
Synthesis of Planning and Scheduling Software

Douglas R. Smith, Eduardo A. Parra, and Stephen J. Westfold
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304 USA

email: smith@kestrel.edu

Abstract

This report describes our research on transporta-
tion planning and scheduling supported by the
ARPA/Rome Lab Planning Initiative (ARPI). The
main goal of this project was to develop generic
tools to support the construction of flexible, high-
performance planning and scheduling software. Our
technical approach is based on program transforma-
tion technology which allows machine-supported de-
velopment of software from requirement specifications.
The development process produces code that is correct
by construction and which can be highly efficient.

We have used KIDS (Kestrel Interactive Development
System) to derive extremely fast and accurate trans-
portation schedulers from formal specifications. As
test data we use strategic transportation plans which
are generated by U.S. government planners. A typical
problem, with 10,000 movement requirements, takes
the derived scheduler 1 – 3 minutes to solve, com-
pared with 2.5 hours for a deployed feasibility es-
timator (JFAST) and 36 hours for deployed sched-
ulers (FLOGEN, ADANS). The computed schedules
use relatively few resources and satisfy all specified
constraints. The speed of this scheduler is due to the
synthesis of strong constraint checking and constraint
propagation code.

Introduction

This paper describes our exploration of the transforma-
tional development of transportation schedulers.1 Our
approach involves several stages. The first step is to
develop a formal model of the transportation schedul-
ing domain, called a domain theory. Second, the con-
straints, objectives, and preferences of a particular
scheduling problem are stated within a domain the-
ory as a problem specification. Finally, an executable
scheduler is produced semi-automatically by applying

1This research was supported by ARPA/Rome Labora-
tories under Contracts F30602-91-C-0043 and F30602-95-
C-0247, and also by the Office of Naval Research under
Contract N00014-93-C-0056.

a sequence of transformations to the problem speci-
fication. The transformations embody programming
knowledge about algorithms, data structures, program
optimization techniques, etc. The result of the trans-
formation process is executable code that is correct by
construction. Furthermore, the resulting code can be
extremely efficient.

Transportation scheduling tools currently used by
the U.S. government are based on models of the trans-
portation domain that few people understand (Schank
1991). Consequently, users often do not trust that the
scheduling results reflect their particular needs. Our
approach tries to address this issue by making the do-
main model and scheduling problem explicit and clear.
If a scheduling situation arises which is not treated
by existing scheduling tools, the user can specify the
problem and generate an situation-specific scheduler.

One of the benefits of a transformational approach
to scheduling is the synthesis of specialized constraint
management code. Previous systems for performing
scheduling in AI (e.g. (Fox, Sadeh, & Baykan 1989;
Smith 1989)) and Operations Research (Applegate &
Cook 1991; Luenberger 1989) use constraint represen-
tations and operations that are geared for a broad
class of problems, such as constraint satisfaction prob-
lems or linear programs. In contrast, transformational
techniques can derive specialized representations for
constraints and related data, and also derive efficient
specialized code for constraint operations such as con-
straint propagation and constraint checking.

In Sections 2 and 3 we describe the KIDS program
synthesis system and the programming knowledge that
it uses to synthesize scheduling algorithms. In Section
4 we describe the application of KIDS to the synthesis
of three different schedulers. The first, called KTS, is
a strategic transportation scheduler that runs as much
as several orders of magnitude faster than currently
deployed (and manually written) schedulers. The sec-
ond, called ITAS, is a laptop-based in-theater scheduler
that has been delivered to PACAF at Hickham AFB



in Hawaii and is regarded as being ready for opera-
tion during contingencies. The third is a scheduler for
power plant maintenance activities.

KIDS model of program development

KIDS is a program transformation system – one ap-
plies a sequence of consistency-preserving transforma-
tions to an initial specification and achieves a cor-
rect and hopefully efficient program (Smith Septem-
ber 1990). The system emphasizes the application of
complex high-level transformations that perform sig-
nificant and meaningful actions. From the user’s point
of view the system allows the user to make high-level
design decisions like, “design a divide-and-conquer al-
gorithm for that specification” or “simplify that ex-
pression in context”. We hope that decisions at this
level will be both intuitive to the user and be high-level
enough that useful programs can be derived within a
reasonable number of steps.
The user typically goes through the following steps

in using KIDS for program development.

