The Roles of Witness-Finding in Software Synthesis

Douglas R. Smith
Kestrel Institute
3260 Hillview Avenue
Palo Alto, California 94304

Green, Waldinger, Constable, and others pioneered
the use of deductive synthesis wherein a complete pro-
gram is extracted from a proof that a problem specifi-
cation is solvable. The essential technique is witness-
finding — given a sentence of the form

V(z:D)3(r: R) (I(z) = O(x,r))

infer a witness term w(x) for the existentially quantified
variable r such that

Y(z: D) (I(x) = O(z,w(x))
is provable.

I’d like to briefly outline my experience in using
witness-finding in a variety of roles during software
synthesis, including as a special case the extraction of
whole programs as witnesses. The effort may be seen as
attempting to develop more encompassing frameworks
for generating software, motivated by the desire to syn-
thesize larger, more complex applications.

Program Scheme Instantiation

In the 1970’s and early 80’s most program deriva-
tions were special cases of divide-and-conquer (unfor-
tunately, this is still too often true), probably because
they are some of the easiest induction arguments to
push through a prover. So it seemed interesting to try
to capture divide-and-conquer more abstractly, rather
than repeatedly discovering instances of it. From this
effort came the notion of constructing a program by in-
stantiating a program scheme and using deductive tech-
niques to synthesize the definitions or specifications for
the free operators in program schemes (Smith, 1985;
Smith, 1987; Lowry, 1991).

There are a variety of ways in which witness-finding
can be used to support scheme instantiation.

e Deriving specifications for subalgorithms — The cor-
rectness conditions of a program scheme serve to con-
strain the ways that the free operators can be instan-
tiated, and these constraints can often be used to

infer specifications for subalgorithms. In the divide-
and-conquer case, if you plug in a standard decom-
position operator, you can use a soundness axiom on
the scheme to infer a specification for the composition
operator. Dually, from a given composition operator,
one can calculate a specification for the decomposi-
tion operator. To support this kind of inference, we
generalized the witness-finding process slightly to al-
low generation of boolean-valued terms that are suf-
ficient conditions on a given formula (Smith, 1982;
Smith, 1985). This process was called derived an-
tecedents, but now known generally as abductive
inference, although for synthesis purposes the ab-
ductibles are required to be expressed over a specified
set of variables.

Deriving guards — Derived antecedent were use to in-
fer the guards on a recursive call to ensure termina-
tion and establishment of preconditions. Again this
is finding a sufficient condition as witness to the va-
lidity of a correctness formula.

Deriving Filters — Backtrack and branch-and-bound
program schemes require the inference of neces-
sary conditions (to serve as pruning and constraint
propagation mechanisms) as well as upper or lower
bounds on numeric expressions (to serve for bound-
ing in branch-and-bound) (Smith, 1987; Smith, 1990;
Smith et al., 1996).

Matching Library Operators — Top-down design re-
duces a top-level specification to a tree of subprob-
lem specifications. The process bottoms out in
specifications that can be matched against primitive
instructions or library operators. Witness-finding
was used in CYPRESS and KIDS to generate the
data translators that allow a library routine to be
used to satisfy a given specification (Smith, 1985;
Smith, 1993). More recently, witness-finding has
been used to generate the glue-code that allows two
data sources to interact (Burstein et al., 2003).

Ezpression Optimization — After scheme instantia-
tion, there are often lots of opportunities to apply
common program optimizations, such as: context-
dependent simplification, finite differencing, partial
evaluation, case analysis, and others (Smith, 1990).



Underlying many of these optimization tactics is
search for a witness that is equal/equivalent to an
expression modulo the context in which it will be
evaluated.

Design Theories and Interpretation Construc-
tion

Later, in an attempt to more fully formalize the no-
tion of a program scheme, we developed the notion
of an algorithm theory in which a program scheme
was a definition for a function symbol expressed in
terms of some other operators that were axiomati-
cally constrained. To instantiate the scheme required
constructing a theory morphism (interpretation) that
explicated how the symbols in the algorithm the-
ory translated to the problem domain theory such
that all the axioms remained provable (Lowry, 1987;
Smith and Lowry, 1989). A pushout accomplishes
the instantiation of the abstract program scheme with
expressions from the problem domain (Smith, 1996;
Smith, 1999).

