
Planware – Domain-Specific Synthesis of High-Performance

Schedulers

Lee Blaine Limei Gilham Junbo Liu Douglas R. Smith

Stephen Westfold

Kestrel Institute

3260 Hillview Avenue

Palo Alto, California 94304 USA

Email: {blaine, gilham, liu, smith, westfold}@kestrel.edu

Abstract

Planware is a domain-specific generator of high-

performance scheduling software, currently being

developed at Kestrel Institute. Architecturally,

Planware is an extension of the Specware system

with domain-independent and domain-dependent

parts. The domain-independent part includes a

general algorithm design facility (including mech-

anisms to synthesize global-search and constraint

propagation algorithms), as well as support for

theorem-proving and witness finding. The domain-

dependent part includes scheduling domain knowl-

edge and architecture representations, and other

domain-specific refinement knowledge that relates

the scheduling domain to general algorithm design

and data type refinement. Using Planware, the user

interactively specifies a problem and then the sys-

tem automatically generates a formal specification

and refines it.

1. Introduction

This paper presents an overview of Planware, a gen-

erator of high-performance scheduling algorithms,

currently being developed at Kestrel Institute. Our

aim is to convey a sense of the rationale for Plan-

ware, the design process that it supports, the archi-

tecture of the current Planware system, and our re-

sults to date. The reader may find more detail in the

references.

Architecturally, Planware is an extension of the

Specware system [7], a system for developing for-

mal specifications and refinements based on con-

cepts from higher-order logic and category theory.

Planware and Specware embody theoretical devel-

opments stemming from Kestrel’s experience with

previous systems, such as KIDS [4] and DTRE [1].

The goal of Planware is to allow experts in plan-

ning and scheduling to assemble quickly a speci-

fication of a scheduling problem, and to generate

automatically a high-performance scheduler from

it. The user’s interactions with the system are de-

signed to be entirely in the scheduling domain – the

user does not need to read or write formal specifi-

cations, nor to understand the logical and category-

theoretic foundations of the system. We have in-

vested substantial effort in automating the construc-

tion of scheduling domain theories.

To assemble a requirement specification and under-

lying domain theory, Planware requires very little

information from the user:

• to select from a menu various attributes that

specify the tasks that need to be scheduled, and

• to select from a taxonomy of resource theories

the particular kind of resource against which to

schedule the tasks.

From this minimal amount of information, Plan-

ware can automatically

• generate a formal specification of the schedul-

ing problem (plus the relevant background

concepts that comprise a domain theory),



• reformulate the specification using datatype

refinements to build some of the problem con-

straints directly into the schedule datatype, al-

lowing a dramatic simplification of the specifi-

cation,

• apply domain-independent knowledge about

designing global search (backtracking) algo-

rithms with constraint propagation,

• apply datatype refinements and optimization

techniques, and finally

• generate Common Lisp code.

For example, after design and refinement, the speci-

fication of a transportation scheduling domain com-

prises about 10,000 lines of text of which about

3000 lines are the scheduling algorithm (the remain-

der consists of axioms and datatype operations that

are not needed by the scheduler).

A key point here is that the high level of automa-

tion in Planware is achieved by applying domain-

specific control (via a hand-built tactic):

1. to construct a problem specification and do-

main theory,

2. to apply a series of domain-independent de-

sign theories and code-generation rules. The

result is a fast, correct, executable scheduler

automatically constructed from the user’s de-

scription of a scheduling problem.

In the next section, we provide a brief introduc-

tion to the specification and refinement formalisms

in Specware. In Section 3, we describe Planware

by stepping through its design process, illustrating

each step via the construction of a transportation

scheduler.

2. Specware

Specware supports the modular construction of for-

mal specifications and the stepwise and componen-

twise refinement of such specifications into exe-

cutable code. Specware may be viewed as a vi-

sual interface to an abstract data type providing a

suite of composition and transformation operators

for building specifications, refinements, code mod-

ules, etc. This view has been realized in the system

by directly implementing the formal foundations of

Specware; category theory, sheaf theory, algebraic

specification and general logics. The language of

category theory results in a highly parameterized,

robust, and extensible architecture that can scale

to system-level software construction. A more de-

tailed description of Specware may be found in [7].

