
Designware:

Software Development by Re�nement

Douglas R. Smith

Kestrel Institute, Palo Alto, California 94304 USA

Abstract

This paper presents a mechanizable framework for software development by re�ne-

ment. The framework is based on a category of higher-order speci�cations. The key

idea is representing knowledge about programming concepts, such as algorithm de-

sign, datatype re�nement, and expression simpli�cation, by means of taxonomies of

speci�cations and morphisms.

The framework is partially implemented in the research systems Specware, De-

signware, and Planware. Specware provides basic support for composing speci�-

cations and re�nements via colimit, and for generating code via logic morphisms.

Specware is intended to be general-purpose and has found use in industrial settings.

Designware extends Specware with taxonomies of software design theories and sup-

port for constructing re�nements from them. Planware builds on Designware to

provide highly automated support for requirements acquisition and synthesis of

high-performance scheduling algorithms.

1 Overview

A software system can be viewed as a composition of information from a
variety of sources, including

� the application domain,
� the requirements on the system's behavior,

� software design knowledge about system architectures, algorithms, data
structures, code optimization techniques, and

� the run-time hardware/software/physical environment in which the software

will execute.

This paper presents a mechanizable framework for representing these various

sources of information, and for composing them in the context of a re�nement
process. The framework is founded on a category of speci�cations. Morphisms

Preprint submitted to Elsevier Preprint draft: 10 August 1999

are used to structure and parameterize speci�cations, and to re�ne them.
Colimits are used to compose speci�cations. Diagrams are used to express the

structure of large speci�cations, the re�nement of speci�cations to code, and

the application of design knowledge to a speci�cation.

The framework features a collection of techniques for constructing re�nements

based on formal representations of programming knowledge. Abstract algo-

rithmic concepts, datatype re�nements, program optimization rules, software

architectures, abstract user interfaces, and so on, are represented as diagrams

of speci�cations and morphisms. We arrange these diagrams into taxonomies,

which allow incremental access to and construction of re�nements for partic-

ular requirement speci�cations. For example, a user may specify a scheduling

problem and select a theory of global search algorithms from an algorithm

library. The global search theory is used to construct a re�nement of the

scheduling problem speci�cation into a speci�cation containing a global search
algorithm for the particular scheduling problem.

The framework is partially implemented in the research systems Specware, De-

signware, and Planware. Specware provides basic support for composing spec-

i�cations and re�nements, and generating code. Code generation in Specware
is supported by inter-logic morphisms that translate between the speci�cation
language/logic and the logic of a particular programming language (e.g. Com-
monLisp or C++). Specware is intended to be general-purpose and has found

use in industrial settings. Designware extends Specware with taxonomies of
software design theories and support for constructing re�nements from them.
Planware provides highly automated support for requirements acquisition and
synthesis of high-performance scheduling algorithms.

The remainder of this paper covers basic concepts and the key ideas of our

approach to software development by re�nement, in particular the concept of
design by classi�cation [6]. We also discuss the application of these techniques
to domain-speci�c re�nement in Planware [1]. A detailed presentation of a

derivation in Designware is given in [7]

2 Basic Concepts

2.1 Speci�cations

A speci�cation is the �nite presentation of a theory. The signature of a speci-

�cation provides the vocabulary for describing objects, operations, and prop-

erties in some domain of interest, and the axioms constrain the meaning of
the symbols. The theory of the domain is the closure of the axioms under the

2

spec Container is
sorts E; Container

op empty :! Container

op singleton : E ! Container

op join : Container;Container! Container

constructors fempty; singleton; joing construct Container

axiom 8(x : Container)(x join empty = x ^ empty join x = x)

op in : E;Container! Boolean

de�nition of in is

axiom x in empty = false

axiom x in singleton(y) = (x = y)

axiom x in U join V = (x in U _ x in V)

end-de�nition

end-spec

Fig. 1. Speci�cation for Containers

rules of inference.

Example: Here is a speci�cation for partial orders, using notation adapted

from Specware. It introduces a sort E and an in�x binary predicate on E,
called le, which is constrained by the usual axioms. Although Specware allows
higher-order speci�cations, �rst-order formulations are su�cient in this paper.

spec Partial-Order is
sort E
op le : E;E ! Boolean

axiom re
exivity is x le x

axiom transitivity is x le y ^ y le z =) x le z

axiom antisymmetry is x le y ^ y le x =) x = z

end-spec

Example: Containers are constructed by a binary join operator and they rep-

resent �nite collections of elements of some sort E. The speci�cation shown in

Figure 1 includes a de�nition by means of axioms. Operators are required to be
total. The constructor clause asserts that the operators fempty; singleton; joing

construct the sort Container, providing the basis for induction on Container.

The generic term expression will be used to refer to a term, formula, or sen-
tence.