1. Develop a domain theory – An application domain is
modeled by a domain theory (a collection of types,
operations, laws, and inference rules). The domain
theory specifies the concepts, operations, and rela-
tionships that characterize the application and sup-
ports reasoning about the domain via a deductive
inference system. Our experience has been that dis-
tributive and monotonicity laws provide most of the
laws that are needed to support design and opti-
mization of code. KIDS has a theory development
component that supports the automated derivation
of various kinds of laws.

2. Create a specification – The user enters a problem
specification stated in terms of the underlying do-
main theory.

3. Apply a design tactic – The user selects an algo-
rithm design tactic from a menu and applies it to
a specification. Currently KIDS has tactics for sim-
ple problem reduction (reducing a specification to
a library routine), divide-and-conquer, global search
(binary search, backtrack, branch-and-bound), con-
straint propagation, problem reduction generators
(dynamic programming, general branch-and-bound,
and game-tree search algorithms), and local search
(hillclimbing algorithms).

4. Apply optimizations – The KIDS system allows the
application of optimization techniques such as ex-
pression simplification, partial evaluation, finite dif-
ferencing, case analysis, and other transformations.
The user selects an optimization method from a

menu and applies it by pointing at a program ex-
pression. Each of the optimization methods are fully
automatic and, with the exception of simplification
(which is arbitrarily hard), take only a few seconds.

5. Apply data type refinements – The user can select
implementations for the high-level data types in the
program. Data type refinement rules carry out the
details of constructing the implementation.

6. Compile – The resulting code is compiled to exe-
cutable form. In a sense, KIDS can be regarded as
a front-end to a conventional compiler.

Actually, the user is free to apply any subset of the
KIDS operations in any order – the above sequence is
typical of our experiments in algorithm design.

Specifying Transportation Scheduling

Problems

The essential notion of transportation scheduling is
that some movement requirements (e.g. bulk cargo,
passengers) are assigned to transportation assets (e.g.
planes, ships, trucks) over certain time intervals. Var-
ious constraints on the assignments must be satisfied
and certain measures of the cost or “goodness” of the
assignment may need to be optimized. A domain the-
ory for transportation scheduling defines the basic con-
cepts of transportation scheduling and the laws for rea-
soning about the concepts.
The U.S. Transportation Command and the com-

ponent service commands use a relational database
scheme called a TPFDD (Time-Phased Force and De-
ployment Data) for specifying the movement require-
ments of an operation, such as Desert Storm or the
Somalia relief effort. A typical air movement require-
ment includes the following information:

POE : port 7→ UHHZ
POD : port 7→ VRJT
movement−type : symbol 7→ BULK
quantity : Short−Tons 7→ 2
available−to−load−date : time 7→ 0
earliest−arrival−date : time 7→ 0
latest−arrival−date : time 7→ 86400
distance : nautical−miles 7→ 5340
mode : symbol 7→ AIR

Here, the Port of Embarkation (POE) and Port
of Debarkation (POD) are the origin and destina-
tion of the cargo, respectively. UHHZ and VRJT
are geographical codes (GEOLOCs) for Robins AF
Base, Georgia and Sigonella Airport, Italy, respec-
tively. Movement requirements are classified into a few
gross types including BULK (which fits on a standard
463L pallet), OVRsize (which doesn’t fit on 463L pallet



but fits on most standard cargo transports), OUTsize
(which doesn’t fit on 463L pallet and requires a heavy
lift transport such as a C-5 or C-17), PAX (passengers),
and POL (petroleum). Resources are characterized by
their capacities (both passenger (PAX) and cargo ca-
pacities for each movement type), travel rate in knots,
initial port, available date, maintenance profile, etc.
As an example, one TPFDD specifies the evacua-

tion of non-combatants from a Pacific island nation.
The TPFDD for this NEO (Non-combatant Evacu-
ation Operation) has 33,291 records (movement re-
quirements for force units, non-unit related cargo and
non-unit related passengers) which generates about
12,500 air and 6,000 sea movement requirements to be
processed. The scenario includes 103 air POEs (air-
ports), 47 air PODs, 48 sea POEs (seaports), and 29
sea PODs. There are air movement requirements for
1,445,511 STONs (BULK, OVERsize, and OUTsize
cargo) and 737,492 passengers, and sea movement re-
quirements for 4,902,129MTONs (Measurement TONs
– a unit of volume, not weight) and 240,090 hundreds of
barrels of petroleum products. Available air resources
include KC10s, C-141s, C-5s, B-747, and sea resources
include tankers (small, medium, and large), RO-ROs,
LASHs, sea barges, container ships, and breakbulks.
We list below twelve constraints that partially char-

acterize a feasible schedule for this problem:

1. Consistent POE and POD – The POE and POD
of each movement requirement on a given trip of a
resource must be the same.

2. Consistent Resource Class – Each resource can han-
dle only some movement types. For example, a C-
141 can handle bulk and oversize movements, but
not outsize movements.

