
Generating Programs plus Proofs by Refinement

Douglas R. Smith

Kestrel Institute, Palo Alto, California 94304 USA

1 Technical Approach

We advocate an automated refinement approach to developing programs and
their proofs. The approach is partially embodied in the Specware system [6]
which has found industrial and government applications. Our view is that the
future of software engineering lies in the tight integration of synthesis and analy-
sis processes.

1.1 Specifications

Refinement-oriented development starts with the requirements of the procuring
organization. These requirements are typically a mixture of informal and semi-
formal notations that reflect the needs of various stakeholders. To provide the
basis for a clear contract, the requirements must be formalized into specifications
that both the procuring organization (the buyer) and the developer (the seller)
can agree to. Specifications can be expressed at a variety of the levels of abstrac-
tion. At one extreme a suitable high-level programming language can sometimes
serve to express executable specifications. However, an executable specification
requires the inclusion of implementation detail that (1) is time-consuming to de-
velop and get right, and (2) might be better left to the developer’s discretion. At
the other extreme, a property-oriented language (such as a higher-order logic)
can be used to prescribe the properties of the intended software with minimal
prescription of implementation detail. The solution in Specware is a mixture
of logic and high-level programming constructs that provides a wide-spectrum
approach, allowing specification writers to choose an appropriate level of ab-
straction from implementation detail.

1.2 Refinement

A formal specification serves as the central document of the development and
evolution process. It is incrementally refined to executable code. A refinement
typically embodies a well-defined unit of programming knowledge. Refinements
can range from situation-specific/ad-hoc rules, to domain-specific transforma-
tions, to domain-independent theories/representations of abstract algorithms,
data structures, optimization techniques, software architectures, design patterns,
protocol abstractions, and so on. KIDS [9] and Designware [12] are examples of
systems that automate the construction of refinements from reusable/abstract



design theories. A crucial feature of a refinement from specification A to specifi-
cation B is that it preserves the properties and behaviors of A in B, while typi-
cally adding more detail in B. This preservation property allows us to compose
refinements, meaning that a chain of refinements from an initial specification
to a low-level executable specification can be treated as a single property- and
behavior-preserving refinement, thereby establishing that the generated code
satisfies the initial specification. An intrinsic capability of a refinement process
is that proofs of consistency between the source and target of a refinement can
be composed in a similar way. While this capability has not been implemented
for general-purpose design (to our knowledge), it paves the way for refinement
machinery that produces programs and proofs at the same time. Evidence for
the feasibility of this capability may be found in several recent domain-specific
code generators that generate programs, proofs, and other certification docu-
mentation automatically from specifications; e.g. the Specware-based JavaCard
Applet generator from Kestrel [3], and the AutoBayes and AutoFilter projects
at NASA Ames [14, 15].

Why take a refinement approach to developing programs plus proofs? We
can look at this question from several points of view.

1. Software Lifecycle View – Boehm observed many years ago that it is expo-
nentially less expensive to fix an error in the requirements phase than to fix it in
subsequent design, maintenance, and evolution phases [2]. The lesson is to focus
attention on the requirements up-front and to rigorously maintain consistency
during development and evolution (for a comparative experiment along these
lines see [16]). This is the essence of refinement-oriented development. Boehm
also estimated that many measures of software cost (including cost, schedule,
and errors) increase superlinearly in code size (approximately to the 1.2 power).
By focusing on specifications that omit implementation detail, the developer
gains a quantitative advantage in managing this intrinsic complexity during de-
sign and evolution. In a simple experiment at Kestrel, Green and Westfold [5]
show a 2-5x increase in dependencies when moving from specs to code. Since
dependencies seem to be closely related to the inertia of complex systems, again
the advantage accrues to a development process that focuses development effort
on specifications and early designs.

