,‘ﬁ A\/ - M’l(“fg, (& roeyconm Cos At o S Te ::J'\»*\\'c\vlas)
[-;_‘QS. @(Q’_('mwv\} G":u.\Lw 3 CLV\A) Kbtﬁx’a‘}“c)&{}
Yv\o\aM‘;l(l’&v\ Pu‘o Q&n . NQU’ \p"’k-, PP %O'-)"‘g‘i“‘, ‘q%"“‘{ .

SYNTHESIS OF LISP: A SURVEY 307

CHAPTER 15

The Synthesis of LISP Programs from Examples:
A Survey*

Douglas R. Smith
Naval Postgraduate School
Monterey, California

A. Introduction

For some kinds of programs at least, a few well chosen examples of input and output behavior can convey
quite clearly to a human what program is intended. The automatic construction of programs from the informa-
tion contained in a small set of input/output pairs has received much attention recently, especially in the LISP
language. The user of such an automatic programming system supplies a sequence of input-output (1/0) pairs
<XpY1>, <X2,¥2>>, oy <Xp¥a>. The system tries to obtain enough information from the examples to infer
the target programs behavior on the full domain of inputs. For example, if a user inputs the sequence
<nilnil>, <(a),(a) >, <(ab),(ba)>, <(abc),(cba)> then the system should return a program such as

* The work reported herein was supported by the Foundation Research Program of the Naval Postgraduate School with funds provided by
the Chief of Naval Research.
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(F x) = (G x nil)
(G x z) = (cond ((atom x) 2)
(T (G (cdr x) (cons (car x) 2)))).

If the system is unable to synthesize a program or needs more examples to verify a hypothesized program then
the machine may request more examples. This paper presents an overview of the basic work on program con-
struction from examples and recent approaches to this problem in the domain of the LISP language. It has not
been possible to avoid glossing over many details and interesting mechanisms in the synthesis techniques dis-
cussed here. Our discussion is a simplified treatment of these techniques aimed at presenting what is essential
and novel about them. Further detail may be found by consulting the original papers.

In general the classes of programs which have been studied for synthesis purposes are constructed from
the LISP primitives car, cdr, cons, the predicates atom or null, the McCarthy conditional and recursive function
procedures. An arbitrary composition of car and cdr functions will be called a basic function. e.g., car'cdris a
basic function (usually abbreviated to cadr) where " is the composition operator. A cons-structure is a function
which can be described recursively as follows: i) the special atom nil is a cons-structure, ii) a basic function or a
call to a program is a cons-structure, and iii) a function of the form (cons F F,) is a cons-structure if F; and F,
are cons-structures. For example, (cons (car x) (F (cdr x) z)) is a cons-structure with arguments x and z. The
programs to be synthesized usually have the following general form:

(F xz) = (cond ((p; x) (f; x 2))
((py x) (fx 2))

((py %) (£ x 2))
(T(Hx (F(bx) G x2)))

where H and G are themselves programs of this type, p;,p,, --»Px are predicates, fi,fy, ....f} are cons-structures,
and b is a basic function. For simplicity the arguments are restricted above to x and z: in general more or less
will be required. If there is no variable z and no function G then F will be called a Jorward-loop program. If
there is no H function then the last line of the above scheme has the form (T (F (b x) (G x 2))) )), and F is
called a reverse-loop program. '

B. Basic Work

Work on inductive inference properly includes programming by examples because the synthesis of a pro-
gram generally involves the inference of an extended pattern of program behavior from the patterns discovered
in the examples. In the most general setting of computability theory the problem of inductive inference of
functions from input/output pairs has been explored in [Gold 1967, Blum & Blum 1975, Barzdin 1977]. The
basic result from this work is that a function can be inferred from I/0 pairs if it belongs to a class of enumer-
able functions with a decidable halting problem. Given 1/0O pairs {<xy, Y12, <Xy, y3>,...<Xp, ¥, >} our infer-
ence mechanism enumerates functions one at a time until one is found which generates y; given x; for each i ==
1,2,..n. If we then extend our examples set and the chosen function does not satisfy some new 1/0 pair then
our mechanism continues its enumeration until a new function is found which does satisfy the examples. Of
course such a mechanism is useful only for theoretical purposes since the process of enumerating over a whole
class of functions is too expensive for practical use. Nonetheless, this work shows that it is possible to infer
large useful classes of programs simply from examples of input/output behavior.