3. Consistent PAX and Cargo Capacity – The capacity
of each resource cannot be exceeded.

4. Consistent Initial Time – The start time of the first
trip of a transportation asset must not precede its
initial available date, taking into account any time
needed to position the resource in the appropriate
POE.

5. Consistent Release Time – The start time of a trip
must not precede the available to load dates (ALD)
of any of the transported movement requirements.

6. Consistent Arrival time – The finish time of a trip
must not precede the earliest arrival date (EAD) of
any of the transported movement requirements.

7. Consistent Due time – The finish time of a trip must
not be later than the latest arrival date (LAD) of any
of the transported movement requirements.

8. Consistent Trip Separation – Movements scheduled
on the same resource must start either simultane-
ously or with enough separation to allow for return
trips. The inherently disjunctive and relative nature
of this constraint makes it more difficult to satisfy
than the others.

9. Consistent Resource Use – Only the given resources
are used.

10. Completeness – All movement requirements must be
scheduled.

A domain theory formalizing the movement require-
ment structure, resource models, and constraints may
be found in (Smith 1992).
The informal specification above can be expressed as

follows:

function TS

(mvrs : seq(movement-record),
assets : seq(resource-name))

returns (sched : map(resource-name, seq(trip)) |
Consistent-POE (sched)
∧ Consistent-POD(sched)
∧ Consistent-Release-Times(sched)
∧ Consistent-Arrival-Times(sched)
∧ Consistent-Due-Times(sched)
∧ Consistent-Trip-Separation(sched)
∧ Consistent-Pax-Resource-Capacity(sched)
∧ Consistent-Cargo-Resource-Capacity(sched)
∧ Consistent-Movement-Type-and-Resource(sched)
∧ Available-Resources-Used(assets, sched)
∧ Scheduled-mvrs(sched) = seq-to-set(mvrs))

This specifies a function called TS that takes two
inputs, a sequence of movement records called mvrs

and a sequence of resources called assets. The func-
tion returns a schedule, which has typemap(resource−
name, seq(trip)) and must satisfy the 11 conjoined
constraints. Each constraint is defined in the domain
theory; for example:

function CONSISTENT-DUE-TIMES
(sched : schedule) : boolean
= ∀(rsrc : resource-name, trp : integer,

mvr : movement-record)
(rsrc ∈ domain(sched)
∧ trp ∈ [1..size(sched(rsrc))]
∧ mvr ∈ sched(rsrc)(trp).manifest
=⇒
sched(rsrc)(trp).start-time
≤ (mvr.due-date

−sched(rsrc)(trp).trip-duration)



This predicate expresses the constraint that every
scheduled movement-record arrives before its due date.

The problem specified by TS is NP-complete. This
problem does not consider certain aspects of trans-
portation scheduling, such as resource utilization rates,
crew scheduling, load/unload rates, aircraft mainte-
nance, port characteristics, etc. We have dealt with
most of these issues and we are continually develop-
ing more complex domain theories, specifications, and
schedulers.

Synthesizing a Scheduler

There are two basic approaches to computing a sched-
ule: local and global. Local methods focus on indi-
vidual schedules and similarity relationships between
them. Once an initial schedule is obtained, it is itera-
tively improved by “moving” to neighboring schedules.
Repair strategies (Zweben, Deale, & Gargan 1990;
Minton & Philips 1990; Biefeld & Cooper 1990), case-
based reasoning, linear programming, and local search
(hillclimbing) are examples of local methods.

Global methods focus on sets of schedules. A feasi-
ble or optimal schedule is found by repeatedly splitting
an initial set of schedules into subsets until a feasible or
optimal schedule can be easily extracted. Backtrack,
constraint satisfaction, heuristic search, and branch-
and-bound are all examples of global methods. We ex-
plore the application of global methods. In the follow-
ing subsections we discuss the notion of global search
abstractly and show how it can be applied to synthesize
a scheduler. Other projects taking a global approach
include ISIS (Fox & Smith 1984), OPIS (Smith 1989),
and MicroBoss (Sadeh 1991) (all at CMU).