The key work here is constructing an interpretation
between the algorithm theory and the problem domain
theory. An interpretation between theories or simply an
interpretation is a map from the symbols of the source
(domain) theory to expressions of the target (codomain)
theory that induces a language translation, and is re-
quired to preserve provability; i.e. an source theorem
must remain provable under translation to the target
theory. It turns out that all the witness-finding roles
listed above are examples of using unskolemization dur-
ing interpretation construction.

Here is how unskolemization is used to support inter-
pretation construction (Smith, 1993). Suppose that we
are trying to complete a partial interpretation o from
theory S to theory T. Let f be a function symbol of
S that has no translation yet under o. Suppose that
A is a prenex normal form axiom in which all occur-
rences of f are identical and simple (only variables, no
terms), and suppose that all other symbols in A are
translatable under ¢ (i.e. the domain of ¢ includes all
of the sort and operator symbols of A except for the
function symbol f). To obtain a candidate translation
for a function symbol f, we proceed as follows.

(1) Unskolemize f in A yielding A’. Since the effect is
to replace each occurrence of f by a variable, each
symbol in A’ can be translated via o.

(2) Translate A’. The translated sentence o(A’) need not
be an axiom of 7T'. In order for ¢ to become an inter-
pretation, we need an expression defining the trans-
lation of f in T. o(A’) can be viewed as a constraint
on the possible translations of f.

(3) Attempt to prove o(A’) in T. A constructive proof

will yield a (witness) expression w(x) for f that de-
pends only on the variable(s) . If the proof involves
induction (resulting in a recursively defined witness),
then we extend the target theory with a fresh opera-
tor symbol and an axiom stating its recursive defini-
tion.

(4) Extend the partial morphism o by defining o(f) to be

w(z). By construction this translation for f guaran-
tees that o properly translates the axiom A.

Other axioms that involve f may now be translat-
able, and if so, then we can attempt to prove that they
translate to theorems.

Interpretations play a variety of basic roles in soft-
ware development, and thus interpretation construction
is a crucial activity, including witness-finding as a key
support tool.

o Representing and applying abstract design knowledge
— Abstract design knowledge can often be captured
and organized via interpretations. For example, al-
gorithm knowledge can be expressed as an interpre-
tation between an applicability theory and a theory
expressing the problem-solving method. For another
example, datatype refinements are expressed as in-
terpretations from the abstract datatype theory to a
(more) concrete datatype theory (Blaine and Gold-
berg, 1991). Design theories may be organized into
taxonomies where interpretations precisely specify
the “subclass” links (Smith, 1996). When we rep-
resent design knowledge abstractly as an interpreta-
tion I : A — B, then we apply the abstraction to
generate a refinement of a target specification S by
(i) constructing an interpretation from A to the tar-
get specification S, and (ii) computing the pushout of
the two interpretations B <— A — S (Smith, 1996).

This process can be applied to a broad range of types
of knowledge, well beyond programming knowledge.
Note that showing applicability of an abstraction to a
concrete problem via an interpretation properly gen-
eralizes the notion of a substitution that matches a
rule pattern with a domain goal — we match not only
syntax, but also must respect the axiomatic seman-
tics.

e Refinement generators (metaprograms) — Some-
times abstract design knowledge is best cap-
tured by metaprograms that generate interpreta-
tions/refinements. Program optimizations are typi-
cal examples, and they often have the following char-
acteristic: they are based on a metatheorem whose
conclusion is that such-and-such a syntactic change
results in a refinement (i.e. preserves or reduces
models). The metaprogram works by analyzing the
object-level spec and constructively inferring how to
reify the metatheorem in this case.



o Constructing datatype refinements — We have worked
several examples of deriving data structures via in-
terpretation construction. For example, constructing
an interpretation from sets over a linear order to bi-
nary trees over a linear order can result in the heaps
data structure. The key invariant, the heap property,
is derived via witness-finding.

e Deriving behavior — A guarded command in a state
machine, corresponds exactly to interpretation (from
the theory of the post-state to the theory of the pre-
state) (Pavlovic and Smith, 2001). Interpretation
construction then can be used to generate commands
of an abstract state machine. For example, some re-
searchers have described work on calculating transi-
tions in control systems so that safety conditions are
guaranteed.

