Derivation of Glue Code for Agent Interoperation*

Mark Burstein Drew McDermott
GTE/BBN Yale University
burstein@bbn.com drew.mcdermott@yale.edu

Douglas R. Smith
Stephen J. Westfold Kestrel Institute
{smith,westfold}@kestrel.edu

Abstract

Getting agents to communicate requires translating the data struc-
tures of the sender (the source representation) to the format required
by the receiver (the target representation). Assuming that there is
a formal theory of the semantics of the two formats, which explains
both their meanings in terms of a neutral fopic domain, we can cast
the translation problem as solving higher-order functional equations.
Some simple rules and strategies apparently suffice to solve these equa-
tions automatically. The strategies may be summarized as: decompose
complex expressions, replacing topic-domain expressions with source-
domain expressions when necessary. A crucial issue is getting the re-
quired formal theories of the source and target domains. We believe it
is sufficient to find partial formalizations that grow as necessary.

1 Introduction

This paper is about getting agents to communicate with each other. By
“agent” we mean programs that operate at a high enough semantic level
that they can form new connections to other programs in order to get a
job done. To make such a connection, an agent must find other agents that
might carry out a task on its behalf, establish communication with them,
send them tasks and receive results back. If this sort of connection is to
happen without careful preprogramming by human coordinators, it must be

*This work was supported by the Air Force Research Lab (Rome, NY), and the DARPA
CoABS program, under contract number F30602-98-C-0168.

the case that the agent has an explicit representation of its goals, and that
the agents it talks to maintains an explicit representation of their abilities.
Otherwise, it is difficult to see how the agents could conclude that agent B
can help agent A.

There are many different ways of getting agents together dynamically.
We spoke as though each agent solicited help from others on its own, but
of course there could be other middle agents involved [13]. The information
about the needs and abilities of the agents could be stored in any convenient
place, not necessarily maintained by the agents themselves. The connection
between agents A and B could be direct, or could be mediated in multiple
ways by middle agents. It is also not important for our purposes who “takes
the initiative,” A, B, or some third party, or whether there are other agents
C, D, and so forth that also contribute.

Notational issues arise at multiple points in the process of hooking agents
up. Assuming there are many agents, or an open-ended collection in an
amorphous medium such as the Internet, it is impractical for an agent to
find useful partners by enumerating all candidates and discarding those that
don’t work. Instead, there has to be a registration service that allows agents
with abilities to offer to make their presence known. When the agent signs
in, it must specify what capabilities it offers. This specification is in an
advertising language [3, 13]. The best-known example is the LARKS nota-
tion of [24] (although, as we shall see, LARKS does more than that). It is
reasonable to suppose that an agent has to cope with just one advertising
language. One plausible idea is that a registration service would be main-
tained by a consortium of companies in some industry. There would be little
point in standardizing the registry without also standardizing the advertis-
ing language. For instance, suppose the registry serves the travel industry.
There would be a vocabulary for describing airline flights, fare prices, num-
ber of passengers involved, dates involved, and so forth. An agent might
advertise for someone who could provide flights for two people from London
to Orlando sometime in May, and an airline that can provide flights for more
than one person from London to anywhere in the U.S. any time might be
worth talking to. See [24] or [15] for alternative models of how the linkage
might work between advertisers and their customers.

Once agents are connected (whether or not there are helpers in between),
they begin sending messages back and forth. One issue that arises here is
what sorts of “conversation” they have. Agent communication languages
(ACLs) [14] such as KQML [16, 6] and FIPA ACL [8, 7] offer the ability
for agents to send messages such as (TELL P) or (REQUEST A). TELL and
REQUEST are examples of performatives, or communicative acts, and tend

to be the focus of papers on ACLs. Unfortunately, it is hard to picture
exactly what P’s and A’s two agents would send each other in the abstract,
so descriptions of agent behavior at the communicative-act level are often
unsatisfying. Let’s look at a particular example.

Suppose agent R wants to know the address and phone number of each
of a group of people. Suppose agent P knows phone numbers of individual
people. It seems clear that P has something to offer R, that will allow it to
come closer to its goal. But what it does it mean to say that agent P “knows”
someone’s phone number? How is a group of people represented? Abstractly
we might think of a data structure as representing a person, but when two
agents communicate they have to know what the pieces of the structure
actually are, and how they relate to the person represented. It may turn
out that, although they both reason about people’s phone numbers, they
represent people in different ways. For example, R may represent a person
as a pair (name, date-of-birth), whereas P may represent the same person
as Social-Security-number.

Note that this problem arises even if R and P share the same ontology,
that is, vocabulary and logical framework. They may agree that there is
a class called Person and that each person has a name, a Social Security
number, and a date of birth. They can communicate, however, only if they
both identify people the same way, or a translation mechanism can be found.

Another example appears in [24]. Here R wants to know the set of all
air combat missions launched between two dates. P can, given two dates,
produce the set of all AWAC missions launched between those two dates.
Using the LARKS notation (and simplifying a bit), R’s request is

Date = (mm: Int, dd: Int, yy: Int)
Types DeployedMission
= ListOf(mType: String, mID: String||Int)

Input sd: Date, ed: Date
Output missions: Mission

InConstraints sd < ed

deployed(mID), launchedAfter(mID,sd)

OutConstraints launchedBefore(mID, ed)

and P’s advertisement is

Date = (mm: Int, dd: Int, yy: Int)
DeployedMission

Types = ListOf(mType: String, mID: String||Int,
mStart: Date, mEnd: Date)

Input start: Date, end: Date

Output missions: DeployedMission

InConstraints start < end

deployed(mID), mt = AWAC,
OutConstraints | launchedAfter(mID, mStart)
launchedBefore(mID, mEnd)