2.1. Specware concepts

A specification (or simply a spec or theory) defines

a language and constrains its possible meanings via

(higher-order) axioms and inference rules. A ba-

sic specification consists of a list of sorts, opera-

tions and axioms. For instance, the theory of partial

orders can be presented as an abstract sort with a

binary operation that satisfies the following proper-

ties: reflexivity, transitivity, and anti-symmetry. A

Specware spec for this theory is shown in Figure 1

spec PARTIAL-ORDER is

sort E

op leq: E, E -> boolean

axiom transitivity-axiom is

leq(x, y) & leq(y, z)

=> leq(x, z)

axiom reflexivity-axiom is

fa(x: E) leq(x, x)

axiom anti-symmetry-axiom is

leq(x, y) & leq(y, x)

=> x = y

end-spec

Figure 1. Partial­Order SPEC in
Specware

Another example is a specification for a simple

problem theory (DRO-SPEC) that consists of input

domain, output range and a predicate that relates in-

put to output (see Figure 2).

spec DRO-SPEC is

sort D, R

op O: D, R -> boolean

end-spec

Figure 2. DRO­SPEC in Specware

Specifications can be used to express many kinds

of software-related artifacts, including application



spec-morphism

INTEGER-AS-PARTIAL-ORDER:

PARTIAL-ORDER -> INTEGER is

{E-> integer, leq -> <=}

spec-morphism DRO-to-SORTING:

DRO-SPEC -> SORTING-SPEC is

{D -> set-of-integer,

R -> sequence-of-integer,

O -> sorting-pred}

Figure 3. Specification Morphisms

interpretation DRO-to-SORTING:

DRO-SPEC => SORTING-SPEC is

mediator SORTING-WITH-SORTING-PRED

dom-to-med

{D -> set-of-integer,

R -> sequence-of-integer,

O -> sorting-pred}

cod-to-med import-morphism

Figure 4. Interpretation in Specware

domain theories, formal software requirements, ab-

stract data types, abstract algorithms, formal inter-

faces for code modules, and so on..

A specification morphism (or simply a spec-

morphism or morphism) consists of two specs and

one mapping, that maps the source spec to target

spec via sorts and operations maps such that the

sorts map is compatible with the operations map,

and moreover, axioms in the source spec are the-

orems in the target spec. For instance, a spec-

morphism from the partial-order theory to integer

can be represented by INTEGER-AS-PARTIAL-

ORDER (in Figure 3).

Assuming that there is a spec SORTING-SPEC for

the problem of sorting sequences of integers, a spec-

morphism from DRO-SPEC to SORTING-SPEC

can be expressed by DRO-to-SORTING (Figure

3), where we assume that the sorting specification

SORTING-SPEC has a predicate sorting-pred to

specify sorting requirements.

Specification morphisms underlie several aspects of

software development, including the binding of pa-

rameters in parameterized specifications, specifica-

tion refinement and implementation, datatype re-

finement, and algorithm design [5].

An interpretation between theories (or simply an in-

terpretation) is a pair of spec-morphisms that essen-

tially enables mapping an item to a term, which is

what we need to express a refinement (or implemen-

tation) from one spec to another. Returning to our

previous spec-morphism example with SORTING-

SPEC, suppose that we do not have a predicate

for sorting-pred, then it is impossible to map O to

any predicate symbol in SORTING-SPEC. How-

ever, we can map it to a term of SORTING-SPEC

by forming a conjunction of all predicates that spec-

ify sorting requirements. This can be expressed via

two spec-morphisms by DRO-to-SORTING (Figure

4). Here, we created a new spec SORTING-WITH-

SORTING-PRED which imports SORTING-SPEC

and adds another predicate sorting-pred that is de-

fined from the predicates in SORTING-SPEC. In

the scheduling domain, a scheduling spec has nor-

mally a list of constraints (some of them are pro-

vided by users, and thus the list is dynamically

constructed). To start the refinement process on

a scheduling problem spec (DOMAIN-SPECIFIC-

SCHEDULING), we need to construct an interpre-

tation from DRO-SPEC to DOMAIN-SPECIFIC-

SCHEDULING, which will be given in detail in

Section 3. It is indeed an interpretation since O

in DRO-SPEC has to be mapped to the conjunction

of all scheduling constraints present in DOMAIN-

SPECIFIC-SCHEDULING. More precisely, an in-

terpretation consists of two spec-morphisms: one

from the source spec to the mediator spec, and an-

other from the target spec to a mediator spec that

is required to be a definitional extension of target

spec. In the following, we will use the terms inter-

pretation and refinement interchangeably.