Biermann and his co-workers [Biermann et al. 1975, Biermann and Krishnaswamy 1976] have looked at
methods for speeding up this enumerative search process based on the use of a program trace. Given an exam-
ple input and a desired output, a semitraceis a functional expression which correctly computes the example out-
put from the input but which may allow several different orders of evaluation. A traceis a semitrace which
only has one possible order of evaluation. E.g. a semitrace for a computation of 3! is (times 3 2 1). Because of
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the associativity of multiplication we obtain two distinct traces from this semitrace: (times 3 (times 2 1)) and
(times (times 3 2) 1). Given this kind of information Biermann has shown how to speed up the enumerative
process enormously by enumerating over only those programs whose trace on an example input corresponds to
some initial subsequence of the given trace. This task is accomplished by partitioning the trace such that each
block corresponds to a unique instruction in the desired program. The process of finding such a partition is
controlled by a straightforward backtrack search. Pattern matching, generation of predicates and looping control
structures are involved in determining whether a given trace instruction belongs to certain block (a process
Biermann calls instruction merging). See [Bauer 1979] for recent work on program synthesis from traces.

Despite the great gain which can be realized by using trace information in program synthesis, Biermann’s
mechanism is again an enumerative method and thus can take large amounts of time in order to synthesize all
but the simplest programs. The special attraction of LISP programs is the possibility that a semitrace may be
easily constructed from example 1/0 pairs and furthermore certain restricted classes of LISP programs can be
synthesized from the resulting semitraces without the need for enumerative search over the class. Some of the
early work on LISP program synthesis [Shaw et al. 1975, Hardy 1975, Siklossy and Sykes 1975] could generate
interesting programs but relied on heuristic techniques and provided no characterization of the class of target
programs. Summers [Summers 1976, 1978] was the first to put the possibility of LISP program synthesis from
examples on a firm theoretical foundation.

All of the methods to be described in this paper derive from Summers’ insight that under certain condi-
tions a semitrace of a computation can be constructed from input/output examples in the domain of LISP.
Once such a semitrace has been generated a synthesis from traces method can be applied to construct the
desired program.

It will be useful to abstract the key elements of a synthesis from traces method in order to facilitate the
description and comparison of the LISP synthesis methods. These elements are described below and illustrated
by Summers’ method.

1. Data Types and Operators

A certain set of data types and operators must be available for use in traces and target programs. Sum-
mers used the S-expression data type and the primitive LISP operators cons, car, cdr, atom, nil and occasionally
quote. Note that the predicate eq is not used. This means that any predicates constructed in target programs
will be concerned with structure rather than semantics of the input S-expression.

2. Control Structures

A set of control structures must be available for constructing target programs. The McCarthy conditional
(cond) and recursive function procedures are used in Summers’ method.

3. Program Schemas

All of the synthesis methods described here make use of program schemas in order to constrain the way
in which the control structures and data operators are used. The basic schema used by Summers’ system has
the form

Flx] [ p;[x] — f,x];
pelx] = £ [x];
T — A[ Flblx]]; x] ]

where fy,...f, are cons-structures, and Alw:x] is a cons-structure in which w occurs exactly once. The predi-
cates p;{x] have the form atom[b;[x]] where b, is a basic function.
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4. Method of Obtaining a Semitrace

The obvious method for obtaining a semitrace is to ask the user to supply one. As previously mentioned
there are other possibilities. In particular there are computational domains in which a semitrace may be
obtained from input/output examples. Also one might obtain a semitrace of a computation by simulating an
inefficient program in the hope of synthesizing a more efficient version.

In Summers’ method the user is required to supply a small set of I/0 pairs <xp,y;>,..., <Xk, Yx=>. For
gach pair <x;, y;> a semitrace, called a program fragment, is created based on the following assumptions:
a. the atoms in the input S-expression X; are unique; i.e., no atoms appear twice in X;,
b. all atoms in y, appear also in x; (except possibly the special atom nil).
An example 1/0 pair will be called self-contained if the input and output satisfy these properties. The semitrace
produced from the pair <x;y;> is a cons-structure formed recursively as follows:

(p x) if y;# nil and y;= p(x) where p is a basic function
ST(x;,y;) = nil if y;=nil
(cons ST(x;, car(y;)) ST(x;,cdr(y;))) otherwise

Note that the output of ST is an unEVALed expression. For example ST((a b),(b a)) = (cons (cadr x) (cons
(car x) nil)).