One can see how the sorts of filters employed by [13] could zero in on P as
a good candidate for providing information to R. However, there are several
issues that arise in completing the connection between the two. For instance:
How do you know that the Ints mentioned in the Dates for R’s request line
up properly with the Ints mentioned in P’s Dates? (the labels “mm,” “dd,”
and “yy” are presumably just mnemonic, and have no content.) How do we
transform the list produced by P into the list wanted by R? Intuitively, if
you have a list whose elements are tuples that are“too big” (have unwanted
elements), you can just throw away the unwanted stuff. It appears from
published descriptions [10, 25] that Sycara et al.’s RETSINA system has
standard transformations for common cases such as this one. '

We are interested in automating the generation of transformations such
as that used by RETSINA to send dates from R to P and lists of missions
back, given slightly more detailed descriptions of the data structures. In
the rest of this paper, we will use the term glue code to refer to such a
transformation. The problem is to generate glue code automatically.

The work most closely related to ours is the work by database and
information-retrieval community on integrating disparate information sources.
The term schema is in standard use to refer to description of the different
record types in a database and the constraints among them. The schema

'Our use of their example is not meant to suggest inadequacies in [13]’s treatment of
agent communication. The published description makes it hard to be sure what’s going
on in their RETSINA system. It is difficult to tell what the scoping rules are, or how
one could decipher the relationship between mStart and start (or mEnd and end) in P’s
advertisement. It’s possible that we are misconstruing the notation.

plays roughly the role of the InConstraints and OutConstraints in LARKS.
Every database has its own schema, so putting two databases together re-
quires schema integration, with subproblems of query translation and value
translation. [20, 11, 9, 18].

Database researchers assume that the results of a query are tables in a
standard format (or, equivalently, collections of answers to Datalog queries [26,
27]. When information sources are being integrated, the goal is to present
the end user with an abstract database that behaves like the union of all
the component databases. To make this happen, there must be axioms that
allow the database mediator to map predicates in the source databases to
predicates in the abstract database. If the component information sources
don’t look like databases, they can be “wrapped” with programs that make
them look like databases [21, 28, 2, 3, 19, 1].

We don’t think this model fits the case of agent communication partic-
ularly well. Couplings between agents may be less permanent than inte-
gration of information sources. As the examples in this paper will show,
the I/O behavior of an agent may be most naturally described in terms of
data structures, whose meaning is specified as a mathematical function of
abstract domain entities.

A related issue has to do with the how information sources are com-
pared. A date may be specified as a tuple (year, monthday), but what makes
it a date? In most database-integration papers, the answer ultimately is
that someone told the mediator: “To infer date of(x, y, m, d) in this
database, solve the query time of (z, s, n, d, m, y) inthat one.” If the
same component is used elsewhere, another axiom will have to be found, and
there is no way to get the human out of the loop. For agent communication,
this is unsatisfactory.

The only solution to this problem is to describe each information source,
or, more generally, the inputs and outputs of each agent, in terms of shared,
global ontologies. This must be done just once for each agent (we hope),
after which it can be coupled to other agents by figuring out the relationships
between their outputs and its inputs. In this vision, what makes a data
structure a date is that it is stipulated to be a tuple of the form

((time_instant_year t c), (time_instant_-month t c), (time_instant_day t c))

for some time instant ¢ and calendar c.

We don’t want to overemphasize the difference between our approach
and that of the database community. It is likely that we can make use of
results from database researchers, and that the fields of agents and databases
will eventually converge on answers to the questions we raise here.

2 The Setting

To explain our approach, we will start with an almost trivial problem. Sup-
pose that we have two agents that use data structures that represent the
same population of people, but that record different information about them.
In particular, let S record the name, identification number, and age of each
person, and let 7" record the name and the id number of the person if he/she
is over age 30 and 0 otherwise. S is the output of agent 1, and T is the input
to agent 2. If agent 1 is to feed information to agent 2, then we must derive
a translator f such that f(S) =7T. We call S the source domain, and T' the
target domain.

This problem is solvable only if S and 7" capture “the same” information,
or, more precisely, if all the information to be included in 7" occurs in S. But
by itself a database captures no information at all. It’s just a meaningless
pile of symbols unless its users understand what the symbols are supposed to
mean, and use the database in accordance with that understanding. Such an
informal notion of meaning is sufficient if the users are all humans, but not
in the case we’re concerned with, where the glue-code generator is supposed
to be automatic.

Hence we must supply every agent with a formal theory glossing its input
and output representations. This may seem like a big commitment, but we
see no way to evade it. We’ll avoid being distracted by this issue here, but
return to it in Section 7.

A key requirement of the formal theories about agents is that if two
agents are to be connected, then their theories must owverlap. If one of
the agents contains the symbol person, and the other contains the symbol
employee, then there must be a semantic domain whose topic is people, and
the symbols must be defined in roughly the same terms from that domain.
It must be possible to infer, for instance, that if a data structure in one
domain represents information about employees, it can be translated into
a data structure in the other that represents information about persons.
This requirement raises many tough issues, which again we defer for later
discussion. We will simply assume that there is an abstract common theory
P of the application domain with the property that we can define S and T
in terms of P. The common theory provides symbols for the concepts, op-
erations, and relationships in the domain. Its axioms constrain the meaning
of the vocabulary. In our example, we specify an abstract theory, called a
spec, of persons P of sort? set(person) where each person is an object that

2In this paper, we use the word “type” informally, reserving the word sort for technical

has a name, id, age, and other attributes, as follows:

spec Person-DB 1is
sort Person
op P :set(Person)
op name : Person — string
op id : Person — nat
op age : Person — nat

end-spec

We will call the domain common to both .S and T the topic domain and
the specification above the topic theory. Sorts like nat and string correspond
to manipulable data objects, which can be used as concrete representations
of objects of sorts like Person. As we will see, agents cannot manipulate
pure topic-domain entities directly, but can only perform computations over
their representations.