A model of a speci�cation is a structure of sets and total functions that satisfy

the axioms. However, for software development purposes we have a less well-
de�ned notion of semantics in mind: each speci�cation denotes a set of possible

implementations in some computational model. Currently we regard these

3

as functional programs. A denotational semantics maps these into classical
models.

2.2 Morphisms

A speci�cation morphism translates the language of one speci�cation into the

language of another speci�cation, preserving the property of provability, so

that any theorem in the source speci�cation remains a theorem under trans-
lation.

A speci�cation morphism m : T ! T 0 is given by a map from the sort and

operator symbols of the domain spec T to the symbols of the codomain spec
T 0. To be a speci�cation morphism it is also required that every axiom of T

translates to a theorem of T 0. It then follows that a speci�cation morphism

translates theorems of the domain speci�cation to theorems of the codomain.

Example: A speci�cation morphism from Partial-Order to Integer is:

morphism Partial-Order-to-Integer is

fE 7! Integer; le 7! �g

Translation of an expression by a morphism is by straightforward application

of the symbol map, so, for example, the Partial-Order axiom x le x translates
to x � x. The three axioms of a partial order remain provable in Integer

theory after translation.

Morphisms come in a variety of
avors; here we only use two. An extension

or import is an inclusion between specs.

Example: We can build up the theory of partial orders by importing the theory

of preorders. The import morphism is fE 7! E; le 7! leg.

spec PreOrder

sort E

op le : E;E ! Boolean

axiom re
exivity is x le x

axiom transitivity is x le y ^ y le z =) x le z

end-spec

spec Partial-Order

import PreOrder

axiom antisymmetry is x le y ^ y le x =) x = z

end-spec

4

A de�nitional extension, written A d //B , is an import morphism in which

any new symbol inB also has an axiom that de�nes it. De�nitions have implicit

axioms for existence and uniqueness. Semantically, a de�nitional extension has
the property that each model of the domain has a unique expansion to a model

of the codomain.

Example: Container can be formulated as a de�nitional extension of

Pre-Container:

spec Pre-Container is

sorts E; Container

op empty :! Container

op singleton : E ! Container

op join : Container;Container! Container

constructors fempty; singleton; joing construct Container

axiom 8(x : Container)(x join empty = x ^ empty join x = x)

end-spec

spec Container is
imports Pre-Container
de�nition of in is

axiom x in empty = false

axiom x in singleton(y) = (x = y)
axiom x in U join V = (x in U _ x in V)

end-de�nition

end-spec

A parameterized speci�cation can be treated syntactically as a morphism.

Example: The speci�cation Container can be parameterized on a spec Triv

with a single sort:

spec Triv is

sort E

end-spec

via

parameterized-spec Parameterized-Container : TRIV ! Container is

fE 7! Eg

A functorial semantics for �rst-order parameterized speci�cations via coherent
functors is given by Pavlovi�c [4].

5

2.3 The Category of Specs

Speci�cation morphisms compose in a straightforward way as the composi-
tion of �nite maps. It is easily checked that speci�cations and speci�cation

morphisms form a category SPEC. Colimits exist in SPEC and are easily

computed. Suppose that we want to compute the colimit of B Aioo
j

//C .
First, form the disjoint union of all sort and operator symbols of A, B, and

C, then de�ne an equivalence relation on those symbols:

s � t i� (i(s) = t _ i(t) = s _ j(s) = t _ j(t) = s):

The signature of the colimit (also known as pushout in this case) is the collec-

tion of equivalence classes wrt �. The cocone morphisms take each symbol into
its equivalence class. The axioms of the colimit are obtained by translating
and collecting each axiom of A, B, and C.

Example: Suppose that we want to build up the theory of partial orders by
composing simpler theories.

spec BinRel is

sort E

op le : E;E ! Boolean

end-spec

�!

spec PreOrder is
import BinRel

axiom re
exivity is x le x

axiom transitivity is
x le y ^ y le z =) x le z

end-spec
?
?
y

spec Antisymmetry is
import BinRel

axiom antisymmetry is

x le y ^ y le x =) x = z

end-spec

The pushout of Antisymmetry BinRel! PreOrder is isomorphic to the

speci�cation for Partial-Order in Section 2.1. In detail: the morphisms are

fE 7! E; le 7! leg from BinRel to both PreOrder and Antisymmetry.

The equivalence classes are then ffE;E;Eg; fle; le; legg, so the colimit spec

has one sort (which we rename E), and one operator (which we rename le).
Furthermore, the axioms of BinRel, Antisymmetry, and PreOrder are each

translated to become the axioms of the colimit. Thus we have Partial-Order.

Example: The pushout operation is also used to instantiate the parameter

6

in a parameterized speci�cation [2]. The binding of argument to parameter
is represented by a morphism. To form a speci�cation for Containers of in-

tegers, we compute the pushout of Container Triv ! Integer, where

Container Triv is fE 7! Eg, and Triv! Integer is fE 7! Integerg.