In SPECWARE, the colimit operation is used to

construct larger specs from smaller specs. The in-

put to the colimit algorithm is a spec-diagram (a

graph with nodes labeled by specs and arcs by spec-

morphisms) called a base spec-diagram (also called

a cover of that colimit/spec), and it computes a

shared union of the specs in the spec-diagram. Col-

imits are used intensively in the construction and

factorization of the scheduling domain knowledge

base in Planware.

Given a spec, one refines it to more concrete specs

via a sequence of refinements, so we need a sequen-

tial composition of interpretations to put these re-

finements together. Given a structured spec, for in-

stance a spec formed via colimit, one only needs to

give component interpretations of the cover, using

parallel composition operator, a refinement for col-

imit object can be constructed automatically, pro-



vided the components interpretation are compati-

ble with each other (this is where interpretation-

morphism is used). Sequential and parallel com-

positions are used in the various Planware design

tactics that will be described in Section 3.

Finally, after definitions have been created for all

relevant sorts and operations in a spec, code can

be generated, currently CommonLisp or C++ in

SPECWARE. Code generation is carried out by

means of logic morphisms, based on Meseguer’s

general logics [2] and their morphisms, with some

modification. Our work in Planware of extending

and applying Specware focuses basically on au-

tomating various combinations of sequential and

parallel compositions, and representing knowledge.

3. Planware design process

Planware aims to provide a framework that is gen-

eral enough to allow the synthesis of schedulers in

a wide range of domains. The key to achieving this

generality was our development of a specification

for a generic scheduling problem that can be refined

into a variety of concrete scheduling problems. Our

confidence in this abstract scheduling specification

arises from experience with using the KIDS system

to generate schedulers for such domains as trans-

portation, manufacturing, power plant maintenance,

satellite communications, pilot training, and others

[6].

Briefly, here is how the Planware design process

works. The user is asked to supply information

about a particular scheduling problem. This in-

formation is used to refine the abstract scheduling

specification to a specification of the user’s prob-

lem. Planware then applies tactics that automati-

cally perform problem reformulation and simplifi-

cation, algorithm design, datatype refinement, ex-

pression optimization, and finally code generation.

The following sections describe the steps in the

Planware design process in more detail.

The most time consuming and novel aspect of this

work is the automatic construction of a domain the-

ory for the particular scheduling problem. In the

KIDS system, this construction typically required

weeks or months of time. In Planware this time is

reduced to minutes, but for a sharply restricted do-

main.

3.1. Abstract scheduling problems

Abstractly, we consider a scheduling problem to be

a set of reservations, where each reservation con-

sists of a start-time, tasks to be accomplished and

resources allocated. We do not specify the tasks and

resources in detail, since these may vary from one

scheduling domain to another. We specify an ab-

stract scheduling problem as a function that takes

a set of tasks and a set of resources as input, and

returns a set of reservations (a schedule) that ac-

complishes all tasks and uses only the provided re-

sources.

In the current system, the abstract scheduling spec

is limited to problems of scheduling a single class

of resource; e.g. scheduling cargo on aircraft, or

scheduling the duty periods of personnel. Our next

challenge is extending the abstract scheduling spec

to allow multiple classes of resource, and the con-

straints on their interactions.

3.1.1. Abstract scheduling specification

The abstract scheduling problem is formulated as a

structured spec. This structuring buys us: reusabil-

ity, extensibility, implementability and evolution-

ary support of (re-)design. Basically, Planware’s

abstract scheduling specification has the following

components:

Time – time is a total order,

Cap – capacity is a linearly ordered group,

Pre-Sched – a set of abstract reservations,

Res – an abstract resource spec,

Task – an abstract task spec,

Res-Sched – an abstract schedule for resource al-

location,

Task-Sched – an abstract schedule that accom-

plishes tasks,

Sched-Base – a set of abstract reservations,

Scheduling – an abstract scheduler with two key

constraints: all tasks are scheduled and only

the provided resources are used.