We use a A-calculus notation for functions. As usual in the functional-
programming community, we will assume that a A expression has just one
argument, but this argument will often be a tuple. The 7’th element of a
k-tuple t = (21, ...,) will be written I1¥(¢) = z;. Application of function
f to argument z will be written fz. Soif f : Ay x Ay x...xAr — B (i.e., f’s
sort is “function from k-tuples to B, where the ¢’th element of its argument is
from domain A;”), then rather than write f = (At g(II}(2),...,1F(2))), we
will write f = (A (z1,...,2%) g(z1,...,2%)). In some circumstances, when
we write (Az ...), we intend to cover the case where z is a tuple, but we
don’t currently care how long it is.

Now let’s suppose that S and T both represent aspects of the set P. S
is a set of triples (name, id, age), one per person, so we can express it as

S = image((Ap (name p, id p, age p)), P)

where image(f, X) = {f(z)|x € X}. We can express S more concisely using
a couple of abbreviatory devices. Function tupling allows us to write

(name, id, age) for (Ap (name p,id p, age p))

and we write F'x X for image(F, X). So we can write S as

S = (name, id, age) x P

contexts.

Similarly,

T = (name, (Ap if agep > 30 then id p else 0)) x P

The problem is to find a function f such that fS = T. This type of
equation will occur repeatedly in what follows, so we write it as

Find : f(name,id, age) * P =
(name, (Ap if age p > 30 then id p else 0)) x P

It seems clear that we can construct f by creating a function that does
something to each element of the input dataset S. In other words, if we
could solve:

Find : i((name, id, age)(z)) =
(name, (Ap if agep > 30 then id p else 0)) x

where x is an arbitrary element of P, then the solution to the original
equation would be

=X ixX)

We express this as a subgoal-formation rule:

Image-Decomposition Rule
Giveng: A — B,
and h: A — C,
To find: f(g*xY) = h*xY
Solution : f=(AX ixX)
<= Find: i(gx) = hz for arbitrary v € X.

We use the symbol “ <= " to indicate subgoaling.

Because we're trying to find an ¢ that works for all elements x of P, we
can treat x as an arbitrary constant from now on. The subgoal may now be
rewritten as

<= Find : i(name z,id x, age) =
(name z,if age x > 30 then id z else 0)

To make further progress, we need the concepts of imitation and pro-
jection from higher-order matching theory [12], embodied in the following
rules:

Imitation Rule
Giveng: By X ... x B, = C

To Find: fu=g(vy,...,vp)

Solution: f = (Az g(h1z,hex,...,hyx))
< Find: hju=v;for1 <i<n

Projection Rule
To Find: f(ay,...,ax) = a;
Solution: f =1II¥ = (A (z1,...,T%) =;)

That is, we let the structure of f mirror the desired structure on the right-
hand (“target”) side of the equation.
In our example, imitation with g = (name, (Ap if agep > 30 then idp else 0))
allows us to solve for ¢ thus:
i = (An,d,a) (hi(n,d,a),hs(n,d,a)))
— Find : hy(name p, id p, age p) = name p
and Find : he(name p, id p, age p) =
if agep > 30 then idp else 0
The projection rule then gives us h; = (A (n,4,a) n). Imitation applied to
ho gives
he = (A(n,i,a) if hoi(n,i,a)
then hgs(n,i,a)
else hog(n,i,a))
— Find : hoy(name p, id p, age p) =
(name p > 30)
and Find : hoo(name p,id p, agep) = idp
and Find : heg(name p,id p, agep) =0

A few more rounds of imitation and projection eventually yield:

f=MAX (A(n,i,a) (n, if a > 30 then i else 0))x X)

and T = f(S). In English, to translate source dataset S into target dataset
T, translate all the triples in S, leaving the name alone, and combining the
age and id as shown.

3 More Complex Examples

We now introduce an example that we will refer to frequently in the rest
of this paper. Suppose we are given a scheduling agent S that produces an
airlift schedule. For each aircraft, the schedule gives the sequence of flights
that it is scheduled to make. We also have an agent R that maintains what
is known as a “commitment matrix,” a table that specifies, for each time
slot, the number of each type of aircraft that are committed to scheduled
flights (i.e. not free for allocation) in that time slot. The problem is to
derive a translator f from schedules to commitment matrices, so that R is
able to accept the information derived from the scheduler according to its
declared input specification format.

This approach to the problem can be considered as a form of the au-
tomatic programming problem, but one that we believe is simpler than the
general case. It “feels like” an exercise in moving data around, with a bit
of condensing, summarization, and totaling thrown in. On the other hand,
problems like this one are not trivial. The reader may wish to stop and try
to produce the glue code for S and R by hand.

To proceed, we will need some more notational machinery. Let z — y
be the ordered pair (z,y), considered as a component of a finite map; it
records the association between element x and the element y it maps to.
Let P> U = filter(P,U) = {u € U|P(u)}, i.e., the subset of U satisfying
predicate P. Let (size U) be the cardinality of finite set U.

The topic-domain spec describes schedules:

spec Schedule-DB is
import set, cargo, integer, port
sort Reservation, time
sort-axiom time=integer
op R : set(Reservation)
op aircraft : Reservation — string
op flt-no : Reservation — string
op depart : Reservation — time
op arrive : Reservation — time
op manifest : Reservation — set(cargo)
op origin : Reservation — port
op destination : Reservation — port
op aircraft-class : Reservation — string

axiom Y(rl,r2 € R)

10

rl # r2 A (aircraft 1) = (aircraft r2)
D ((arrive rl) < (depart r2)
V (arrive r2) < (depart rl))
end-spec

where integers are used to represent time. The last axiom states that no
two flights by the same aircraft overlap.