5. Detection methods for each control structure

For each control structure allowed in target programs there must be a method for detecting its presence in
a trace Or semitrace.

If a conditional statement is allowed, as in Summers’ method, then we must have a mechanism for deter-
mining the number and ordering of cases, the predicates and their corresponding actions in each case. The first
step in the synthesis of a recursive LISP program is the creation of a conditional expression which correctly
computes all of the examples and has the form

F(x) — [ pi(x) = f1(x);

pa(x) — £, (%) ]

where f; is the semitrace generated by the ith example [/O pair. Summers assumes that the user gives a
sequence of examples in which the example inputs form a chain, in the sense that for all inputs x; and x; either
x; < x;or x; < x; where u<v iff atom(u) or [ car(u) <car(v) & cdr(u) <cdr(v) 1. For example (a.b) < (de)
but the s-expressions u = (a.(b.c)) and v = ((d.e).f) could not both appear as inputs since neither u £ v nor
v < u holds. This assumption provides a natural ordering for the branches of the conditional. The predicates
(p; xp for 1 <i<k must have the property that (p; x;) evaluates to T, but (p; x;) evaluates to nil forall 1 €j <
i. Since predicates have the form (atom (b x)) where b is a basic function, a mechanism for generating the
predicates must find a basic function b; such that (b; x;) is an atom yet (b; X;41) is not an atom (thus (p; Xj41) =
false). The set of basic functions which so distinguish between example inputs x; and X;4; can be computed by

pRED_GEN(X;,Xi.H) = PG(Xi, Xi+lsl)
(1 denotes the identity function)

b if y is an atom
PG(x,y,0) = {6} if x is an atom and y is not an atom
PG (car(x),car(y) car"8) U PG(cdr(x),cdr(y),cdr”6) otherwise
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For example PRED _GEN((A),(A B)) = [cdr}, so a predicate to distinguish between (A) and (A B) is (atom
(cdr x)). If Summers’ system were given the following set of examples for the function REVERSE

{ nil — nil

(A) — (A)

(AB) - (BA)
(ABC) —(CBA)}

then by combining the semitraces produced by ST and the predicates generated by PRED_GEN, the following
loop-free program is produced:

F(x) = (cond ((atom x) nil)
((atom (cdr x)) (cons (car x) nil))
((atom (cddr x)) (cons (cadr x) (cons (car x) nil)))
((atom (cdddr x)) (cons (caddr x) (cons (cadr x) (cons (car x) nil)))))

If recursive function procedures are allowed then mechanisms must be available for detecting recursive
patterns in a semitrace, determining the primitive cases for termination, and creating and handling all necessary
variables. Summers has shown in his Basic Synthesis Theorem [Summers 1975,1977] the following fundamen-
tal result. Suppose that the following recurrence relations hold on a (possibly infinite) set of input-output pairs

P1(X),...,Pk(X), Prsn(x) = pu(b(x)) forn =1

filx],.. fulx], fesalx] = Clfulblx]]; x] forn 2 1,

where b is a basic function and C is a cons-structure in which f,[b{x]] occurs exactly once. The function

Flx] =
undefined otherwise

defined by the recurrence relations can be correctly computed by the following instance of the recursive pro-
gram schema given above.

Flx] — [ py[x] — flx]:

pkixj ;*fk[x];
T — C[ FlbIx]l; x] ]

This theorem and its generalizations establish a link between the characterization of a function by a
recurrence relation and a recursive program for computing that function. Thus the synthesis of recursive pro-
grams reduces to detecting repetitive patterns in the examples and a decision on when enough instances of a
pattern have been found to inductively infer that the pattern holds generally. At least two or three instances of
a pattern with no counterinstances have been taken as sufficient to allow induction of the pattern. Any decision
on this matter though is subject to easily constructed examples which cause the induction of an incorrect pat-
tern.

Recurrence relations are detected between two semitraces f; and fi4 by finding a basic function b such
that (fi(b x)) is a substructure of (fjx). For example if
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(f, x) = (cons (car x) (cons (caddr x) nil))

and

(f3 x) = (cons (car x) (cons (caddr x) (cons (caddddr x) nil)))
then

(f3 x) = (cons (car x) (f; (cdr x))).