Global Search Theory

The basic idea of global search is to represent and ma-
nipulate sets of candidate solutions. The principal op-
erations are to extract candidate solutions from a set
and to split a set into subsets. Derived operations in-
clude various filters which are used to eliminate sets
containing no feasible or optimal solutions (e.g. prun-
ing and constraint propagation). Global search algo-
rithms work as follows: starting from an initial set that
contains all solutions to the given problem instance,
the algorithm repeatedly extracts solutions, splits sets,
and eliminates sets via filters until no sets remain to be
split. The process is often described as a tree (or DAG)
search in which a node represents a set of candidates
and an arc represents the split relationship between set
and subset. The filters serve to prune off branches of
the tree that cannot lead to solutions.

The sets of candidate solutions are often infinite and
even when finite they are rarely represented extension-

ally. Thus global search algorithms are based on an
abstract data type of intensional representations called
space descriptors. In addition to the extraction and
splitting operations mentioned above, the type also
includes a predicate satisfies that determines when a
candidate solution is in the set denoted by a descrip-
tor. See (Smith 1987) for a formal exposition of global
search theory.
A simple global search theory of scheduling has the

following form. Schedules are represented as maps
from resources to sequences of trips, where each trip
includes earliest-start-time, latest-start-time, port of
embarkation, port of debarkation, and manifest (set of
movement requirements). The type of schedules has
the invariant (or subtype characteristic) that for each
trip, the earliest-start-time is no later than the latest-
start-time. A partial schedule is a schedule over a sub-
set of the given movement records.
A set of schedules is represented by a partial sched-

ule. The split operation extends the partial schedule
in all possible ways. The initial set of schedules is de-
scribed by the empty partial schedule – a map from
each available resource to the empty sequence of trips.
A partial schedule is extended by first selecting a move-
ment record mvr to schedule, then selecting a resource
r, and then a trip t on r (either an existing trip or
a newly created one). Finally the extended schedule
has mvr added to the manifest of trip t on resource
r. The alternative ways that a partial schedule can be
extended naturally gives rise to the branching struc-
ture underlying global search algorithms. The formal
version of this global search theory of scheduling can
be found in (Smith 1992).

Pruning, Cutting Constraints, and
Constraint Propagation

When a partial schedule is extended it is possible that
some problem constraints are violated in such a way
that further extension to a complete feasible schedule
is impossible. In tree search algorithms it is crucial to
detect such violations as early as possible.

Pruning Mechanisms. Pruning tests are derived in
the following way. Let ps be a partial schedule and let
feasible(sched) be a predicate that holds if the schedule
sched satisfies the 12 problem constraints. The test

∃(sched) (sched extends ps ∧ feasible(sched)) (1)

decides whether there exist any feasible completions of
partial schedule ps. If we could decide this at each node
of our branching structure then we would have perfect
search – no deadend branches would ever be explored.
In reality it would be impossible or horribly complex
to compute it, so we rely instead on an inexpensive



approximation to it. In fact, if we approximate (1) by
weakening it (deriving a necessary condition of it) we
obtain a sound pruning test. That is, suppose we can
derive a test Φ(ps) such that

∃(sched) (sched extends ps ∧ feasible(sched))
=⇒ Φ(ps).

By the contrapositive of this formula, if ¬Φ(ps) then
there are no feasible extensions of ps, so we can prune
ps. So our backtrack algorithm will test Φ at each node
it explores, pruning those nodes where the test fails.

More generally, necessary conditions on the exis-
tence of feasible (or optimal) solutions below a node in
a branching structure underlie pruning in backtracking
and the bounding and dominance tests of branch-and-
bound algorithms (Smith 1987).

It appears that the bottleneck analysis advocated in
the constraint-directed search projects at CMU (Fox,
Sadeh, & Baykan 1989; Sadeh 1991) leads to a seman-
tic approximation to (1), but neither a necessary nor
sufficient condition. Such a heuristic evaluation of a
node is inherently fallible, but if the approximation is
close enough it can provide good search control with
relatively little backtracking.

To derive pruning tests for the strategic transporta-
tion scheduling problem, we instantiate (1) with our
definition of extends and feasible and use an infer-
ence system to derive necessary conditions. The re-
sulting tests are fairly straightforward; of the 12 orig-
inal feasibility constraints, 6 yield pruning tests on
partial schedules. For example, the partial sched-
ule must satisfy Consistent-POE, Consistent-POD,
Consistent-Pax-Resource-Capacity, Consistent-Cargo-
Resource-Capacity, Consistent-Movement-Type-and-
Resource, and Available-Resources-Used. The reader
may note that computing these tests on partial sched-
ules is rather expensive and mostly unnecessary – later
program optimization steps in KIDS will however re-
duce these tests to their non-redundant essence. For
example, the first test will reduce to checking that
when we place a movement record mvr on trip t, the
POE of mvr and t are consistent.