The source agent is a mission planner MP that produces a description
of all reservations in the form:

S = (aircraft, depart, arrive, manifest) x R

The target agent requires a summarization of the schedule that indicates
how many aircraft are flying at a given time over a given time interval. This
summary, known as a commitment matriz®, is

T, j) =
(Mt
t — size((Ar (departr) <t < (arriver))

>R))
*{i..7}.

(The notation {i..7} denotes the set of all integers between i and j inclusive.)
The goal is to derive a translator from an arbitrary schedule Sched to a
commitment matrix*:

Find : f(S,i,7) =T(i,7).

A translator from S (domain DB) to T (domain MP) might be derived
as follows®:

Find: f((aircraft, depart, arrive, manifest) * R,i,7)
= (Xt

3A commitment matrix is supposed to give the number of each type of aircraft that
is in use. For clarity, we have simplified this to a a “commitment vector” that gives the
total number of aircraft flying for each time period.

*Note that the parameters ¢ and j control how much of S must be used to generate T'.
For technical purity, we could write this equation as f(i, 7)(.S), but here and elsewhere we
will move freely between expressing a multiargument function with currying and expressing
it with tupling, generally favoring the latter.

STechnically, the first subgoal produced should be of the form Find: g((...)*R,i,j) =
(At t— ...), but we move the ¢ into the arguments of g by the “decurrying” rule alluded
to above.

11

t > size((Ar (departr) <t < (arriver))

>R))
*{i..5}
Solution: f = (A (X,i,7) (At (g9(t, X,4,7))) *h(X,i,7))
by imitation.
—
Find: ¢(t,
(aircraft, depart, arrive, manifest)
xR,
i)
=t size((Ar (departr) <t < (arriver))
>R)
and Find: h(t,
(aircraft, depart, arrive, manifest)
*R,
i J)
= {i..j}

By straightforward imitation we derive

h= (At X,1,5) {i.j})
The other subgoal is attacked using imitation again:

Solution: g = (A (t,X,1,7) g1(t, X,4,7) — g2(t, X,4,7))
—
Find:
91 (t, (aircraft, depart, arrive, manifest) x R, 1, j)
=1
and
[G*] Find:
92 (tu
(aircraft, depart, arrive, manifest)
*R,
i,)
= size((Ar (departr) <t < (arriver))
>R)
The g, part succumbs to projection, with solution
g1 = (>‘ (taXviaj) t)

12

But if we attempt to apply imitation to go, we will get something useless:

Solution attempt: gs = (A (2, X,1,7) size(hpyg(t, X,1,7)))

<—

Find: hyyg(t, (aircraft, depart, arrive, manifest) x R, 1, j)
=(..)>R

The problem is that (...) > R is of sort set(Reservation), a topic-domain
sort, whereas hy,, has access only to the source data, (...) x R. There is no
reason why hp,, could not exist as a mathematical abstraction, but it can’t
be the denotation of a computable process, because computations output
data structures that represent reservations, not the reservations themselves.
We must find a way to transform the target side of goal [G*] so that it is
expressed in terms that can be found in the source representation.

4 Sourcifying Rules

The key heuristic we employ is to replace occurrences of target-domain terms
with their images under functions mentioned in the source sides of goals.
This heuristic is licensed by the following rule:

*-Introduction Rule
Foranym: A— Band CC A
C=m"txm*C

<= m is injective

If we have a problematic occurrence of a topic term C, and we know
that m x C occurs in the source term S, then we try replacing C with
m~! % m % C. The hope is that the m~! part can be simplified away by
further transformations, leaving us with a term (m % C) that is closer to
what is available on the source side. A rule of this kind that pushes a
target-side term closer to being identical with a source-side term is called a
sourcifying rule.

All the previous rules matched an entire goal of the form “Find: f ...=

..,” producing a solution (and possibly some subgoals). We call them
solution rules. The image-introduction rule matches a particular subterm of
a goal, allowing us to produce a new goal by substituting another term for
that subterm (again possibly accompanied by new subgoals). We call rules
with this behavior rewrite rules. Unless stated otherwise, they are applied
left-to-right. That is, & = (is used to rewrite terms matching « with terms

13

matching 8. Rewrite rules that do not “sourcify” are labeled with the catch-
all phrase simplification rule. Although in the end we will require dozens
of simplification rules, for the purposes of our commitment-matrix example
we need only two:

Image-Filter Rule
For any p : A — boolean
and any f: A— B
p>(fxX) = fx(p'>X)
< Find: p'x = p(fz)forallz e X

“You can switch the order of a filter and image operation if you adjust the
type of the filtering predicate.”

Size-Image Rule

Forany f: A — B

size(f x X) = size(X)
<= f is injective

“If f is injective, it preserves the size of any set it operates on.”
We also require one further solution rule:

Inverse-Composition Rule

For any f: B — C

and injective g : B — A

To Find: hz = f(g~' x)

<= Find: h(gy) = fy for arbitrary y € B

In other words, to find an A that is the composition of f and ¢!, find
an h such that f = h o ¢.° To understand the rule, note that, since g is
injective, for any x € A, there is a unique y € B such that z = gy. Then
he=hgy) = fy=flg ' z).)

Now we derive the commitment-matrix generator by proceeding as shown
in figure 1 with our problematic subgoal.

Putting it all together, we have:

f=(5,1,79)
(At t— (size(A(a,d,r,m) d<t<r)>S9))
*{i..j}))
5This looks a little different from the previous solution rules, because the h found in

the subgoal happens to be identical to the h the rule finds. So rather than write Solution:
h="h,and < Find: h'(gy) = ..., we just write the rule as shown.

