ate.a, and therefore so does, so the casej.b = e.b is not very interesting. The only
option then is to remove edgg from «’ . Let ' = e’ and sow is €Y’'. Now the requirement
becomes

acycliqae) Aacyclid€ ') nac(ae €y)

acyclig€ (') follows fromacycliq a€ ') by monotonicity andic(ae, € (') follows fromacycliqa€e ¢/')
and the fact that was chosen above to remove the cycle@gw’ . This demonstrates(aew) provided
acycliqae) wherew is constructed as above.

Finally, to establish general dominance it is necessaridwgshatz costs no more thar. Note that
the cost of a solution is the sum of individual path costdisigufrom x.s. Let m denotee.a andn denote
e.b (and analogously fo#). Now consider a path to a nogben Z. If the path top does not contain edge
& ie. pass through then the same path holdsanOtherwise lef3’€y'€’ 4 be a path t in Z wherege”’
is the edge above (see Fid.'5.3p’ is a path fronx.sin o and€ is some edge that leads outafon
the path top. Then the corresponding pathiis Bed (see Fig[5.4).

c(aew, Bed) < cla€w',B'eye d)

= {expand defns

c(z,Be)+c(z,d) <c(Z,B'e)+c(Z,€)+c(z,0)
= {+ve edge weights, triangle inequaljty
c(z,Be) <c(Z,p'e)

As there were no restrictions @above, letg be the witness fo# and this establishes That is, provided
the pathBeis shorter thaB’€, there cannot be a shorter path edo n. As cost is the sum of the path
costs, it follows that(x, aew) < c(a€«'). The dominance condition is there> a€ < acycliqae) A
c(z,Be) <c(Z,B'€). Finally, as itis not known at the time of the split whietwill lie on the path tce.b,

to be conservative, letbe that edge whose endpob is the closest to the start node. This is therefore
the greedy choice. lincorporating finite differencing torementally maintain the distances to the nodes,
using the dominance relation derived earlier for Single Bhortest Path to eliminate the longer paths to
a node, and data structure refinement results in an algostmitar to Dijkstra’s algorithm for MSTSs.
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Figure 5.4: Feasible solutiomew

D — {Edge | connected
Edge= (f : Nodet : Nodew: Nat)

{Edge
A(X,2) - connectedx,z) A acycligx, z)

A (Xa Z) : Zedgegz edgeW

Figure 5.5: Specification of Min. Spanning Tree problem

o
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5.2 Minimum Spanning Tree

The specification of MST is very similar to that of ShortesthRavith the difference that there is no
longer a distinguished nodg the input graph must be connected, and the cost of a soligtisimply
the sum of the weights of the edges in the tree The instamtiati the simple GS operators is as for SP.
Again, any edge that is added must not create a cycle or itotdead to a feasible solution. We will
describe the algorithm construction process informallas®o expose the connection with the Shortest
Path algorithm more clearly. However the derivations shbere can also be similarly formalized.

There are now two ways to satisfy the acyclicity requirem@nte is by choosing an edge connecting
a node ina to one outside ofr. Another is to choose an edge that connects two nodes withibeing
careful not to create cycles. The two options are examingt] ne

Option 1: LetZ = a€w' be a feasible solution derived from€'. If w' includese then letw in a
feasible solutiorz = aew simply bew’ — {e} U {€} and there= Z. Otherwise, ifw’ does not contain
e there must be some other path connectingith et. W.l.0.g. assume that path is w If a€w' is
feasible, then it is a tree, 30’ is also a tree. Therefore it is not difficult to show that aew’ is also a
spanning tree. Now to show dominance, derive conditionguwthichz is cheaper thad:

c(x,aew) < c(x,a€w')
= {defn ofc}
Zedge{aew’ ed gew < Zedgegae/w' ed gew

ew<ée.w
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Finally, as it is not known at the time of the split whiehwill lie on the path toet, to be conservative,
let e be that edge with the least weight connectingvith an external node . This is therefore the greedy
choice. The result is an algorithm that is similar to Prim¢goaithm for MSTs.

Option 2: The difference with Option 1 is in hogis chosen in order to ensure acyclicity. For a
feasible solutiong must not contain any cycles. Therefore it consists of a ctila of acyclic connected
components, ie trees. Any new edge cannot connect nodem wittbomponent without introducing a
cycle. Therefore it must connect two component trees. Cadmgetwo trees by a single edge results in
a new tree. As in Option 1, left = a€ «' be a feasible solution derived froo¥. If «' includese then
let w in a feasible solutiorz = aew simply bew — {e} U{€} and therz = Z. Otherwise, ifw’ does
not containe there must be some other edge used to connect the two tréesnbald have connected.
W.l.0.g. assume that edgeds If a€«' is feasible, then it is a tree, 0’ is also a tree. Therefore it is
not difficult to show thaz = aew' is also a spanning tree. The derivation of a cost comparisiation
is identical to Option 1, and once again the greedy choiceestigee that connects two trees and is of
least weight. The result of this option is an algorithm tlsadimilar to Kruskal's algorithm.