2. Language View – Progress in Computer Science is often measured by
progress in the the abstraction levels provided by programming and modeling
languages. The natural continuation is towards languages that abstract away
increasing amounts of implementation detail, together with the generative mech-
anisms for adding the missing detail. Compilers and automatic program genera-
tors typically work by supplying fixed implementations for the constructs of the
source language. Clearly, for general-purpose design there will not be unique ways
to implement property-oriented specifications, but instead there will be a choice
of design abstractions that may apply. Therefore, a general-purpose refinement
environment will be interactive, in much the same way that many successful
theorem-provers are currently driven by user-guidance and automated tactics
(e.g. PVS, HOL, Isabelle). However, by narrowing the scope to domain-specific



specification languages, the refinement process can again be fully automatic; e.g.
Planware [1], JavaCard, AutoBayes, AutoFilter, and others).

3. Cost of Assurance View – A refinement-oriented development process has
a different cost structure than traditional development. There is a capital invest-
ment in building domain models and machine-usable design knowledge, but these
costs are amortized through reuse. Thus the cost of producing the first program
in a domain may be higher, but the incremental cost of producing subsequent
versions and other programs in the domain should decrease below the level of
conventional programming. The cost of handling of proof obligations of specs and
refinements should be less than the cost of analyzing the final product. Moreover,
the incremental cost of (re)assurance under evolutionary steps is dramatically
reduced under refinement when compared with post-hoc verification. The key
lies in the reuse of the refinements. In a domain-specific setting, an evolution
step is performed by modifying the initial specification or model, and then auto-
matically generating a new program, plus its proof and certificates. In a general-
purpose setting, the refinement structure may be at least partially replayed. If
the refinements are generic and derived from reusable design knowledge, then
the refinements may often still apply and absorb the changes. The assurance
costs are mainly borne at library-development time when the generic/reusable
refinements are verified (or generated correctly).

2 Progress – Specware Foundations

Specware [6] provides a mechanized framework for the composition of specifi-
cations and their refinement to codes in several programming languages. The
framework is founded on a cocomplete category of specifications. The specifi-
cation language, called MetaSlang, is based on a higher-order logic with predi-
cate subtypes and extended with a variety of ML-like programming constructs.
MetaSlang supports pure property-oriented specifications, as well as executable
specifications and mixtures of these two styles. Specification morphisms are
used to structure and parameterize specifications, and to refine them. Colim-
its are used to compose specifications, instantiate parameterized specifications,
and construct refinements. Diagrams are used to express the structure of large
specifications, the refinement of specifications to code, and the application of
design knowledge to a specification. A recent extension of Specware supports
the specification, composition and refinement of behavior through a category of
abstract state machines [8].

The framework features a collection of techniques for constructing refine-
ments based on formal representations of programming knowledge. Abstract al-
gorithmic concepts, datatype refinements, program optimization rules, software
architectures, abstract user interfaces, and so on, are represented as diagrams
of specifications and morphisms. We arrange these diagrams into taxonomies,
which allow incremental access to and construction of refinements for particular
requirement specifications [11].



The framework is partially implemented in the research systems Specware,
Accord, and Planware. Specware provides basic support for composing speci-
fications and refinements, and generating code. Code generation in Specware
is supported by inter-logic morphisms that translate between the specification
language/logic and the logic of a particular programming language (e.g. Com-
monLisp, C, and Java). It is intended to be general-purpose and has found use
in industrial settings. Accord extends Specware to support the specification and
refinement of behavior and the generation of imperative code [8]. Planware trans-
forms behavioral models of tasks and resources into high-performance scheduling
algorithms [1].

A key feature of Kestrel’s approach is the automated application of reusable
refinements and the automated generation of refinements by instantiation. Previ-
ous experience with manually constructed and verified refinement (e.g. in VDM
or B) has resulted in small-scale developments and costly rework when require-
ments change. In contrast, automated construction of refinements allows larger-
scale applications and a more rapid evolution process. For example, in the 1990’s
Kestrel developed a strategic airlift scheduler for the US Air Force that was en-
tirely evolved at the specification level. The application had about 24000 lines
of generated code from a first-order logic specification. Over 100 evolutionary
derivations were carried out over a period of several years using the KIDS system
[9], each derivation consisting of approximately a dozen user design decisions.
Current scheduling applications being developed using the newer Planware sys-
tem consist of over 100k lines of generated code from less than 1000 lines of
source specification. Code generation is completely automatic and takes a few
minutes.