14

Find: go(t, (aircraft, depart, arrive, manifest) x R, 1,)
= size((Ar (departr) <t < (arriver)) > R)
Use x-Introduction to get:
Find: go(t, (aircraft, depart, arrive, manifest) x R, 1, j)
= size((Ar (departr) <t < (arriver))
> (aireraft, depart, arrive, manifest) ™"
*(aircraft, depart, arrive, manifest)
*R)
<= (by Image-Filter Rule and the definition of)
92 (ta Sa ia .7)
= size((aircraft, depart, arrive, manifest) ™"
*p' > 5)
= (by Size-Image Rule)
size(p' > S)
< Find : p'(a,d,r,m)
= (A7 (departr) < t < (arriver))
((adrcraft, depart, arrive, manifest) ™!
(a,d,r,m))
Using the Inverse-Composition Rule:
< Find : p'((aircraft, depart, arrive, manifest) r)
= ((departr) <t < (arriver))
which succumbs to imitation and projection, yielding:
p'=((a,dyr,m) d<t<r)
So that the solution for go can be found easily using imitation and projection:
92 = (N(t, X,14,7) size((A(a,d,r,m) d<t<r)> X))

Note: We have left out the required proof that
(aircraft, depart, arrive, manifest) is injective, which follows from the
“non-overlap” axiom in the Schedule-DB spec. However, it would be an
unusual database that didn’t satisfy injectivity in this way.

Figure 1: Derivation of problematic subfunction

15

In this example, the Size-Image Rule served as “deus ex machina’ to
cause the function

(aircraft, depart, arrive, manifest) ™!

to vanish completely. In general, the process isn’t so abrupt or tidy. Typ-
ically several rounds of simplification are necessary to eliminate all such
vestiges of the topic domain.

5 Search Management

Of course, there is a big gap between a bunch of higher-order equations and
an algorithm for applying them. It is out of the question to fill this gap with
a general-purpose higher-order theorem prover, because the search space for
even small problems is enormous. However, for this application we believe
that there is considerable guidance available. The strategy we followed in
the examples above may be summarized thus:

To solve fS="1T:

Use imitation and projection whenever the result would consist
of operations on source- or target-domain entities.

When it wouldn’t, eliminate a topic-domain term ¢ in the tar-
get T by replacing it with a term that may be schematized as
o~ l(ot). Here ot stands for a functional expression that ap-
pears in the source specification S, and o~! stands for whatever
“upstream adjustment” is necessary to preserve the meaning of
T.

Continue simplifying with imitation and projection. During this
process, mark o(t) as encapsulated, so that it can be incorporated
into other terms, but cannot be decomposed.

We use the term Source-Substitution Principle for this idea of replacing
t by 0~ (ot).” The principle suggests arranging sourcifying rules by what
sorts of o they handle. Here are two more. The >-Introduction Rule is used
when ... >t occurs in S and ¢ occurs in T. The Representative-Element
Rule is used when a set X occurs in S, and only an element z € X occurs
in T.

"We have noticed the resemblance of this technique to the “rippling” technique of
inductive theorem provers [5], in which the object is to transform a deductive goal into a
form that matches an induction hypothesis. Our “encapsulations” correspond roughly to
the “wave fronts” of the rippling mechanism. We don’t know how deep the resemblance
is.

16

>-Introduction Rule
For any p : A — boolean and B : set(A)
B=(p>B)U(neg p> B)

where neg p = (Az —pz). This is a rewrite rule used to replace a topic-
domain term B with the more complex term on the right. The subterm
p > B is encapsulated, and the other terms must be further transformed.

Representative-Element Rule

Forany f: A — B

and any g: A — C

9(x) = h(only_elt((Ay (dy) = (d(f x))) > f * X))
—= ze€X

and d o f is injective over X

and Find: h(fy) =gy forally € X.

The function only_elt: set(A) — A denotes the only element of its argument
if its argument has one element, and is undefined otherwise: (only_elt{z}) =
. In the context of this rule it will always be defined. What the rules
says is that, to perform a computation on a topic-domain element z, you
may transform it to the element of the source representation f x X that
“represents” it.

This rule applies very generally, and hence is used only as a last resort.
It applies to any formula at all with one or more occurrences of a term x
such that x € X, provided that fxX occurs in the source, for some function
f, and a function d can be found that allows us to find x in f x X. For
example, if the source contains (a,b) * X, and b is a unique identifier for
every object, then the rule matches the target size((Au u > z) > Z) with
g = (Av size((Au u > v) > Z)), and suggests rewriting the target as

h(only-elt (A (ya, ys) Yo = bx) > ((a,b) x X))

after finding an h such that h(ay,by) = size((Au u > y)> Z) for all y € X.
The idea is to use b to find the element (a x,bz) of ((a, b)xX) that represents
x, and hope that there is enough information in that element so that gz
may be computed by computing h(az,bzx).

We have worked several examples by hand using our strategy. For in-
stance, consider the following source-data descriptor:

S = (51,52)
where S1 = (id,(Az (A (k,n) n > 0)

17

>(cid, (A c qty(c,x))))
*C'))
*F,
and Sy = (cid, wcl) * C

S cousists of two substructures, S; and Sy that specify properties of a set
of airplane flights, F', and a set of cargo-item classes C. S is a table giving
the number of items of each class aboard each flight as a set of tuples

(ﬂZght'dea <(C7’d C1, qty(01, f))7 (CZd C2, qty(027 f))a e >)

one per flight in the set F. We use the notation (...) to indicate a list of an
indefinite number of items. The pair (cid ¢j, gty(c;, fi)) specifies the number
of items of cargo type ¢; on board flight f;. (cid c) is the id of cargo type c.
The entry is omitted if gty(c;, fi) = 0. The table Sy gives the weight of each
item class as a set of tuples (cid c, cargo-type-weight ¢) for every cargo type
¢ in the set C.. In addition to cid, we use id f to refer to the id number of
a flight; and wclc to refer to the weight of an item of class c.