One such mechanism makes use of the unification algorithm used in resolution theorem provers. The choice of
which semitraces to unify in this way may be done systematically (by trying k = 1,2,...) or by means of heuris-
tics (Kodratoff 1979).

We now can run through a complete example illustrating Summers’ synthesis method. Suppose that the
user supplies the following examples:

nil — nil

((a b)) — (b)

((ab)(cd) — (bd)
((ab)cd)(ef)) —(bdf)

which describes the problem of returning the list of second elements of each sublist of the input list. Applying
ST to these examples we obtain the following semitraces

(f; x) = nil

(fy x) = (cons (cadar x) nil)

(f3 x) = (cons (cadar x) (cons (cadadr x) nil))

(f4 x) = (cons (cadar x) (cons (cadadr x) (cons (cadaddr x) nil)))

Applying the predicate generating algorithm we obtain

(p; x) = (atom x)

(p; x) = (atom (cdr x))
(p3 x) = (atom (cddr x))
(pg x) = (atom (cdddr x)).

The foliowing recurrence patterns are obtained

(fi41 x) = (cons (cadar x) (f; (cdr x))) fori=1,2,3 and

(piy1 X) = (p; (cdr x)) fori=1,23.

We inductively infer that these patterns hold for all i and using Summers’ Basic Synthesis Theorem obtain the
following program

(F x) = (cond
((atom x) nil)
(T (cons (cadar x) {F (cdr x)))))
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Note that this program computes a partial function since it assumes that the input is a list of lists where each
sublist has length at least two. Thus the program is not defined on inputs (a b) or ((a.b)).

For some example sets, such as the examples given above for REVERSE, the recurrence relation detec-
tion mechanisms will not work. A fundamental technique used in Summers’ system generalizes the semitraces
by replacing some sub-semitrace which occurs in each semitrace by a new variable. It is important to ensure
that the value of the new variable will be initialized to the value of the sub-semitrace. The system then checks
for recurrence relations amongst the generalized semitraces. Consider the semitraces obtained above for the
function REVERSE. If the constant sub-expression nil is replaced by variable z then the semitraces become

(gix2) =z

(gy x z) = (cons (car x) z)

(g3 x 2) = (cons (cadr x) (cons (car x) z)))

(g4 x z) = (cons (caddr x) (cons (cadr x) ((cons (car x) 2)))))

and the following recurrence relation is found:
(g4 x 2) = (g; (cdr x) (cons (car x) z)) fori=1,2,3.

Again we inductively infer that this relation holds for all i, then invoke a form of the Basic Synthesis Theorem
1o justify the creation of the following reverse-loop program

(REVERSE x) = (F x nil)
(F x z) = (cond ((atom x) z)
(T (F (cdr x) (cons (car x) z)))).

C. Recent Approaches to LISP Program Synthesis from Examples.

Biermann [Biermann 1978] has applied the techniques of synthesis from traces to the domain of LISP.
The data type, operators, and control structures used in this approach are the same as in Summers’ method.

The program schemas, called semi-regular LISP schemas, have the form
(Fi x) = (cond (pl fl)
(pz fz)
(Pk fk)
(T i)

where each f; has one of the following forms: nil, x, (Fj (car x)), (F; (cdr x)), or (cons (Fg x) (Fy x)). The
predicates p; are required to have the form (atom (b; x)) where bjis a basic function and furthermore if (pj41 X)
= (atom (bj4 x)) then bjy = b;"w where w is a basic function not equal to the identity function. Certain res-
trictions are placed on the syntax and interpretation of semi-regular LISP schemas to yield a well-behaved sub-
set of instances called regular LISP programs. A semitrace is obtained as in Summers’ method and from this a
trace is constructed in the form of a nonlooping regular program (i.e., no function Fj is called by more than one
function f). Of course there are no predicates in the trace so each function in the trace has the form

(Fi X) = fk+l-




314 SMITH

From the example
((a.b).(c.d)) — ((d.c).(b.a))
the following trace is constructed

(f; x) = (cons (f; x) (f3x))

(fy x) = (fg (cdr x)) (f3x) = (fs (car x))
(fs x) = (cons (fg x) (f3x))

(fs x) = (cons (fg x) (fg x))

(f(, X) = (f]() (cdr x)) (f7 X) = (f“ (car x))
(fg x) = (fy; (edr x))  (fg x) = (fy3 (car x))
(f]() X) = (fn X) = (f12 X) = (f13 X) = X.