Time

�� ++❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄ Cap

ss❣ ❣ ❣ ❣
❣ ❣ ❣ ❣

❣ ❣ ❣ ❣
❣ ❣ ❣ ❣

❣ ❣ ❣ ❣
❣ ❣ ❣

��

��⑦ ⑦
⑦ ⑦
⑦ ⑦
⑦ ⑦
⑦ ⑦
⑦ ⑦
⑦ ⑦
⑦ ⑦

Res

��

Task

��

Pre-Sched

ww♦ ♦
♦ ♦
♦ ♦
♦ ♦
♦ ♦
♦ ♦

''P
PP

PP
PP

PP
PP

P

Res-Sched

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖ Task-Sched

ww♥ ♥
♥ ♥
♥ ♥
♥ ♥
♥ ♥
♥ ♥

Sched-Base

��
Scheduling

Figure 5. Scheduling System Architec­
ture

This version is, however, a much simplified descrip-

tion of the actual spec in the system. The spec-

diagram of Figure 5 shows their dependencies.

Some of the specifications in this diagram are pre-

sented in Figure 6. Note how the attributes of Task

and Resource are expressed as functions on those

sorts (e.g. max-capacity). As new attributes are

added under user guidance, we simply add new

function symbols to the spec. Eventually, Planware

refines Task and Resource to tuples and their at-

tributes to projection functions.

3.1.2. Refining to a particular scheduling
problem

Given the abstract scheduling specification, the very

first step of refining to a given scheduling problem

is to get information from the user about how to

refine the resource and task components. For in-

stance, a task in the user’s problem may have a

release-date and a due-date; if it is a transporta-

tion task then it may have an origin and destination.

Currently Planware provides a taxonomy of task at-

tribute specs for the user to select from. This tax-

onomy is straightforward to extend. Analogously,

we have developed a taxonomy of resource theo-

ries from which the user selects. The next step is to

obtain constraints on the scheduler from the user’s

choices.

A key goal of Planware is to free the user from

the need to read or write formal specifications. To

achieve this, we needed to find a way to lift informa-

tion about tasks and resources into constraints on a

spec RESOURCE is

import TIME, CAPACITY

sort Resource

op max-capacity:

Resource -> Quantity

end-spec

spec TASK is

import TIME, CAPACITY

sorts Task

op task-demand:

Task -> Quantity

end-spec

spec SCHEDULING is

import SCHEDULING-BASE

op Only-Avail-Res-Used:

Resource-Set, Schedule

-> boolean

def of Only-Avail-Res-Used is

axiom

Only-Avail-Res-Used(

resources, valid-sched)

<=>

in(a-reserv, valid-sched) =>

in(asset(a-reserv), resources)

end-def

op All-Tasks-Scheduled:

Task-Set, Schedule -> boolean

def of All-Tasks-Scheduled is

axiom All-Tasks-Scheduled is

All-Tasks-Scheduled(

task-set, valid-sched)

<=> in(task, task-set) =>

ex(a-reserv: Reservation)

in(a-reserv, valid-sched)

& in(task, tasks(a-reserv))

end-def

op Scheduler:

Task-Set, Resource-Set

-> Schedule

axiom CONSTRAINING-SCHEDULER is

Only-Avail-Res-Used(

resources,Scheduler(

task-set, resources))

& All-Tasks-Scheduled(

task-set,

Scheduler(

task-set, resources))

end-spec

Figure 6. Scheduling Specifications in
Specware



scheduler. We observed that all of the constraints on

tasks that we have dealt with can be characterized

abstractly by means of a partial order. Intuitively,

a feasible schedule of reservations must provide

enough resource to meet the demand of the input

tasks. This notion of meeting task demand particu-

larizes to a partial order on each task attribute. For

example, a due-date attribute on a task requires that

the finish-time of its reservation be before the task’s

due-date (i.e. finish-time ≤ due-date). For another

example, the sum of the weights of the cargo items

in a transportation reservation must not exceed the

max-capacity of the transportation vehicle. Given

partial order information about a task attribute, it is

easy to create a constraint over an entire schedule;

returning to the due-dates example: if valid-sched

is the output of Scheduler(Tasks, Resources) then

fa(a-tsk: Task,

a-reserv: Reservation,

valid-sched: Schedule)

(in(a-reserv, valid-sched)

& in(a-tsk, tasks(a-reserv))

=> finish-time(a-reserv)

<= due-date(a-tsk))

Figure 7. Due­Date Constraint

In fact, we require that a task attribute be not only

partially ordered, but that it have greatest lower

bounds (i.e. be a meet semi-lattice). This require-

ment comes from the needs of algorithm design –

the global search/constraint propagation algorithms

perform fixpoint iteration in a semilattice.