The “Absent Items” problem is to derive a table showing, for each item
class, whether it occurs on any flight. The table consists of a list of tuples
(cargo-id, boolean):

T= (cid,(Ac V /((Az qty(c,z) > 0)x F))) xC

(V/X is true if and only if some element of X is true.)

This problem seems quite a bit harder than the examples we described
above, but our method requires no search at all; every possible application
of the Source-Substitution Principle is necessary.

We foresee two places where the method will break down:

1. If it is required to chain together an indefinite number of tuple ele-
ments, then some induction will be required. For example, given a
relational database that shows the immediate successors of each air-
plane flight, transforming it to an explicit chain requires a recursive
“collection” algorithm. Our technique works, but requires some in-
sight, and so will be hard to mechanize.

2. When term rewriting becomes true deduction rather than mere sim-
plification, the number of possible search paths could become large.

For instance, suppose you wanted to produce the first component Sy
of the source for the absent-items problems, which describes the classes of

18

items on board, given a data structure that lists the individual items on
board. S; is the target in this problem, and the source is composed of two
tables (R1, Rg), where Ry is a set of tuples (flight-id, (item-idy, item-ido, . . .)),
whose second component is a list of the ids of the items on the given flight;
and Ry is a set of tuples (item-id, item-class-id), which specifies for each
item which class it belongs to. More formally:

R = (R1, Ry)
where Ry =(id, (A f iid * {z|aboard (z,)}))
*F
and Re = (7id, cid o icl) x C

where id(f) is the id of flight f, #id(z) is the id of item z, icl(x) is the
class of item x, and cid(c) is the id of class ¢. The problem is to find g such
that ¢ R = S7; in other words:

Find: g((id, (X f iid x {z|aboard (x, f)}))
*F,
(did, cid o icl) x C)
=(id,(Az (A (k,n) n>0)
> (cid, (A e qty(c,x))))
*C))
*F

Our method can handle this, but it requires partitioning the set of all items
in Ry (i.e., itd x {x|aboard (z, f)}) by item class and applying the following
deductive rule:

Sum-partition Rule

For any f : A — Real

and any Y : set(A)

+/{: fzle €Y} =+/{: +/{: fz|z € s}s € P}
<= P is a partition of Y

In this rule, {: f(z)|...} is the bag (multiset) of all f(z) for z satisfying
the condition “...”. &/b applies associative and commutative function & to
the elements of bag b. So +/{: 3,3,4} = 10.

The rule says that to add up f(z) for every element of a set, find a
partition and add up the subtotals for all the subsets the partition defines.
Exactly when to apply deductive rules instead of imitation is the subject of
our current research.

19

6 Glue Code Middle Agents

We have implemented a prototype glue code generation agent in a demon-
stration system simulating a military disaster relief scenario. In doing so,
we have begun to discover and address issues of how such agents would be
utilized and deployed.

In our demonstration, a glue code agent is deployed that receives requests
for translation services and produces specific translation agents that the
sender forwards messages through when the message is of a specific kind,
and the ultimate recipient is of a specific agent type. In general, the indexing
of these translators may become an issue, and various alternative schemes
for, say, adding translation functions to a single middle agent responsible
for interactions between two specific classes of agents might be preferable.
Indeed, even for our simple case, there is a need to develop two different
translation functions, one for the request and one for the response.

In one example from our scenario, an agent S uses a matchmaking service
to find another agent 1" capable of delivering quantities of relief supplies to
different locations by specified times. S standardly requests such services
with a message like this:

(distribute :cargo-destination ((:type <cargo-type>
:location <location-id>
:quantity <quantity-in-lbs>
:required-delivery-time <time-gmit>)*)
:cargo-source (:type <cargo-type>

:location <location-id>

:quantity <quantity-in-lbs>

:available-time <time-gmt>))

That is, a single source load of cargo, available at the stated time, is to
be divided and distributed to a number of sites.

The agent that is found to do these deliveries uses a different request
form, where the source and destination for a single delivery is specified
together with the type and quantity, but where the quantity is in a different
unit of measure.

(deliver :items (<cargo-type>
< source-location-id>
<destination-location-id>
< quantity-in-kilograms>

20

<available-time-local>)*))

The glue code generator is established as a middle agent that accepts
requests to “spawn” translator agents for particular messages between agents
or classes of agents. In this case, agent S uses the description of the service
found by the matchmaker to request a translator from the glue code agent.
This request expresses the above two forms in terms of topic domain sets,
variables and concepts:

Topic Variables: REQ-GOALS : set(Move-Cargo-Goal)
CARGO-SOURCE : Cargo-Availablility
SourceForm =
(distribute
:cargo-destination
(A(g)
(make cargo-goal-spec
:type (cargo-id (goal-type g))
:location (location-id (goal-destination g))
:quantity (weight (goal-amt g) lbs)
:required-delivery-time
(date (goal-deadline g) zulu-time)))
* REQ-GOALS
:cargo-source
(make cargo-source-spec
:type (cargo-id (load-type CARGO-SOURCE))
:location (location-id (load-loc CARGO-SOURCE))
:quantity (weight (load-amt CARGO-SOURCE) 1bs)
:available-by (date (load-available-time

CARGO-SOURCE) zulu-time)))
TargetForm =

(deliver
ritems (A (g)
(make delivery-spec
(cargo-id (goal-type g))
(weight (goal-amt g) kg)
(location-id (load-loc CARGO-SOURCE))
(location-id (goal-destination g))
(date (load-available-time CARGO-SOURCE)

(local-time (load-loc CARGO-SOURCE))))
«REQ-GOALS))))

21

This example raises certain mundane issues that are going to be quite
important in realistic applications. A function like date or weight produces
a computational value only when provided with a “unit system” such as kg
or zulu-time.® A unit system is not itself a computational object, and can’t
be manipulated as such.