For details of deriving pruning mechanisms for other
problems see (Smith 1987; 1991; September 1990;
Smith & Lowry 1990).

Cutting Constraints and Constraint Propaga-

tion. Constraint propagation is another mechanism
that is crucial for early detection of infeasibility. We
developed a general mechanism for deriving constraint
propagation code and applied it to scheduling.

Each node in a backtrack search tree can be viewed
as a data structure that denotes a set of candidate
solutions – in particular the solutions that occur in the

feasible
solutions

cutting
constraints

global
search
space

Figure 1: Global Search Subspace and Cutting Con-
straints

subtree rooted at the node. Thus the root denotes the
set of all candidate solutions found in the tree.
Pruning has the effect of removing a node (set of so-

lutions) from further consideration. In contrast, con-
straint propagation has the effect of changing the data
structure at a node so that it denotes a smaller set of
candidate solutions. The basic idea underlying con-
straint propagation is cutting constraints (see Figure
1). Let r̂ be a data structure in a global search tree
(i.e. a subspace descriptor) that denotes the subspace
S = subspace(r̂) and let ψ(z, r̂) be a cutting constraint
where z is a candidate solution. The predicate

ξ(r̂ ) ⇐⇒ ∀(z)(z ∈ subspace(r̂) =⇒ ψ(z, r̂))

is a propagation constraint that decides whether sub-
space descriptor r̂ incorporates cutting constraint ψ.
If ξ has a particular Horn-like form described below,
then we can mechanically translate ξ into a monotone
function on subspace descriptors that has a greatest
fixed-point which corresponds to the largest subspace
compatible with the constraints. Furthermore, we can
then mechanically generate a fixed-point iteration algo-
rithm that converges on a descriptor for that greatest
fixed-point. In (Smith, Parra, & Westfold 1995) we
describe how to calculate Horn-like propagation con-
straints from a formal problem specification and how
to generate efficient propagation code from Horn-like
constraints.
Definition: A constraint ξ is Horn-like if it has the

form
B(r̂) ⊒ r̂

where ⊒ is a partial order on subspace descriptors such
that

r̂ ⊒ ŝ =⇒ subspace(r̂) ⊇ subspace(ŝ).



split

..

.

cut

cut

cut

split

fixpoint of the cutting process

prune off subspace
(contains no feasible
solutions)

feasible
solutions

Figure 2: Pruning and Constraint Propagation

The effect of constraint propagation is to propagate
information through the subspace descriptor resulting
in a tighter descriptor and possibly exposing infeasi-
bility (see Figure 2). In fact the main use for propa-
gation in transportation scheduling is the early detec-
tion of infeasibility. For other problems, propagation
can serve to reduce the branching factor of the search
tree. Propagation can also be used in optimization al-
gorithms to obtain tight lower bounds on the cost of
optimal solutions in a subspace (cf. Gomory cutting
planes (Nemhauser & Wolsey 1988)).
The mechanism for deriving cutting constraints is

similar to (in fact a generalization of) that for deriving
pruning mechanisms. We want a necessary condition
that a candidate solution z is feasible:

∀(sched, ps) (sched extends ps ∧ feasible(sched)
=⇒ Ψ(sched, ps) )

By the contrapositive of this formula, if ¬Ψ(sched, ps)
then sched cannot be a feasible schedule that extends
ps. So we can try to incorporate Ψ into ps to obtain a
new descriptor.
For TS, we derive Horn-like constraints and then

transform them into a propagation algorithm based
on the following recurrence equations, where esti de-
notes the earliest-start-time for trip i (analogously,

lsti denotes latest-start-time and eadi denotes earliest-
arrival-time). For each resource r and the ith trip on
r,

esti = max















esti,

eadi − duration(r, POEi, PODi),
esti−1 + dur(i − 1, r),
max−release−time(manifest

i
)

lsti = min















lsti,

lsti+1 − dur(i, r),
min−finish−time(manifesti)

−duration(r, POEi, PODi)