A regular LISP program can be viewed as a directed graph whose nodes represent functions. Each arc
directed from a node representing function f; is labelled by a branch of the conditional of f}, i.e., a predicate and
a function call. The construction of the graph structure of a regular LISP program from a given trace is per-
formed by a backtrack search. At each point during the search a certain portion of the target graph has been
constructed and it accounts for some initial portion of the trace. At this point if all of the trace is accounted for
we are done, otherwise there is some function f; in the trace which invokes a function fj such that f; is
accounted for but fj is not. If the target graph has n nodes currently then there are n+1 choices of nodes to
identify with f; (one for each current node plus a new node for fj if needed). These n+1 alternatives are tried
in turn. A choice will fail and be pruned from consideration if for various reasons (for example, knowledge
about regular programs or general programming knowledge) the identification of a function with a node is
incompatible with other functions identified with the node, or if all of the children of the node fail.

If several arcs emanate from a node g; then predicates must be synthesized in order to distinguish the
different cases. First, for each transition we collect all inputs which cause it to be taken. An extension of algo-
rithm PRED _GEN from Summers’ method may be used to build predicates distinguishing the resulting set of
inputs.

Consider the trace given in above. Initially we create a new node for f) as in Figure la. For f, we have
two possibilities: identify f, with g;, or create a new node g, as in Figure 1b. The first alternative fails so we
explore further the second. Of the three alternative choices for f3 shown in Figure 1c only the third does not
fail. After merging f4 and f5 we have the graph in Figure 1d which accounts for all but fyg, fyy, f15, and f15. To
account for fjp a new transition is created from g; and predicates must be synthesized to distinguish the two
arcs from g;. From the trace we find that the inputs

{((ab).(c.d), (c.d) )
lead to the function call (cons (g, x) (g3 x)), and the inputs
{d)

lead to the function call x. The generated predicate which distinguishs these inputs is {atom x). The resulting
graph shown in Figure le accounts for the entire trace so synthesis halts.
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Figure 1. Synthesis of a Regular LISP program.
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The resulting program is

(g x) = (cond((atom x) x) (T (cons (g; x) (g3x))))
(g7 x) = (g (cdr x))
(g3 x) = (g (car x)).

The system is able to generate any regular program from a finite number of examples. Although the sys-
tem can be sped up by restricting the schema (for example, to programs consisting of a single loop), in general
it faces the combinatorial explosion inherent in backtracking mechanisms.

Biermann and Smith [Biermann and Smith 1977, 1979] have studied the synthesis of a class of programs
called scanning programs. A scanning program scans its input variables as it generates its output. Synthesis can
be based on a single example and the I/0O pairs are assumed to be lists of atoms. Data type, operators, and
control structures are the same as those used by Summers.

The target program is viewed as a hierarchy of LISP functions and is constructed in a bottom up fashion.
A semitrace is constructed for each level of the hierarchy and has the form of a loopless sequence of function
calls. Each function call of a semitrace is either nil or consists of a function and an argument. Each leve!l of a
semitrace assumes that the output can be computed from the input by appending the results of the sequence of
function calls in the semitrace. Since the example input and output are lists,each atom of the output y can be
expressed by a function call to a function which has the form (PO x) = (cons (car x) next) where next is the
function call expressing the next atom in the example output.

For example, if the user gives the input/output pair
(abcdef) —m(acefdb)
then the lowest level trace is

(P° (x) next), (PO (cddr x) next), (P (cd* x) next),
(P (cd3r x) next), (PO (cd® x) next), (PO (cdr x) next), nil.

To obtain the next higher level in the hierarchy the sequence is chopped up into segments such that each seg-
ment can be easily generated by either a forward-loop, a reverse-loop, or a straight line function which simply
executes a fixed sequence of function calls. The segmenting mechanism works by looking for patterns and
extrapolating them as far as they match the sequence of function calls. The above semitrace is segmented as
follows

< (PO (x) next), (PO (cddr x) next), (PO (cd* x) next) >,
< (PO (cd®r x) next), (PO (cd’r x) next), (PO (cdr x) next) >, <nil>.