By restricting to semi-lattice-structured task at-

tributes, the task of constructing a formal spec-

ification of a scheduling problem, which is usu-

ally tedious and error-prone, is simplified to just

asking the user to input/select whether each at-

tribute is a lower/exact/upper bound. The corre-

sponding constraints are constructed and asserted

as output conditions of the desired scheduler. Ad-

ditional work is required to add in the appropri-

ate constructors and other operators for the re-

fined datatypes of Task, Resource, Reservation,

and Schedule. At this stage, Planware also con-

structs a slightly weakened version of the reserva-

tion and schedule specs, called Partial-reservation

and Partial-schedule. These form the basis for the

global search algorithm designed in a subsequent

stage.

3.1.3. Example – transportation scheduling

In a simple transportation scheduling problem, the

input tasks are movement requirements, which are

descriptions of cargo that have to be moved. In this

simple version a movement requirement includes

information about when the cargo is available to be

moved and by when it must arrive. So a schedule is

a set of trips. Each trip has a start time and a man-

ifest – the set of movement requirements that it has

been assigned to execute.

The first phase of our development is to construct

a transportation scheduling specification. Suppose

we have enriched our resource taxonomy and task

taxonomy to allow us to have basic transportation

domain information like release-date and due-date,

as well as the origin and destination of a trip, which

are expressed by key words POD and POE, respec-

tively. The Figures 8 and 9 show user selection in-

terface.

Resource

vv♥ ♥ ♥
♥ ♥ ♥

♥ ♥
♥ ♥
♥ ♥
♥

((◗◗
◗◗◗

◗◗◗
◗◗

◗◗◗

Consumable-Res Asynchronous-Res

��
Synchronous-Res

��
Transport-Res

Figure 8. Resource Taxonomy

Choose Task Items

RELEASE-DATE

DUE-DATE

POE

POD

All of the Above

None of the Above

Do It

Abort

Figure 9. Task Taxonomy

Suppose we have selected transportation resource

from the taxonomy and all task attributes shown in

the above figure. Here, the colimit operator is used

to put all task attributes together to form a domain-

specific task spec. The parallel composition opera-

tor is used to put all domain-specific interpretations

together to form a domain-specific scheduling spec.



The next step in the development process, if we

choose to go forward, automatically constructs a

transportation scheduling specification via the tac-

tics described above.

3.2. Data­type reformulation

The construction process described above produces

a scheduling specification for a particular prob-

lem. It is still formulated in terms of the schedule

datatype which is a set of reservations. This formu-

lation is general and supports the initial problem ac-

quisitionstage in Planware, but it is a relatively poor

datatype for implementation purposes. In this stage,

the Planware design process applies a datatype re-

finement that is stored with the resource theory that

was chosen from the resource taxonomy. The ef-

fect is to refine Schedule = set(Reservation) into a

datatype that is better suited to the resource proper-

ties. The payoff is that we can then simplify away

some of the problem constraints because they are

effectively built into the schedule datatype. After

Planware refines the schedule datatype, it invokes a

context-dependent simplification tactic [4] to sim-

plify the constraints.

3.2.1. Example – transportation scheduling

After finishing the refinement of abstract schedul-

ing to transportation-scheduling, a series of refine-

ments is carried out: adding complete constructors

for transportation schedule data type; refining set

of reservations to a map that maps a resource to

its scheduled tasks (in sequence with increasingly

start-time as ordering); etc.

The transportation scheduling problem uses a trans-

portation resource which is a refinement of a syn-

chronous resource (i.e. all reservations on a syn-

chronous resource must be synchronized in the

sense that two reservations must be either separated

in time by at least some minimal amount or else si-

multaneous – starting and ending at the same time).

Planware has refinements from set(Reservation) to

map(Resource, seq(Trip)) which effectively imple-

ments a schedule as an itinerary – for each resource

we have the sequence of trips that it makes. The

characteristic synchronization constraint is then

simplified from a complex disjunction to a simple

linear check over adjacent trips. For a typical input

of 10,000 movement requirements, the original for-

mulation will have several hundred millions ground

disjuncts for the synchronization constraint, versus

about 100,000 in the refined formulation.