In conclusion, we observe that far from being completelfed#nt algorithms, Dijkstra’s algorithm,
Prim’s algorithm and Kruskal’s algorithm differ only in wesmall number of (albeit important) ways. In
contrast, many textbook descriptions of the algorithmsihice the algorithms out of the blue, followed
by separate proofs of correctness. We have shown how a sgtstepmocedure can derive different
algorithms, with relatively minor changes to the derivaio

6 Related Work

Gulwani et al. [[21, 4] describe a powerful program synthagigroach calletemplate-based synthesis
A user supplies a template or outline of the intended progstautture, and the tool fills in the details. A
number of interesting programs have been synthesized tlimgpproach, including Bresenham’s line
drawing algorithm and various bit vector manipulation moes. A related method is inductive synthesis
[6] in which the tool synthesizes a program from examples [8kter has been used for inferring spread-
sheet formulae from examples. All the tools rely on powe8MT solvers. The Sketching approach of
Solar-Lezama et al [14] also relies on inductive synthegisketch similar in intent to a template, is
supplied by the user and the tool fills in such aspects as loopds and array indexing. Sketching relies
on efficient SAT solvers. To quote Gulwani et al. the beneftheftemplate approach is that “the pro-
grammer only need write the structure of the code and thefittzobut the details”[[21].Rather than the
programmer supplying an arbitrary template, though, wgssigthe use of a program schema from the
appropriate algorithm class (refer to Step 2 of the proaeSec[2.11). We believe that the advantage of
such an approach is that, based on a sound theory, much eadabe inferred at the abstract level and
this is captured in the theory associated with the algorithass. Furthermore, knowledge of properties
at the abstract level allows specialization of the prograhema with information that would otherwise
have to either be guessed at by the programmer devising daengp inferred automatically by the tool
(e.g. tail recursive implementation or efficient implenagmn of dominance testing with hashing). We
believe this will allow semi-automated synthesis to scaléodarger problems such as constraint solvers
(SAT, CSP, LP, MIP, etc.), planning and scheduling, and @/8llprograms such as garbage collectors
[13].

Program verification is another field that shares commonsgeih program synthesis - namely a
correct efficient program. The difference lies in approaateprefer to construct the program in a way
that is guaranteed to be correct, as opposed to verifyingoiiectness after the fact. Certainly some
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recent tools such as Dafny![8] provide very useful feedbachknr IDE during program construction.
But even such tools requires significant program annotsitianthe form of invariants to be able to
automatically verify non-trivial examples such as the Schgaite algorithm[[8]. Nevertheless, we do
not see verification and synthesis as being necessarilyseppdor example, ensuring the correctness of
the instantiation of several of the operators in the progsalrema which is usually done by inspection
is a verification task, as is ensuring correctness of thensattbat goes in the class library. We also feel
that recent advances in verification via SMT solvers wilbdielp guided synthesis by increasing the
degree of automation.

Refinement is generally viewed as an alternative to syrgdhe&ispecification is gradually refined
into an efficient executable program. Refinement methods as& and B have proved to be very pop-
ular. In contrast to refinement, guided program synthesesady has the program structure in place,
and the main body of work consists of instantiating the se@hparameters followed by various program
transformations many of which can be mechanically applgath refinement and synthesis rely exten-
sively on tool support, particularly in the form of provel§e expect that advances in both synthesis and
refinement will benefit the other field.

7 Summary and Future Work

We have formulated a theory of efficient breadth-first sebaged on dominance relations. A very useful
specialization of this class occurs when there is at mosuademinated child node. This is the class of
Strictly Greedy algorithms. We have also derived a recawedrom which a simple program schema can
be easily constructed. We have shown how to systematicatiyeldominance relations for a family of
important graph algorithms revealing connections betwkem that are obscured when each algorithm
is presented in isolation.

Nearly all the derivations shown in this paper have beeneshwut by hand. However, they are
simple enough to be automated. We plan on building a proarititorporates the ideas mentioned
in here. We are encouraged by the success of a similar progewis part of KIDS, a predecessor to
Specware.
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