Here POEi and PODi represent the ports of
embarkation and debarkation of trip i respectively;
dur(r, i) is the roundtrip time for trip i on resource
r:

dur(r, i) = duration(r, POEi, PODi)
+duration(r, PODi, POEi+1)

where duration(r,p1,p2) is the travel time from
port p1 to port p2 using resource r; max-release-
time(manifest

i
) computes the max over all of the

available to load dates, earliest arrival dates -
duration(POEi, PODi) of movement records in the
manifest of trip i; also, esti−1 is the earliest-start-time
of the trip preceding trip i, and so on. The boundary
cases must be handled appropriately.
The effect of iterating the recurrence equations after

adding a new movement record to some trip will be to
shrink the 〈est, lst〉 window of each trip on the same
resource. If the window becomes negative for any trip,
then the partial schedule is necessarily infeasible and
it can be pruned.
Our model of constraint propagation generalizes the

concepts of Gomory cutting planes (Nemhauser &
Wolsey 1988) and the forms of propagation studied in
the constraint satisfaction literature (e.g. (Hentenryck
1989)).

Constraint Relaxation. Many scheduling prob-
lems are overconstrained. Overconstrained problems
are typically handled by relaxing the constraints.
The usual method, known as Lagrangian Relaxation
(Nemhauser & Wolsey 1988), is to move constraints
into the objective function. This entails reformulating
the constraint so that it yields a quantitative measure
of how well it has been satisfied.
Another approach is to relax the input data just

enough that a feasible solution exists. To test this
approach, we hand-modified one version of KTS so it
relaxes the LAD (Latest Arrival Date) constraint. The
relaxation takes place only when there is no feasible
solution to the problem data. KTS keeps track of a



quantitative measure of each LAD violation (e.g. the
difference between the arrival date of a trip and the
LAD of a movement requirement in that trip). If there
is no feasible reservation for the movement requirement
being scheduled, then KTS uses the recorded informa-
tion to relax its the LAD. The relaxation is such as to
minimally delay the arrival of the requirement to its
POD.

Applications

Strategic Transportation Scheduling

During 1992–1994 we used KIDS to synthesize a va-
riety of TPFDD schedulers, generically called KTS
(Kestrel Transportation Scheduler). The TS specifi-
cation presented above was the first in a series of in-
creasingly rich specifications of strategic scheduling as
performed by the U.S. Airlift Mobility Command at
Scott AFB.
The KTS schedulers are extremely fast and accurate.

The chart in Figure 3 lists 4 TPFDD problems, and for
each problem (1) the number of TPFDD lines (each re-
quirement line contains up to several hundred fields),
(2) the number of individual movement requirements
obtained from the TPFDD line (each line can specify
several individual movements requirements), (3) the
number of movement requirements obtained after split-
ting (some requirements are too large to fit on a single
aircraft or ship so they must be split), (4) the cpu time
to generate a complete schedule (on a SUN Sparcsta-
tion 5), and (5) time spent per scheduled movement.
Similar results were obtained for sea movements.
We compared the performance of KTS with several

other TPFDD scheduling systems. We do not have di-
rect access to JFAST and FLOGEN, but these are (or
were) operational tools at AMC (Airlift Mobility Com-
mand, Scott AFB). According to (Schank 1991) and
David Brown (retired military planner consulting with
the Planning Initiative), on a typical TPFDD of about
10,000 movement records, JFAST takes several hours
(on a Unix workstation) and FLOGEN about 36 hours
(on a mainframe). KTS on a TPFDD of this size will
produce a detailed schedule in one to three minutes.
So KTS seems to be a factor of about 25 times faster
than JFAST and over 250 times faster than FLOGEN.
The currently operational ADANS system reportedly
runs at about the same speed as FLOGEN (running
on a Korbex machine). When comparing schedulers it
is also important to compare the transportation mod-
els that they support. KTS has a richer model than
JFAST (i.e. handles more constraints and problem fea-
tures), but less rich than ADANS. The ITAS effort de-
scribed in the next section reflects our efforts to syn-
thesize schedulers that have at least the richness of the

ADANS model.

In-Theater Airlift Scheduling

The PACAF (Pacific Air Force) Airlift Operations
Center at Hickam AFB, Honolulu is tasked with in-
theater scheduling of a fleet of 26 C-130 aircraft (plus
assorted strategic aircraft on loan) throughout the Pa-
cific region. Current scheduling practice is essentially
manual; for example, the relief effort for Hurricane
Iniki which struck the island of Kauai in September
1992 was sketched out on 2 sheets of legal paper and
required hours of labor.

