
The Roles of Witness-Finding in Software Synthesis

Douglas R. Smith
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304

Green, Waldinger, Constable, and others pioneered
the use of deductive synthesis wherein a complete pro-
gram is extracted from a proof that a problem specifi-
cation is solvable. The essential technique is witness-
finding – given a sentence of the form

∀(x : D)∃(r : R) (I(x) =⇒ O(x, r))

infer a witness term w(x) for the existentially quantified
variable r such that

∀(x : D) (I(x) =⇒ O(x,w(x))

is provable.

I’d like to briefly outline my experience in using
witness-finding in a variety of roles during software
synthesis, including as a special case the extraction of
whole programs as witnesses. The effort may be seen as
attempting to develop more encompassing frameworks
for generating software, motivated by the desire to syn-
thesize larger, more complex applications.

Program Scheme Instantiation

In the 1970’s and early 80’s most program deriva-
tions were special cases of divide-and-conquer (unfor-
tunately, this is still too often true), probably because
they are some of the easiest induction arguments to
push through a prover. So it seemed interesting to try
to capture divide-and-conquer more abstractly, rather
than repeatedly discovering instances of it. From this
effort came the notion of constructing a program by in-
stantiating a program scheme and using deductive tech-
niques to synthesize the definitions or specifications for
the free operators in program schemes (Smith, 1985;
Smith, 1987; Lowry, 1991).

There are a variety of ways in which witness-finding
can be used to support scheme instantiation.

• Deriving specifications for subalgorithms – The cor-
rectness conditions of a program scheme serve to con-
strain the ways that the free operators can be instan-
tiated, and these constraints can often be used to

infer specifications for subalgorithms. In the divide-
and-conquer case, if you plug in a standard decom-
position operator, you can use a soundness axiom on
the scheme to infer a specification for the composition
operator. Dually, from a given composition operator,
one can calculate a specification for the decomposi-
tion operator. To support this kind of inference, we
generalized the witness-finding process slightly to al-
low generation of boolean-valued terms that are suf-
ficient conditions on a given formula (Smith, 1982;
Smith, 1985). This process was called derived an-
tecedents, but now known generally as abductive
inference, although for synthesis purposes the ab-
ductibles are required to be expressed over a specified
set of variables.

• Deriving guards – Derived antecedent were use to in-
fer the guards on a recursive call to ensure termina-
tion and establishment of preconditions. Again this
is finding a sufficient condition as witness to the va-
lidity of a correctness formula.

• Deriving Filters – Backtrack and branch-and-bound
program schemes require the inference of neces-
sary conditions (to serve as pruning and constraint
propagation mechanisms) as well as upper or lower
bounds on numeric expressions (to serve for bound-
ing in branch-and-bound) (Smith, 1987; Smith, 1990;
Smith et al., 1996).

• Matching Library Operators – Top-down design re-
duces a top-level specification to a tree of subprob-
lem specifications. The process bottoms out in
specifications that can be matched against primitive
instructions or library operators. Witness-finding
was used in CYPRESS and KIDS to generate the
data translators that allow a library routine to be
used to satisfy a given specification (Smith, 1985;
Smith, 1993). More recently, witness-finding has
been used to generate the glue-code that allows two
data sources to interact (Burstein et al., 2003).

• Expression Optimization – After scheme instantia-
tion, there are often lots of opportunities to apply
common program optimizations, such as: context-
dependent simplification, finite differencing, partial
evaluation, case analysis, and others (Smith, 1990).



Underlying many of these optimization tactics is
search for a witness that is equal/equivalent to an
expression modulo the context in which it will be
evaluated.

Design Theories and Interpretation Construc-
tion

Later, in an attempt to more fully formalize the no-
tion of a program scheme, we developed the notion
of an algorithm theory in which a program scheme
was a definition for a function symbol expressed in
terms of some other operators that were axiomati-
cally constrained. To instantiate the scheme required
constructing a theory morphism (interpretation) that
explicated how the symbols in the algorithm the-
ory translated to the problem domain theory such
that all the axioms remained provable (Lowry, 1987;
Smith and Lowry, 1989). A pushout accomplishes
the instantiation of the abstract program scheme with
expressions from the problem domain (Smith, 1996;
Smith, 1999).