3.3. Algorithm design

A design theory for an algorithmic concept can be

represented as a formal specification [5]. Any par-

ticular instance of that design theory corresponds

to an interpretation from it to a specification of the

particular problem being solved. For instance, var-

ious interpretations from divide-and-conquer the-

ory to a sorting specification correspond to various

sorting algorithms, such as quicksort, mergesort or

Batcher’s sort. Design theories can be arranged in a

refinement hierarchy with specification morphisms

providing the refinement links; e.g. a hierarchy of

algorithm theories is presented in [3]. The concepts

and procedures described below are intended to au-

tomate the process of algorithm design by choosing

a chain of algorithm design theories for a particular

problem, and by constructing an interpretation from

the chosen design theory to that problem. Thus, an

algorithm for the specific problem is constructed.

DRO-SPEC

��
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

#+
❖

❖
❖

❖
❖

❖

❖
❖

❖
❖

❖
❖ +3❴❴❴❴❴❴❴❴❴ ❴❴❴❴❴❴❴❴❴ Domain

��
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

"*
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆

DROF +3❴❴❴❴❴❴❴❴❴ ❴❴❴❴❴❴❴❴❴

��
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤ Problem

��
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

Alg-Thy +3❴❴❴❴❴❴❴❴❴ ❴❴❴❴❴❴❴❴❴

#+
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆ Ext-Dom

"*
▼

▼
▼

▼
▼

▼
▼

▼
▼

▼

Alg-Prog +3❴❴❴❴❴❴❴❴ ❴❴❴❴❴❴❴❴ Pro-Prog

Figure 10. Algorithm Design Diagram

The representation of our algorithm design frame-

work can be illustrated by the diagram in Figure 10,

let us call it an algorithm design cube, or simply the

cube in this paper. The arrows in the cube repre-

sent the relationship between abstract theory and the

concrete problem. Technically, the left square in the

cube is a spec-diagram corresponding to the abstract

algorithm design knowledge; the right square in the

cube corresponds to the domain-specific problem

and program scheme. The arrows in between are



interpretations. Essentially, the design tactics de-

scribed below are based on sequential and parallel

refinement composition operators, as well as oth-

ers. In the following the intended meaning of each

arrow (and spec) and the way to construct them is

described in detail.

At the very beginning, we have only the node DRO

labeled with the abstract problem domain theory,

as it can be seen in the above algorithm design

cube. When a concrete (or domain-specific) prob-

lem specification is chosen (along with the main

function to be developed), a problem domain spec-

ification can be extracted from it (and it is done via

an extraction tactic that gives an interpretation as re-

sult). So, the upper morphism on the right side of

the cube is constructed.

The second arrow construction tactic, the domain-

specific interpretation tactic, is a little more com-

plex. The domain-specific interpretation tactic

works as follows, first, use the main function sig-

nature to construct an interpretation from DRO to

the problem domain specification. Second, using

DRO and the main function signature, a DROF spec

is chosen from the possible solutions specifications,

e.g. all solutions spec, one solution spec and opti-

mal solution spec, etc. Third, compute the colimit

of the spec-diagram that include DRO, the domain-

specific problem domain specification and DROF,

which gives, among others, an interpretation from

DROF to the colimit object. Finally, we check that

the computed colimit is isomorphic to the domain-

specific problem specification. In doing so, we have

constructed and constructively proved that the base

diagram of the computed colimit, namely, DRO,

DROF and the problem domain specification is a

cover of the domain-specific problem specification.

Informally speaking, we can use DRO, DROF, and

the problem domain specification to construct a pro-

gram scheme, and that will be a program scheme for

our specific problem too.

The third arrow construction tactic is called classi-

fication and it involves a process called ladder con-

struction (see [3] for details). Here we only give

a brief description of it in the context of algorithm

design. Basically, this tactic consists of two steps:

(1) selecting an appropriate design theory from a re-

finement hierarchy of design theories, and (2) con-

structing an interpretation. The first step is in gen-

eral interactive, but can be automatic in certain do-

mains (e.g. scheduling domains). The second step

is accomplished via the incrementally constructing

an interpretation, which is constructed by a con-

straint solving process that involves user choices,

the propagation of consistency constraints, calcu-

lation of colimits, and constructive theorem prov-

ing. This is illustrated in the ladder construction

diagram in Figure 11.