Since Spring 1994 researchers from Kestrel Institute
and BBN (Bolt, Beranek, and Newman) have been
working with personnel from PACAF to model the
in-theater scheduling problem. The resulting domain
theory has been used to synthesize an series of sched-
ulers generically called ITAS (In-Theater Airlift Sched-
uler). ITAS runs on a laptop computer which makes it
useful for both field and command center operations.
ITAS can currently produce ATOs (Air Tasking Or-
ders) based on the schedules that it generates. BBN
has built the user interface based on the commercial
Foxpro database package.

ITAS schedules the Hurricane Iniki data in a few
seconds (Burstein & Smith 1996). ITAS has been used
in several exercises and was the sole scheduler used in
JWID-95 (an international exercise) during September
1995. It is regarded as being ready to use for contin-
gency purposes.

To produce “flyable” schedules it has been necessary
to model and schedule a variety of resources, including
aircraft, air crews and their duty days, ground crews,
parking space for aircraft, and other port restrictions.
We have gone through many cycles of learning about
the problem from the customer/end-user, elaborating
our domain theory, generating new code, and observing
PACAF personnel using the scheduler. Although this
is a time-consuming process, it seems essential to de-
veloping an application that will be used. Nevertheless
there has been significant payoff to us as researchers,
since the problem features required by the end-user
have forced us to generalize and deepen our theories of
algorithm design.

The ITAS scheduling theory has evolved over months
of effort into about 3500 lines of text. It currently
takes about 90 minutes to transform our most com-
plex scheduling specification into optimized and com-
piled CommonLISP code. Evolution of the scheduler is
performed by evolving the domain theory and specifi-
cation, followed by regeneration of code. The resulting
code, after optimizing transformations, is roughly 3000
lines of code in the REFINE language (depending on



Data # of input # of # of scheduled Solution Msec per
Sets TPFDD individual items after time scheduled

(Air only) records (ULNs) movements splitting item

CDART 296 330 0.5 sec 1.5

CSRT01 1,600 1,261 3,557 25 sec 6

096-KS 20,400 4,644 6,183 45 sec 7

9002T Borneo 28,900 10,623 15,119 160 sec 12

Figure 3: KTS Scheduling Statistics

how its formatted), which is transformed automatically
into about 5200 lines of (largely unreadable) Common-
LISP code.

Power Plant Outage Scheduling

We are continuing to develop new scheduling applica-
tions using KIDS. A joint project with the EPRI (Elec-
tric Power Research Institute) in Palo Alto, California
and Rome Laboratory, focuses on the scheduling of
maintenance activities during an outage period at nu-
clear power plants (Gomes & Smith 1995). Since an
outage period costs millions of dollars per day, there is
great incentive to quickly generate the shortest possi-
ble schedule while achieving all maintenance goals and
ensuring safe operations. We have developed a pro-
totype scheduling system, called ROMAN, which has
received positive reviews from prospective users.

Current schedulers used by the utility industry are
slow and handle only a small subset of the important
features of the problem. We have particularly focused
on safety constraints since they are critical and they
are currently not handled by scheduling tools used in
industry.

One safety constraint handled by ROMAN deals
with maintaining a sufficient number of backup sources
of electric power. We found that this constraint has
the same abstract structure as the “MOG” problem in
airlift scheduling (ensuring that adequate resources ex-
ist to handle the aircraft flow at a particular airport).
This insight led us to develop an abstract theory of
asynchronously sharable resources that specializes to
many domains, including power plant outages, trans-
portation scheduling, parallel processing, manufactur-
ing, and power management (Smith & Westfold 1996).
Reusable theories of various classes of resources will

help to speed up the process of building domain the-
ories and specifications and cut the time necessary to
synthesize new scheduling applications.

Concluding Remarks

In conclusion, there are several advantages to a trans-
formational approach to scheduling. The first is based
on the observation that there is no one scheduling prob-
lem. Instead there are families of related problems.
The problems can differ in the mix of constraints to
satisfy, cost objectives to minimize, and preferences to
take into account. In this paper we have mainly treated
the problem of finding a feasible detailed schedule. An-
other kind of problem is to find an estimate of the
resources needed to bring about a desired completion
date. Another kind of problem is to work backwards
from a given completion date to feasible start dates
for individual movements. Another kind of problem
is incremental or reactive scheduling. We believe that
transformation systems such as KIDS will provide the
most economical means for generating such families of
schedulers. We have observed a great deal of reuse of
concepts and laws from the underlying domain theory
and of the programming knowledge in the transforma-
tions.
A second advantage is the reuse of best-practice pro-