The first three function calls can be computed by a forward loop, which we call P!, which in effect computes (a
ce) from (a b cdef), and the next three functions can be computed by a reverse loop which we call P2 The
second lowest level of semitrace is

(P! (x) next), (P? (cdr x) next), nil.

There is no good way to segment this semitrace so a straightline routine, called P3, is constructed and we have
the highest level semitrace

(P? (x) next), nil.
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Predicates are generated in a manner similar to Summers’ method. The resulting program is

(P3x) = (P'x x)
(P! x, xo) = (cond
((atom x;) (P? (cdr x5) nil))
(T (P? X1 Xz)))
(P x; x5) = (cons (car x;) (P! (cddr xp) x3))
(P?x z) = (cond
((atom (cdr x)) z)
(T (P? (cddr x) (PYx 2))))
(P9 x z) = (cons (car x) z).

Production rule schemas are used to encode both program schemas and the coding knowledge necessary
for coordinating the flow of data and control in a hierarchy of functions.

Each function generated by the synthesizer instantiates a rule schema to become a production rule. At
the top of the hierarchy is the function F (P? in the above example) which when given the example input will
produce the example output. The rule for this highest level routine is applied to a start symbol. Each applica-
tion of a rule adds the code for a routine on the next lowest level of the hierarchy, the correct number and
order of variables having been passed down from the coded string, and a sequence of nonterminals, one for
each function called by the routine with the correct number and order of variables included to be passed along
into the rule for each of these routines. In general it was found necessary to introduce a new variable for each
level of nesting of these functions. Rule schemas for forward loops, reverse-loops, straight-line routines, and
if-then-else statements were studied.

Kodratoff [Kodratoff 1979] has presented a synthesis technique which is a powerful generalization of
Summers’ method. The same data type, operators, and control structures are used as in Summers’ method.
However Kodratoff employs a more powerful schema and technique for detecting looping patterns. Like Sum-
mers’ method, multiple 1/O pairs are required and looping patterns are detected by pattern matching the semi-
trace of output y; with a subsemitrace of output y;; for various values of i and k. In general such a matching
divides the semitrace y;4 into three segments y1,.y, ¥2i4, and y3;4, where the middle segment y2,4, matches
semitrace y; Summers’ system stops at this point with the assumption that the initial and the tail segments
have no looping structure. Kodratoff’s system on the other hand creates two new synthesis problems: one with
170 pairs <x;, y1li4«> and the other with [/O pairs <x;, y3;4>. If h is the resulting synthesized program from
the former problem.and g is the resulting synthesized program for the latter problem,then these programs can
be composed in the following schema:

(Fx) = (fx,(ix)
(f x z) = (cond ((p, x) (f; x 2))
((py x) (f,x 2))

((pe ¥) (i x 2))
(Thx{EObx) (gxzN))

where b is a basic function, h and g are programs satisfying the schema, and i is an initialization function for
variable z.

Notice that this system works in a top-down fashion in contrast to Biermann and Smith’s system which
works bottom-up. Another point of contrast is the strikingly different ways that the two systems segment the
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output examples. For example, Biermann and Smith’s system would segment the output of the example (A B
CD) -—(ABCDDCBA)into ABC D and D CB A and conjoin the forward and reverse looping routines
which produce these segments. Kodratoff’s system, given the examples

(ABC) = (ABCCBA)
(ABCD) -—(ABCDDCBA)

would match A B C C B A with the sub-expression B C D D C B of the second output, thus segmenting the
second output into A, BC D D C B, and A. Here the function his (h x z) = (cons (car x) z) and g is (g x z)
= (cons (car x) z). The complete synthesized program has the form:

(Fx) = (f x nil)
(f x z2) = (cond ((atom x) z)
(T (hx (f (cdr x) (g x 2)))))
(h x z) = (cons (car x) z)
(g x z) = (cons (car x) z)

Another feature of Kodratoff’s method is the use of an algorithm he calls BMWk in the matching process
of one semitrace against another. As noted above, the introduction of new variables is one of the key problems
of program synthesis. In attempting to match A B C C B A against BC D D C B as in the example above it
will be noticed that if (cdr x) is substituted for x everywhere in the semitrace for the former expression, we
obtain the semitrace of the latter subexpression. The fact that a singie substitution suffices is the clue that only
one variable is involved. Consider on the other hand, the following example pairs.