Witness-finding can play a crucial role in the con-
struction of correct software. In my view, constructing
interpretations is a fundamental and central problem in
formal software development, and it provides a wealth
of opportunities for developing and applying witness-
finding technology. The work described above aims
for a software development framework within which
witness-finding can be used to best advantage.

References

Lee Blaine and Allen Goldberg. DTRE — a semi-
automatic transformation system. In B. Moller, edi-
tor, Constructing Programs from Specifications, pages
165-204. North-Holland, Amsterdam, 1991.

M. Burstein, D. McDermott, D.R. Smith, and S.J.
Westfold. Derivation of glue code for agent interopera-
tion. Journal of Autonomous Agents and Multi-Agent
Systems, 6:265-286, 2003.

Michael R. Lowry. Algorithm synthesis through prob-
lem reformulation. In Proceedings of the 1987 Na-
tional Conference on Artificial Intelligence, Seattle,
WA, July 13-17, 1987.

Michael R. Lowry. Automating the design of local
search algorithms. In M. Lowry and R. McCartney,
editors, Automating Software Design, pages 515-546.
AAAI/MIT Press, Menlo Park, 1991.

Dusko Pavlovic and Douglas R. Smith. Composition
and refinement of behavioral specifications. In Pro-
ceedings of Sixteenth International Conference on Au-
tomated Software Engineering, pages 157-165. IEEE
Computer Society Press, 2001.

Douglas R. Smith and Michael R. Lowry. Algo-
rithm theories and design tactics. In L. van de
Snepscheut, editor, Proceedings of the International
Conference on Mathematics of Program Construction,
LNCS 375, pages 379-398. Springer-Verlag, Berlin,
1989. (reprinted in Science of Computer Programming,
14(2-3), October 1990, pp. 305-321).

Douglas R. Smith, Eduardo A. Parra, and Stephen J.
Westfold. Synthesis of planning and scheduling soft-
ware. In A. Tate, editor, Advanced Planning Technol-
ogy, pages 226—234. AAAI Press, Menlo Park, 1996.

Douglas R. Smith. Derived preconditions and their
use in program synthesis, LNCS 138. In D. W. Love-
land, editor, Sixth Conference on Automated Deduc-
tion, pages 172-193, Berlin, 1982. Springer-Verlag.

Douglas R. Smith. Top-down synthesis of divide-and-
conquer algorithms. Artificial Intelligence, 27(1):43—
96, September 1985. (Reprinted in Readings in Arti-
ficial Intelligence and Software Engineering, C. Rich
and R. Waters, Eds., Los Altos, CA, Morgan Kauf-
mann, 1986.).

Douglas R. Smith. Structure and design of global
search algorithms. Technical Report KES.U.87.12,
Kestrel Institute, November 1987.

Douglas R. Smith. KIDS — a semi-automatic program
development system. IEEE Transactions on Software
Engineering Special Issue on Formal Methods in Soft-
ware Engineering, 16(9):1024-1043, 1990.

Douglas R. Smith. Constructing specification mor-
phisms. Journal of Symbolic Computation, Special
Issue on Automatic Programming, 15(5-6):571-606,
May-June 1993.

Douglas R. Smith. Toward a classification approach to
design. In Proceedings of Algebraic Methodology and
Software Technology (AMAST), volume LNCS 1101,
pages 62-84. Springer-Verlag, 1996.

Douglas R. Smith. Mechanizing the development of
software. In M. Broy and R. Steinbrueggen, edi-
tors, Calculational System Design, Proceedings of the
NATO Advanced Study Institute, pages 251-292. 10S
Press, Amsterdam, 1999.