3 Research Challenges

Although we have emphasized a synthetic approach to program assurance, our
view is that the future of software engineering lies in the integration of synthesis
and analysis processes. By way of analogy, conventional programming relies on
a tight integration of synthesis and analysis – compilers and their type analyzers
work together to check the programmer’s work and generate executables; and
inside the compiler, flow analysis is used to inform various optimizations that
transform and speed up the executable.

Similarly, we see an opportunity for a tight integration between the refine-
ment process and the assurance generation process. At the spec level, there are
proof obligations on the static consistency that can be verified (this is essentially
an extended type analysis that includes for example, checking that predicate
subtype properties hold). We would like to record such proofs together with the
specification. When we compose specs, we would like to reuse those proofs to
obtain necessary proofs of consistency of the composite specification.

Refinements also have proof obligations, which can be handled in a post-hoc
verification style, or in a correct-by-construction style (which we prefer). Con-
structive theorem-proving (e.g. [4, 7]) in the correct-by-construction generation



of refinements provides a clear example of integrated, automated analysis and
synthesis. In order to construct an expression to serve as the translation of a
domain symbol in a specification morphism, we set up the problem of finding
a constructive proof for a forall-exist formula [10]. A witness for the existential
may be found by a saturation procedure in general logics or algorithmically by
constraint solving in special theories.

One example of refinement construction involves the use of constructive the-
orem proving and reuse of code templates – code fragments for instantiating a
code template can be generated as witnesses to existentially quantified variables
in the correctness formula for the template, resulting in a correct-by-construction
instantiation of the template [10, 13]. The proving should be more robust and
informed because it is taking place in a context where both intent (the specifi-
cation) and design knowledge (the template and code context) are explicit.

Another point of connection lies in refinement generators. Some optimization
techniques, such as simplification, partial evaluation, and finite differencing, are
written as metaprograms that use a constructive prover and generate refinements
[9]. To support the construction of both code and proofs, the metaprogram must
produce also a proof for the obligations of the refinement and appropriately
transform the proofs in the source specification.

One general need is for mechanisms to carry proofs along with specs as they
undergo refinement. With such mechanisms, the definitions and proofs at one
level are refined to definitions and proofs at the next level, so that proofs are
integral to design, rather than a side activity. Proofs must also be composed
under colimit, so that again, all composition and refinement activities produce
both code and proofs.

The discussion above focuses on technical approaches to developing program
and proof together during a refinement process. An orthogonal issue is the con-
trol of such a refinement process. As noted earlier, for general-purpose design
it unlikely that there can be a tractable automatic procedure for translating
requirement-level specifications to correct and efficient code. Our research pro-
totypes KIDS [9] and Designware [12] support an interactive interface in which
users select which form of design knowledge to apply next (design knowledge
is embodied in metaprograms that may invoke constructive inference for sub-
tasks). The Specware system [6] supports user-written metaprograms which, at
compile time, have the effect of generating implementations from specifications
in higher-order logic. Our experience with developing a variety of medium-scale
applications with these systems is that, because of the granularity of the knowl-
edge representations that we use, relatively few user decisions (a dozen or two)
are needed to generate fairly complex, but correct, code.

However, the sweet spot for automated code generation lies in narrowing
down the specification language and design knowledge to specific application
domains. Planware [1] and JavaCard [3] are two domain-specific fully automatic
code generators built in Specware. Planware defines a domain-specific require-
ment language for modeling planning and scheduling problems. From such a
problem model (typically 100 to 1000 lines of text derived from mixed text



and graphical input), it automatically generates a complex planner/scheduler
together with editors and visual display code (over 100,000 lines of code for
some applications). By narrowing the specification language, the generator de-
velopers can effectively hard-wire a fixed sequence of design choices (of algo-
rithms, datatype refinements, optimizations) into an automatic design tactic.
The JavaCard generator (see paper in this issue) furthermore also generates
proof of consistency between specification and code as a by-product of refine-
ment.