(AB) —(BABBBA)
(ABC) -(CACBCACBB)

When we attempt to match B A B B B A against C A C B C A we find two different substitutions. For the
first, third and fifth atoms we substitute (cdr x) for x, and for the second, fourth, and sixth atoms we substitute
x for x (the identity substitution). Here the two different substitutions are the clue that two variables are
involved; the first variable is used to obtain the odd numbered atoms and the second is used to obtain the even
numbered atoms. The recurrence relation between these examples then has the form:

Yis1(X1,%2,2) = yiledr(xy),xa,hi(x},X2,2))
where h;j(x;, x,, z) computes the right-most segment of y;,.

Further development of this method is reported in [Kodratoff and Papon 1980, Jouannaud and Kodratoff
1980, Kodratoff and Jouannaud 1983].

Jouannaud and Guiho [Jouannaud and Guiho 1979] have a system called SISP which works on either sin-
gle or multiple examples. The class of target programs have a somewhat simpler form than those of the above
systems since a more powerful class of basic functions is used. Let us call the following functions JG-basic:
Icar((A B C D)) = (A) (the list containing the car of its argument), lrac((A B C D)) = (D) (the list contain-
ing the last element of the argument list), cdr((A B C D)) = (B C D), and rdc({A B C D)) = (A B C) (the
list formed by deleting the last element of the argument list), and any composition of JG-basic functions. In
addition to the JG-basic functions SISP uses the predicate null and a multiple-argument version of append.
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Given /0 pair <x,y> in which both x and y are lists of atoms SISP segments X such that x =
append(px,c,sx) and y = append(py,c,sy) where c is the longest subexpression common to x and y. Since both
x and y are lists it is easy to find a JG-basic function f such that f(x) = c. The synthesis task then reduces to
two subtasks. SISP finds the shortest subexpressions x; and x; of x such that x; — py and x, — sy are self-
contained examples (chosing px, ¢, or sX if possible), and recursively tries to construct functions satisfying
these new examples.

Consider the synthesis of the function REVERSE from example x = (ABCD),y=(DCB A). The
largest common subexpression is (A) (in case of a tie in length, a subexpression on either end of y wins out).
Thus ¢ = (A), sx = (BC D) and py = (D CB). x = append(nil,(A),(B C D)), y = append((D C
B).(A).nil). Since (A) = lcar(x) we have the partial semitrace y = append(py,lcar(x),nil) =
append(py,lcar(x)). The smallest subexpression x, of x such that x; — py is self contained is x; = (BC D) =
cdr(x). Applying the above mechanism recursively to the example x; — py we end up reducing it to another
simpler example, etc. Jouannaud and Guiho diagram the resulting “‘approximation’’ structure as follows

COMMON
INPUT SUBEXPRESSION QUTPUT

[car

lcar

lcar

means Z = append(Z, Z, ... Z,). Adjacent to each node we have supplied that actual value of the node with
respect to the example (A BCD) — (DCB A). This structure is similar to the semitrace generated by Sum-
mers’ method, but its repetitive structure is so clearly brought out that the following recursive program to
generate REVERSE is easily created from a single example:
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F(x) = (cond
({null x) nil)
(T (append (F (cdr x)) (lcar x))))

If SISP fails to find a satisfactory program based on one example then it can ask for another example
whose input has the longest length less than x which is defined on the domain of the program. Examples must
be carefully chosen so that the inputs are of decreasing length. Given the examples x — y and x* — y’ where
b(x) = x’ (b is a JG-basic function) SISP segments v into py, ¢, sx where ¢ now is the largest common seg-
ment of y and y’. Synthesis control is based on the following diagram:

The target program is F and it has the form:
F(x) = y = append(py,c,sy) = append(B(x),G{(b(x)),A(x))

(If c = y’ then G is F). The synthesis problem reduces to synthesizing programs for 1) B, using example x —
py, 2) G, using example x” — ¢, and 3) A, using example x — sy. The system can request more examples of F
in order to have more examples for each of these subprograms. In theory any number of levels of this process
are possible thus enabling SISP to generate arbitrarily deep nestings of recursive loops. The knowledge neces-
sary to map from the repetitive patterns found in the diagrams to program schemas is given by a small set of
theorems which are analogous to Summers’ Basic Synthesis Theorem.