DT0

I0
+3

��

Spec0

��

DT1

I1
+3

��

Spec1

��

DT2

I2
+3

��

Spec2

��...

��

...

��

DTn

In
+3 Specn

Figure 11. Ladder Construction

The result of the classification and ladder construc-

tion tactic is an interpretation from an algorithm de-

sign theory to the problem domain.

The last tactic, the program scheme instantiation

tactic, computes a colimit of the diagram that con-

sists of algorithm design theory, its program scheme

and the extended problem domain. The colimit ob-

ject is domain-specific program scheme. Last but

not the least, there must be a specification mor-

phism from domain-specific problem spec to the

constructed program. This is constructed and con-

structively proved to always exist by universal prop-

erty of colimits.

With these four tactics, given a concrete problem,

we can semi-automatically construct a program the-

ory for that problem based on the selected and suc-

cessfully interpreted algorithm design theory. Nor-

mally, further steps are needed to make it executable

or more efficient.

The first design theory used in Planware is global-

search theory and its extension with cutting con-

straints. Since this decision is fixed it is applied

with no need for further interaction. Another al-

gorithm design tactic used is constraint propaga-

tion. This amounts to generating basic constraint

propagation procedures given a kind of scheduling

problem domain, and synthesizing domain-specific

constraint propagation procedures after the instan-



tiation phase. Basically, that amounts to generating

constraint propagation procedures for a set of upper

bounds, exact bounds and lower bounds of domain-

specific constraints. Technically, this is related to

data type refinement to get the right constructors

for each data type used in the constraints; and to

the instantiation of the corresponding semi-lattices.

After getting all the constraint propagation proce-

dures, they are composed together and a flat semi-

lattice is constructed that consists of a tuple of all

component semi-lattices. Notice that this can only

be done dynamically, since the constraint structure

varies from one domain to another.

3.3.1. Example – transportation scheduling

The result of algorithm design is a domain-

specific global search algorithm for the transporta-

tion scheduling problem (Figure 12), which is an in-

stantiation of figure 10. That has cargo and pax ca-

pacity constraints, release and due date constraints,

trip origin and destination constraints, as well as trip

separation constraints.

Dro-Spec

��

"*
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
+3Sched-Dom

��

#+
❖❖

❖❖
❖❖

❖❖
❖❖

❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

Drof +3

��

Tr-Sched

��

Gs-Filter +3

"*
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼ Ext-Dom

#+
❖❖

❖❖
❖❖

❖❖
❖❖

❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

Gs-Prog +3 Tr-Gs-Prog

Figure 12. domain­specific algorithm

3.4. Expression optimization

This stage will apply various expression optimiza-

tion refinements, such as context-dependent simpli-

fication, common-subexpression elimination, finite

differencing, partial evaluation, and so on. These

are not currently applied in Planware.

3.5. Automatic code generation

We have developed a code-generation tactic that au-

tomatically generates code for a structured spec,

provided the structure is (recursively) of the follow-

ing form:

1. directly implementable,

2. definitional extension or a translation of an im-

plementable spec,

3. colimit, each component of which is imple-

mentable (recursively),

4. instantiation of implementable specs,

5. can be interpreted to an implementable spec.

If there are multiple choices, we use a heuristic

to decide which way to go. In the Planware con-

text, given the scheduling system architecture, we

can generate code for it if each instantiated compo-

nent is implementable, and we further specialize the

code-generation tactic by a specific implementation

order imposed by the dependencies of the schedul-

ing systems architecture.

4. Concluding remarks and future work

We have presented our Planware system for gen-

erating domain-specific high-performance schedul-

ing software in a highly automated way with min-

imal user input. Planware is an extension of

the Specware formal development environment.

Scheduling domain knowledge has been repre-

sented abstractly and formally to enable user prob-

lems to be solved with minimal interaction. In

particular, the resource and task taxonomies which

specify general/domain-specific scheduling knowl-

edge have been developed as well as their archi-

tectural relationship with the scheduling system ar-

chitecture. For synthesizing domain-specific sched-

ulers, a set of design tactics for instantiation to

the concerned problem, data-type refinement, algo-

rithm design with constraint propagation, and au-

tomatic code-generation have been developed and

successfully applied. We have experimented with

the transportation scheduling domain and devel-

oped a variety of schedulers.