gramming knowledge. The systematic development of
global search algorithms has helped us exploit prob-
lem structure in ways that other projects sometimes
overlook. The surprising efficiency of KTS stems from
two sources. First, the derived pruning and propaga-
tion tests are surprisingly strong. The stronger the
test, the smaller the size of the runtime search tree.
In fact, on many of the TPFDD problems we’ve tried
so far, KTS finds a complete feasible schedule without



backtracking! The pruning and propagation tests are
derived as necessary conditions on feasibility, but they
are so strong as to be virtually sufficient conditions.
The second reason for KTS’ efficiency is the special-
ized representation of the problem constraints and the
development of specialized and highly optimized con-
straint operations. The result is that KTS explores the
runtime search tree at a rate of several hundred thou-
sand nodes per second, almost all of which are quickly
eliminated.

References

Applegate, D., and Cook, W. 1991. A computational
study of the job-shop scheduling problem. ORSA
Journal on Computing 3(2):149–156.

Biefeld, E., and Cooper, L. 1990. Operations mission
planner. Technical Report JPL 90-16, Jet Propulsion
Laboratory.

Burstein, M., and Smith, D. 1996. ITAS: A portable
interactive transportation scheduling tool using a
search engine generated from formal specifications. In
Proceedings of the Third International Conference on
Artificial Intelligence Planning System (AIPS-96).

Fox, M. S., and Smith, S. F. 1984. ISIS – a knowledge-
based system for factory scheduling. Expert Systems
1(1):25–49.

Fox, M. S.; Sadeh, N.; and Baykan, C. 1989.
Constrained heuristic search. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, 309–315.

Gomes, C., and Smith, D. R. 1995. Synthesis of power
plant outage schedulers. Technical report, Kestrel In-
stitute. submitted for publication.

Hentenryck, P. V. 1989. Constraint Satisfaction in
Logic Programming. Cambridge, MA: Massachusetts
Institute of Technology.

Luenberger, D. G. 1989. Linear and Nonlinear Pro-
gramming. Reading, MA: Addison-Wesley Publishing
Company, Inc.

Minton, S., and Philips, A. B. 1990. Applying a
heuristic repair method to the HST scheduling prob-
lem. In Proceedings of the Workshop on Innova-
tive Approaches to Planning, Scheduling and Control,
215–219. San Diego, CA: DARPA.

Nemhauser, G. L., and Wolsey, L. A. 1988. Integer
and Combinatorial Optimization. New York: John
Wiley & Sons, Inc.

Sadeh, N. 1991. Look-ahead techniques for micro-
opportunistic job shop scheduling. Technical Report
CMU-CS-91-102, Carenegie-Mellon University.

Schank, J. 1991. A Review of Strategic Mobility Mod-
els and Analysis. Santa Monica, CA: Rand Corpora-
tion.

Smith, D. R. 1987. Structure and design of global
search algorithms. Technical Report KES.U.87.12,
Kestrel Institute. to appear in Acta Informatica.

Smith, D. R. September 1990. KIDS – a semi-
automatic program development system. IEEE
Transactions on Software Engineering Special Is-
sue on Formal Methods in Software Engineering
16(9):1024–1043.

Smith, D. R., and Lowry, M. R. 1990. Algorithm
theories and design tactics. Science of Computer Pro-
gramming 14(2-3):305–321.

Smith, D. R. 1991. KIDS: A knowledge-based soft-
ware development system. In Lowry, M., and McCart-
ney, R., eds., Automating Software Design. Menlo
Park: MIT Press. 483–514.

Smith, D. R. 1992. Transformational approach to
scheduling. Technical Report KES.U.92.2, Kestrel In-
stitute.

Smith, D. R.; Parra, E. A.; and Westfold, S. J. 1995.
Synthesis of high-performance transportation sched-
ulers. Technical Report KES.U.95.6, Kestrel Insti-
tute.

Smith, D. R., and Westfold, S. J. 1996. Scheduling
an asynchronous shared resource. Technical report,
Kestrel Institute. submitted for publication.

Smith, S. F. 1989. The OPIS framework for modeling
manufacturing systems. Technical Report CMU-RI-
TR-89-30, The Robotics Institute, Carenegie-Mellon
University.

Zweben, M.; Deale, M.; and Gargan, R. 1990. Any-
time rescheduling. In Proceedings of the Workshop on
Innovative Approaches to Planning, Scheduling and
Control, 215–219. San Diego, CA: DARPA.