D. Comparisons and Characterizations of the LISP Synthesis Methods.

Perhaps the most striking point of contrast between the five methods surveyed in this paper lies in their
approaches to finding recursion loops. Summers’ and Kodratoff’s methods detect recurrence patterns by match-
ing the semitraces obtained from different example outputs. In Biermann’s Regular LISP system and Biermann
and Smith’s system recursion is detected by matching or folding a semitrace into itself. In Jouannaud and
Guiho’s SISP system the control pattern emerges from the match between an example input and its correspond-
ing output.

Table 1 characterizes each of the synthesis techniques discussed above according to several criteria. The
first column compares the time complexity of programs which are synthesizeable by each method. The time
complexity is closely related to a bound on the number of atoms in the output list since the time complexity
bounds the number of cons operations which can be performed. There is an apparent anomaly in Biermann’s
regular LISP method in that it can generate programs with any finite number of nested loops yet the complexity
of such a program is linear in the number of input atoms. This is explained by the structure of S-expressions
and the lack of mechanisms in regular LISP programs for copying and reusing the input variable. By way of
illustration consider the problem of producing a list of the last elements of each sublist of a given list as in the
example

(abc)de)fgh)DGkIm) —(cehim)
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Table 1. Characterization of Several Classes of Synthesizeable Functions

Time Number Closure Separate Multiple
Complexity  Depth of of under resource uses of a
Synthesis of target nesting of examples function and control  resource  Nonlinear
Method programsa loops requiredb seque,ncingc variables variable recursion
Summers o(n) 1 23k no yes no no
(Summers 1977)
Regular LISP Of(n) unbounded  enough to no no no yes
(Biermann 1976) exercise all
branches in
code
Biermann and omd unbounded 1 yes no no no
Smith k20
(Biermann and
Smith 1979)
Kodratoff 0" unbounded  Zk(n+2) no yes yes no

(Kodratoff 1979) k20

SISP O(nk) unbounded  1,several yes yes no no

a. n is the number of atoms in the input S-expression.
b. n is the depth of nesting and k is the number of conditional branches in the top level routine.

c. A class of LISP functions is closed under function sequcing if whenever F and G are functions in the class then
H(x) =append (F(x),G(x)) is a function in the class.

A program to compute this function requires a nested loop which scans down each sublist looking for the last
element, yet the programs complexity is clearly linear in the number of input atoms. Columns 6 and 7 com-
pare the uses of program variables. A resource variable provides atoms for the output list. A control variable is
used to control the recursion loops. In many programs constructed by the five methods surveyed the resource
variables are also used as control variables. Column six shows which synthesis techniques allow separate
resource and control variables. Column seven points out Kodratoff’s unique technique of allowing copies of a
resource variable to be made then used differently in a program.

An important aspect of any program synthesizer is a characterization of the class of target programs. It is
important to know that a system is at least sound but preferably complete also over a class. Characterization of
several extensions of the class of programs synthesizable by Summers’ method are given in [Smith 1977,
Jouannaud and Kodratoff 1979]. Biermann’s enumerative methods on input traces are sound and complete
over their class of target programs. Guiho and Jouannaud [Guiho and Jouannaud 1977] have shown that SISP
can correctly synthesize programs over a well defined class of nonlooping functions.
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E. Concluding Remarks

The domain of LISP functions has served as a valuable testbed for the exploration of a number of syn-
thesis mechanisms. Summers’ insight that any self-contained input-output pair has a unique semitrace provides
one of the fundamental starting points for the synthesis techniques described above. The methods surveyed
have explored strikingly different mechanisms for detecting looping patterns in semitraces. Knowledge about
how to correctly sequence and nest recursive programs has been gained. Another valuable lesson of this
research involves the generation and correct use of auxilliary variables. Despite success in generating
ever larger classes of programs the question remains of whether these synthesis techniques can be used in any
practical way. It may be that there are some special programming domains in which some of these techniques
can be applied. However the real importance of this research probably lies in the abstraction and generalization
of the techniques which have been found to be sucessful in the LISP domain and the incorporation of these
techniques in synthesis systems of more general scope.
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