We believe that Planware is a new paradigm for

domain-specific software generators. Planware dif-

fers from other domain-specific software genera-

tors in that it is built on a foundation of domain-

independent general-purpose software specification

and synthesis capabilities (Specware/ Designware).

In particular, Planware relies on

1. the Specware capabilities for composing speci-

fications, refining them and translating to code;

2. the Designware libraries of domain-

independent design knowledge about

algorithms, datatype refinements, and ex-

pression optimization techniques (and their

application tactics) to construct refinements.

The domain-specificity of Planware comes in the

form of

specifications of domain knowledge – the ab-

stract scheduling specification, the taxonomies

of task and resource theories, etc.

scheduling spec construction tactics – tactics for

lifting properties of tasks to constraints on

the scheduler, tactics for lifting resource

constraints to scheduling constraints, tactics

for constructing the constructors and other

datatype operations needed by the refined

Task, Resource, Reservation, and Schedule

specs,

embeded algorithm design tactic – tactics for

generating a global search theory for the

scheduling problem at hand, etc.

The background of domain-independent design

knowledge allows a user to derive software even

when the requirements fall outside the domain-

specific scope of the system. The user then gets less

automation, and must supply more guidance in the

construction process.

There are many things to be done before Planware

can be deployed. One crucial extension is allow-

ing the user more flexibility in supplying task infor-

mation. We are developing a spreadsheet-like in-

terface that is derived from the user’s choice of re-

source theory and presents the user with plausible

options for lower/exact/upper bounds on all crucial

attributes of a reservation for that kind of resource.

We are working to let the user choose and modify

arbitrary entries. As before the user only interacts

with the system in domain-specific terms. Another

vital extension is to generalize the abstract schedul-

ing spec to multiple resource classes. Another ex-

tension that is underway is to extend Planware to al-

low the synthesis of scheduling systems, including

visual displays, editors, GUI, database mediators,

and so on.

Acknowledgements

We would like to thank Cordell Green, Jim Mcdon-

ald, T.C. Wang, David Espinosa, Richard Jullig and

Y.V. Srinivas for discussions and suggestions during

various stages of the Planware project. This project

has been mainly supported by DARPA/Rome Lab

under Contract F30602-95-C-0247 and by Rome

Lab under Contract F30602-95-C-0036.

References

[1] L. Blaine and A. Goldberg. DTRE – a semi-

automatic transformation system. In B. Möller,

editor, Constructing Programs from Specifications,

pages 165–204. North-Holland, Amsterdam, 1991.

[2] J. Meseguer. General logics. In H. E. et al., editor,

Logic Colloquium 87, pages 275–329. North Hol-

land, Amsterdam, 1989.

[3] D. R. Smith. Toward a classification approach to

design. In Proceedings of the Fifth International

Conference on Algebraic Methodology and Software

Technology, AMAST’96, volume LNCS 1101, pages

62–84. Springer-Verlag, 1996.

[4] D. R. Smith. KIDS – a semi-automatic program

development system. IEEE Transactions on Soft-

ware Engineering Special Issue on Formal Methods

in Software Engineering, 16(9):1024–1043, Septem-

ber 1990.

[5] D. R. Smith and M. R. Lowry. Algorithm theo-

ries and design tactics. In L. van de Snepscheut,

editor, Proceedings of the International Conference

on Mathematics of Program Construction, LNCS

375, pages 379–398. Springer-Verlag, Berlin, 1989.

(reprinted in Science of Computer Programming,

14(2-3), October 1990, pp. 305–321).

[6] D. R. Smith, E. A. Parra, and S. J. Westfold. Synthe-

sis of planning and scheduling software. In A. Tate,

editor, Advanced Planning Technology, pages 226–

234. AAAI Press, Menlo Park, 1996.

[7] Y. V. Srinivas and R. Jüllig. Specware: Formal sup-

port for composing software. In B. Moeller, editor,

Proceedings of the Conference on Mathematics of

Program Construction, pages 399–422. LNCS 947,

Springer-Verlag, Berlin, 1995.