The key work here is constructing an interpretation
between the algorithm theory and the problem domain
theory. An interpretation between theories or simply an
interpretation is a map from the symbols of the source
(domain) theory to expressions of the target (codomain)
theory that induces a language translation, and is re-
quired to preserve provability; i.e. an source theorem
must remain provable under translation to the target
theory. It turns out that all the witness-finding roles
listed above are examples of using unskolemization dur-
ing interpretation construction.

Here is how unskolemization is used to support inter-
pretation construction (Smith, 1993). Suppose that we
are trying to complete a partial interpretation σ from
theory S to theory T . Let f be a function symbol of
S that has no translation yet under σ. Suppose that
A is a prenex normal form axiom in which all occur-
rences of f are identical and simple (only variables, no
terms), and suppose that all other symbols in A are
translatable under σ (i.e. the domain of σ includes all
of the sort and operator symbols of A except for the
function symbol f). To obtain a candidate translation
for a function symbol f , we proceed as follows.

(1) Unskolemize f in A yielding A′. Since the effect is
to replace each occurrence of f by a variable, each
symbol in A′ can be translated via σ.

(2) Translate A′. The translated sentence σ(A′) need not
be an axiom of T . In order for σ to become an inter-
pretation, we need an expression defining the trans-
lation of f in T . σ(A′) can be viewed as a constraint
on the possible translations of f .

(3) Attempt to prove σ(A′) in T. A constructive proof
will yield a (witness) expression w(x) for f that de-
pends only on the variable(s) x. If the proof involves
induction (resulting in a recursively defined witness),
then we extend the target theory with a fresh opera-
tor symbol and an axiom stating its recursive defini-
tion.

(4) Extend the partial morphism σ by defining σ(f) to be
w(x). By construction this translation for f guaran-
tees that σ properly translates the axiom A.

Other axioms that involve f may now be translat-
able, and if so, then we can attempt to prove that they
translate to theorems.

Interpretations play a variety of basic roles in soft-
ware development, and thus interpretation construction
is a crucial activity, including witness-finding as a key
support tool.

• Representing and applying abstract design knowledge
– Abstract design knowledge can often be captured
and organized via interpretations. For example, al-
gorithm knowledge can be expressed as an interpre-
tation between an applicability theory and a theory
expressing the problem-solving method. For another
example, datatype refinements are expressed as in-
terpretations from the abstract datatype theory to a
(more) concrete datatype theory (Blaine and Gold-
berg, 1991). Design theories may be organized into
taxonomies where interpretations precisely specify
the “subclass” links (Smith, 1996). When we rep-
resent design knowledge abstractly as an interpreta-
tion I : A → B, then we apply the abstraction to
generate a refinement of a target specification S by
(i) constructing an interpretation from A to the tar-
get specification S, and (ii) computing the pushout of
the two interpretations B ← A→ S (Smith, 1996).

This process can be applied to a broad range of types
of knowledge, well beyond programming knowledge.
Note that showing applicability of an abstraction to a
concrete problem via an interpretation properly gen-
eralizes the notion of a substitution that matches a
rule pattern with a domain goal – we match not only
syntax, but also must respect the axiomatic seman-
tics.

• Refinement generators (metaprograms) – Some-
times abstract design knowledge is best cap-
tured by metaprograms that generate interpreta-
tions/refinements. Program optimizations are typi-
cal examples, and they often have the following char-
acteristic: they are based on a metatheorem whose
conclusion is that such-and-such a syntactic change
results in a refinement (i.e. preserves or reduces
models). The metaprogram works by analyzing the
object-level spec and constructively inferring how to
reify the metatheorem in this case.



• Constructing datatype refinements – We have worked
several examples of deriving data structures via in-
terpretation construction. For example, constructing
an interpretation from sets over a linear order to bi-
nary trees over a linear order can result in the heaps
data structure. The key invariant, the heap property,
is derived via witness-finding.