Handling these examples requires a simple—almost trivial—sort of sour-
cifying rule. For instance:

Weight-Translation Rule
(weight z 1b) = 2.2046225 x (weight © kg)

If a term matching the left-hand side occurs in the target, and a term
matching the right-hand side occurs in the source, then we rewrite and
encapsulate just as for more profound rules.

The LISP code currently produced for this, after running through an
optimizer, looks as follows, with variable names changed for readability:

(LAMBDA (MSG-FORM)
(LET((CARGO-SRC (NTH 4 MSG-FORM)))
(LIST ’DELIVER :ITEMS
(MAPCAR #’ (LAMBDA (REQ)
(LIST (NTH 1 REQ)
(* 2.2046225 (NTH 5 REQ))
(NTH 3 CARGO-SRC)
(NTH 3 REQ)
(ZULU-TO-LOCAL-TIME
(NTH 7 CARGO-SRC))))
(NTH 2 MSG-FORM))))))

A Tlarger open issue for our approach to inter-agent translation arises
from a difference between the potential differences between requests and
responses. 1t is largely taken for granted in the agent literature that adver-
tisements of agent services will need to include the specification of message
formats for messages to the agent so advertising. However, there is little
or no mention of the need for advertisements to include the specifications
of allowable responses to requests generated by the agent. To translate re-
sponses, the glue code generation system will need to know the permissible

8A time system used by the U.S. military.

22

forms those responses can have, or have direct access to the full ontology of
the requesting agent, so that appropriate terms and formulas can be cho-
sen. This is a topic under consideration in our current work extending the
approach outlined in this paper.

7 Summary and Prospectus

We have sketched an approach to automatic derivation of “glue code,” pro-
grams for translating the output of a source agent to the input representation
of a target agent. We have argued that

1. Generating glue code requires a theory of a topic domain, the common
subject matter of the source and target representations, and mappings
from the source and target to the topic.

2. Given these mappings, the problem of glue-code generation can be
solved by solving a higher-order equation for the unknown transfor-
mation function.

It might be objected that formalizing the mappings from source and tar-
get to the topic domain is just as difficult as writing glue code, and so we
have traded a hard problem for another problem that might be even harder.
We disagree, for a variety of reasons. For one thing, other researchers have
proposed independent reasons for wanting a common “ontological” frame-
work for agents. Advertising and matchmaking are two obvious applications
of such shared notations. So this problem is already fairly urgent. (For a
survey, see [17].)

Second, if it is impossible to supply formal theories of agent semantics,
then we believe it is essentially impossible to glue agents together automati-
cally. The only exceptions will be agents whose outputs are to be processed
directly by humans. For instance, a search engine might look for agents that
can give weather reports, and if it finds five such agents might send the out-
put of all five to a screen for a human to look at. If one of the weather reports
is a marine forecast, and the human is looking for an upper-atmosphere fore-
cast, then the human will skim through it and reject it. However, we don’t
believe this paradigm is going to apply to the majority of agent interactions.
If a human has to be in the loop at “agent-composition time,” then agent
composition will be unworkable.

Third, if formalization is done right, it has to be done only once per
agent. Once the formalization is in place, it can support creation of glue
code for multiple partner agents.

23

Fourth, we don’t believe a commitment to formalizing domain theories is
a commitment to finding a “formal theory of everything,” which is fortunate,
because there are good reasons to doubt that there is such a theory. We
need to encourage agent producers to formalize the representations of their
agents within some convenient framework. Such frameworks must be public
and well advertised, but they don’t have to be completely global. All that
is necessary is that, when two agents are to be glued together, they are
formalized within the same framework, or within two frameworks that are
intertranslatable.

The third and fourth points in this list are in conflict. To avoid having
to repeat work, we want the formal framework to be as general as possible,
but to keep the formalization intuitive and clear, we want to neglect as much
as possible. For instance, suppose one thing an agent represents is a list of
available airplanes. On the “simple” end of the formalization spectrum we
have theories in which available is a unary predicate. On the “complex”
end we have a theory of what it means for something to be available to
someone for some purpose over some time interval subject to a set of use
constraints. It must be possible to pick a point on the spectrum that seems
to make sense, and possibly generalize it later if that point fails to support
liaison with some unanticipated class of agents.

We believe that these “meta” ideas can themselves be formalized to some
degree. We need the notion of a lattice of theories, in which T1 C T5 if Ty
can express everything 717 can express but not vice versa. In other words,
T, makes distinctions that 77 doesn’t make. We think this idea can be
developed using the concept of theory morphism [23].

The other main unknown in this line of research is how tightly the search
for a transformation can be controlled. The derivation strategy that has
emerged from our examples is to perform second-order matching modulo
the laws of the domain theory. Matching rules are applied unless doing
so would expose the terms of the topic-domain theory. At that point we
use sourcifying rules to wrap topic terms inside constructs from the source
domain. The implementation mentioned in Section 6 used the Specware
general-purpose theorem prover to find glue code [23]. It is worth seeing if
a more specialized algorithm would be more efficient.

A key issue is acquisition of the common domain theory and the domain-
specific rules. The rules of the domain theory are used to reformulate various
terms to facilitate the matching process. This suggests that a means-end
analysis might be useful in detecting the need for rules that translate between
concepts on the left and right-hand sides of the translation equation. On
a related note, one possibility is to analyze the rules of the domain theory

24

to determine how to orient them, and to construct a proof plan. There is
an opportunity here to use our (meta)knowledge of the derivation strategy
(or proof plan) to query the domain-expert/user for rules that link certain
terms.