4 Concluding Remarks

In light of the above discussion, we see the following activities as key aspects of
an effective and scalable technology for generating programs and proofs of their
consistency with specifications.

– Developing libraries of design theories and refinement generators – e.g. the-
ories and application mechanisms for generating refinements that embody
knowledge of architectures, formalized design patterns, policy classes, algo-
rithm theories, datatype refinements, optimization transforms, and so on.

– An elaborated refinement process that tightly integrates the generation of
refinements with recording, composition, and refinement of proofs.

– Experiments in the rational reconstruction of benchmarks – develop formal
specifications for various benchmarks, as well as relevant domain theories
and design theories, followed by a rational reconstruction of the design by
refinement of similar code from the specifications.



References

1. Becker, M., Gilham, L., and Smith, D. R. Planware II: Synthesis of schedulers
for complex resource systems. Tech. rep., Kestrel Technology, 2003.

2. Boehm, B. Software Engineering Economics. Prentice-Hall, Englewood Cliffs,
N.J., 1981.

3. Coglio, A. Toward automatic generation of provably correct Java Card applets. In
Proc. 5th ECOOP Workshop on Formal Techniques for Java-like Programs (July
2003).

4. Green, C. Application of theorem proving to problem solving. In Proceedings of
the First International Joint Conference on Artificial Intelligence (1969), pp. 219–
239.

5. Green, C., and Westfold, S. Experiments suggest high level formal models
and automated code synthesis significantly increase dependability. Tech. Rep.
KES.U.00.8, Kestrel Institute, January 2001.

6. Kestrel Institute. Specware System and documentation, 2003.
http://www.specware.org/.

7. Manna, Z., and Waldinger, R. A deductive approach to program synthesis.
ACM Transactions on Programming Languages and Systems 2, 1 (January 1980),
90–121.

8. Pavlovic, D., and Smith, D. R. Composition and refinement of behavioral
specifications. In Proceedings of Sixteenth International Conference on Automated
Software Engineering (2001), IEEE Computer Society Press, pp. 157–165.

9. Smith, D. R. KIDS – a semi-automatic program development system. IEEE
Transactions on Software Engineering Special Issue on Formal Methods in Software
Engineering 16, 9 (1990), 1024–1043.

10. Smith, D. R. Constructing specification morphisms. Journal of Symbolic Compu-
tation, Special Issue on Automatic Programming 15, 5-6 (May-June 1993), 571–606.

11. Smith, D. R. Toward a classification approach to design. In Proceedings of Al-
gebraic Methodology and Software Technology (AMAST) (1996), vol. LNCS 1101,
Springer-Verlag, pp. 62–84.

12. Smith, D. R. Mechanizing the development of software. In Calculational System
Design, Proceedings of the NATO Advanced Study Institute, M. Broy and R. Stein-
brueggen, Eds. IOS Press, Amsterdam, 1999, pp. 251–292.

13. Smith, D. R., and Lowry, M. R. Algorithm theories and design tactics. Science
of Computer Programming 14, 2-3 (October 1990), 305–321.

14. Whalen, M., Schumann, J., and Fischer, B. Synthesizing certified code.
In Proc. Formal Methods Europe (FME 2002) (Copenhagen, Denmark, 2002),
Springer LNCS 2391, pp. 431–450.

15. Whittle, J., and Schumann, J. Automating the implementation of Kalman
filter algorithms. Tech. rep., NASA Ames Automated Software Engineering Group,
2004. submitted for publication.

16. Widmaier, J., Schmidts, C., and Huang, X. Producing more reliable software:
Mature software engineering process vs. state-of-the-art technology? In Proceedings
of the International Conference on Software Engineering 2000 (Limerick, Ireland,
2000), ACM, pp. 87–92.