• Deriving behavior – A guarded command in a state
machine, corresponds exactly to interpretation (from
the theory of the post-state to the theory of the pre-
state) (Pavlovic and Smith, 2001). Interpretation
construction then can be used to generate commands
of an abstract state machine. For example, some re-
searchers have described work on calculating transi-
tions in control systems so that safety conditions are
guaranteed.

Witness-finding can play a crucial role in the con-
struction of correct software. In my view, constructing
interpretations is a fundamental and central problem in
formal software development, and it provides a wealth
of opportunities for developing and applying witness-
finding technology. The work described above aims
for a software development framework within which
witness-finding can be used to best advantage.

References

Lee Blaine and Allen Goldberg. DTRE – a semi-
automatic transformation system. In B. Möller, edi-
tor, Constructing Programs from Specifications, pages
165–204. North-Holland, Amsterdam, 1991.

M. Burstein, D. McDermott, D.R. Smith, and S.J.
Westfold. Derivation of glue code for agent interopera-
tion. Journal of Autonomous Agents and Multi-Agent
Systems, 6:265–286, 2003.

Michael R. Lowry. Algorithm synthesis through prob-
lem reformulation. In Proceedings of the 1987 Na-
tional Conference on Artificial Intelligence, Seattle,
WA, July 13–17, 1987.

Michael R. Lowry. Automating the design of local
search algorithms. In M. Lowry and R. McCartney,
editors, Automating Software Design, pages 515–546.
AAAI/MIT Press, Menlo Park, 1991.

Dusko Pavlovic and Douglas R. Smith. Composition
and refinement of behavioral specifications. In Pro-
ceedings of Sixteenth International Conference on Au-
tomated Software Engineering, pages 157–165. IEEE
Computer Society Press, 2001.

Douglas R. Smith and Michael R. Lowry. Algo-
rithm theories and design tactics. In L. van de
Snepscheut, editor, Proceedings of the International
Conference on Mathematics of Program Construction,
LNCS 375, pages 379–398. Springer-Verlag, Berlin,
1989. (reprinted in Science of Computer Programming,
14(2-3), October 1990, pp. 305–321).

Douglas R. Smith, Eduardo A. Parra, and Stephen J.
Westfold. Synthesis of planning and scheduling soft-
ware. In A. Tate, editor, Advanced Planning Technol-
ogy, pages 226–234. AAAI Press, Menlo Park, 1996.

Douglas R. Smith. Derived preconditions and their
use in program synthesis, LNCS 138. In D. W. Love-
land, editor, Sixth Conference on Automated Deduc-
tion, pages 172–193, Berlin, 1982. Springer-Verlag.

Douglas R. Smith. Top-down synthesis of divide-and-
conquer algorithms. Artificial Intelligence, 27(1):43–
96, September 1985. (Reprinted in Readings in Arti-
ficial Intelligence and Software Engineering, C. Rich
and R. Waters, Eds., Los Altos, CA, Morgan Kauf-
mann, 1986.).

Douglas R. Smith. Structure and design of global
search algorithms. Technical Report KES.U.87.12,
Kestrel Institute, November 1987.

Douglas R. Smith. KIDS – a semi-automatic program
development system. IEEE Transactions on Software
Engineering Special Issue on Formal Methods in Soft-
ware Engineering, 16(9):1024–1043, 1990.

Douglas R. Smith. Constructing specification mor-
phisms. Journal of Symbolic Computation, Special
Issue on Automatic Programming, 15(5-6):571–606,
May-June 1993.

Douglas R. Smith. Toward a classification approach to
design. In Proceedings of Algebraic Methodology and
Software Technology (AMAST), volume LNCS 1101,
pages 62–84. Springer-Verlag, 1996.

Douglas R. Smith. Mechanizing the development of
software. In M. Broy and R. Steinbrueggen, edi-
tors, Calculational System Design, Proceedings of the
NATO Advanced Study Institute, pages 251–292. IOS
Press, Amsterdam, 1999.