Another issue, to be dealt with in the future, is how to transform glue-
code programs into a more efficient form once they have been created. This
goal is addressed by our past work on program transformation [22].

8 Acknowledgements

Tao Gui and Dusko Pavlovié¢ provided helpful comments on drafts of this pa-
per. The referees made suggestions that helped us reorganize the discussion
of agent communication in general.

References

[1] J. L. Ambite, C. A. Knoblock, I. Muslea, and A. Philpot. Compiling
source descriptions for efficient and flexible information integration. J.
Intelligent Information Systems , 16(2):149-187, 2001.

[2] N. Ashish and C. A. Knoblock. Semi-automatic wrapper generation
for internet information sources. In Proc. Second IFCIS Conference on
Cooperative Information Systems (CooplS), 1997. Charleston, South
Carolina.

[3] R. J. Bayardo, W. Bohrer, R. Brice, A. Cichocki, J. Fowler,
A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine, M. Rashid,
M. Rusinkiewicz, R. Shea, C. Unnikrishnan, A. Unruh, and D. Woelk.
Infosleuth: Agent-based semantic integration of information in open
and dynamic environments. ACM SIGMOD 97, pages 195-206, 1997.
ACM.

[4] J. Bradshaw, editor. Software Agents. AAAI Press/MIT Press, 1997.

[5] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill.
Rippling: a heuristic for guiding inductive proofs. Artificial Intelligence
, 62(2):185-253, 1993.

[6] T. Finin, Y. Labrou, and J. Mayfield. Kqml as an agent communication
language. In Bradshaw [4]. .

25

[7]

8]

[11]

[12]

[13]

[14]

[15]

[17]

FIPA. Fipa acl message structure specification, 2001.
http://www.fipa.org/specs/fipa00061/XCO0061E.html.

FIPA. Fipa communicative act library specification, 2001.
http://www.fipa.org/specs/fipa00037/XC0O0037H.html.

D. Florescu, L. Raschid, and P. Valduriez. A methodology for query
reformulation in Cis using semantic knowledge. Int. J. of Cooperative
Information Systems, 1996.

J. A. Giampapa, M. Paolucci, and K. Sycara. Agent interoperation
across multagent system boundaries. In Proc. Fourth International
Conference on Autonomous Agents (Agents 2000), 2000. New York:
Association for Computing Machinery.

J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Ex-
tracting semistructured information from the web. In Proc. Workshop
on Management of Semistructured Data, 1997. Tucson, Arizona.

G. Huet and B. Lang. Proving and applying program transformations
expressed with second-order patterns. Acta informatica , 11:31-55,
1978.

M. Klusch and K. Sycara. Brokering and matchmaking for coordination
of agent societies: a survey. In A. Omicini, F. Zambonelli, M. Klusch,
and R. Tolksdorf, editors, Coordination of Internet Agents: Models,
Technologies and Applications. Springer Verlag, 2001. .

Y. Labrou, T. Finin, and Y. Peng. The current landscape of agent com-
munication languages. IEEE Intelligent systems , 14(2):45-52, 1999.

D. L. Martin, A. J. Cheyer, and D. B. Moran. The open agent architec-
ture: A framework for building distributed software systems. Applied
Artificial Intelligence , 13:91-128, 1999.

J. Mayfield, Y. Labrou, and T. Finin. Evaluation of kqml as an
agent communication language. In M. Wooldridge, J. P. Mueller, and
M. Tambe, editors, Intelligent Agents II: Agent Theories, Architectures,
and Language. Springer-Verlag Lecture Notes in AI, Volume 1037, 1996.

T. Menzies. Cost benefits of ontologies. Intelligence , 10(3):27-32, 1999.

26

[18]

[19]

[20]

[21]

[22]

23]

[24]

[26]

[27]

28]

T. Milo and S. Zokar. Using schema matching to simplify heterogenous
data translation. In Proc. Conf. on Very Large Data Bases, pages
122-133, 1998.

I. Muslea, S. Minton, and C. A. Knoblock. Wrapper induction for
semistructured, web-base information sources. Conf. on Automated
Learning and Discovery,, 1998.

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object ex-
change across heterogeneous information sources. In Proc. Eleventh In-
ternational Conference on Data Engineering (Taipei), pages 251-260,
1995.

Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman. A
query translation scheme for rapid implementation of wrappers. In
Proc. DOOD’95, 1995.

D. R. Smith. Kids: A semi-automated program development system.
IEEE Transactions on Software Engineering , 16(9):1024-1043, 1990.
Special Issue on Formal Methods, September.

Y. Srinivas and R. Jillig. Specware: Formal support for composing
software. In Proc. Conf. on Mathematics of Program Construction,
pages 399-422. Springer-Verlag, 1995. B. Moeller, Ed. LNCS 947.

K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic service match-
making among agents in open information environments. In J. ACM
SIGMOD Record (1), pages 47-53, 1999. (Special issue on Semantic
Interoperability in Global Information Systems,).

K. Sycara, M. Paolucci, M. V. Velsen, and J. A. Giampapa. The
Retsina Mas Infrastructure. Technical report, Carnegie Mellon Uni-
versity Robotics Institute, 2001. CMU-RI-TR-01-05.

J. D. Ullman. Principles of Database and Knowledge-Base Systems.
Computer Science Press, 1988.

J. D. Ullman. Principles of Database and Knowledge-Base Systems.
Computer Science Press, 1988.

J. D. Ullman. Information integration using logical views. In Proc. 6th
Intl. Conf. on Database Theory (ICDT-97), Lecture Notes in Computer
Science, pages 19-40, 1997. Springer-Verlag.

27