Example: A speci�cation for sequences can be built up from Container, also

via pushouts. We can regard Container as parameterized on a binary operator

spec BinOp is

sort E

op bop : E;E ! E

end-spec

morphism Container-Parameterization : BinOp! Container is
fE 7! E; bop 7! joing

and we can de�ne a re�nement arrow that extends a binary operator to a
semigroup:

spec Associativity is

import BinOp
axiom Associativity is ((x join y) join z) = (x join (y join z))

end-spec

The pushout of Associativity BinOp ! Container, produces a collection

speci�cation with an associative join operator, which is Proto-Seq, the core
of a sequence theory (See Appendix in [7]). By further extending Proto-Seq

with a commutativity axiom, we obtain Proto-Bag theory, the core of a bag
(multiset) theory.

2.4 Diagrams

Roughly, a diagram is a graph morphism to a category, usually the category of

speci�cations in this paper. For example, the pushout described above started

with a diagram comprised of two arrows:

BinRel //

��

PreOrder

Antisymmetry

7

and computing the pushout of that diagram produces another diagram:

BinRel //

��

PreOrder

��

Antisymmetry // Partial-Order

A diagram commutes if the composition of arrows along two paths with the

same start and �nish node yields equal arrows.

2.4.1 The Structuring of Speci�cations

Colimits can be used to construct a large speci�cation from a diagram of specs

and morphisms. The morphisms express various relationships between speci�-
cations, including sharing of structure, inclusion of structure, and parametric
structure. Several examples will appear later.

Example: The �nest-grain way to compose Partial-Order is via the colimit of

BinRel

vvmm
mm
mm
mm
mm
mm
m

��))S
SS

SS
SS

SS
SS

SS
S

Re
exivity Transitivity Antisymmetry

2.4.2 Re�nement and Diagrams

As described above, speci�cation morphisms can be used to help structure

a speci�cation, but they can also be used to re�ne a speci�cation. When a
morphism is used as a re�nement, the intended e�ect is to reduce the num-
ber of possible implementations when passing from the domain spec to the

codomain. In this sense, a re�nement can be viewed as embodying a partic-

ular design decision or property that corresponds to the subset of possible
implementations of the domain spec which are also possible implementations
of the codomain.

Often in software re�nement we want to preserve and extend the structure

of a structured speci�cation (versus
attening it out via colimit). When a

speci�cation is structured as a diagram, then the corresponding notion of
structured re�nement is a diagram morphism. A diagram morphism M from
diagramD to diagram E consists of a set of speci�cation morphisms, one from

each node/spec in D to a node in E such that certain squares commute (a

functor underlies each diagram and a natural transformation underlies each

diagram morphism). We use the notation D =) E for diagram morphisms.

Example: A datatype re�nement that re�nes bags to sequences can be pre-

8

sented as the diagram morphism BtoS : BAG =) BAG-AS-SEQ:

Bag

BtoSBag

��

Triv

BtoSTriv

��

oo BAG

BtoS

��

Seq // Bag-as-Seq Trivoo
jj BAG-AS-SEQ

where the domain and codomain of BtoS are shown in boxes, and the (one)

square commutes. Here Bag-as-Seq is a de�nitional extension of Seq that

provides an image for Bag theory. Specs for Bag, Seq and Bag-as-Seq and

details of the re�nement can be found in Appendix A of [7]. The interesting

content is in spec morphism BtoSBag:

morphism BtoSBag : Bag! Bag-as-Seq is
fBag 7! Bag-as-Seq,
empty-bag 7! bag-empty,
empty-bag? 7! bag-empty?,
nonempty? 7! bag-nonempty?,

singleton-bag 7! bag-singleton,
singleton-bag? 7! bag-singleton?,
nonsingleton-bag? 7! bag-nonsingleton?,

in 7! bag-in,
bag-union 7! bag-union,

bag-wfgt 7! bag-wfgt ,

size 7! bag-sizeg

Diagram morphisms compose in a straightforward way based on spec mor-
phism composition. It is easily checked that diagrams and diagram morphisms

form a category. Colimits in this category can be computed using left Kan ex-
tensions and colimits in SPEC. In the sequel we will generally use the term

re�nement to mean a diagram morphism.

2.5 Logic Morphisms and Code Generation

Inter-logic morphisms [3] are used to translate speci�cations from the speci�-

cation logic to the logic of a programming language. See [8] for more details.

They are also useful for translating between the speci�cation logic and the
logic supported by various theorem-provers and analysis tools. They are also

useful for translating between the theory libraries of various systems.

9

3 Software Development by Re�nement

S0

��

S1

��

S2

��:::

��

Sn

��
�O

�O

�O

Code

The development of correct-by-construction code via a for-

mal re�nement process is shown to the left. The re�nement

process starts with a speci�cation S0 of the requirements

on a desired software artifact. Each Si; i = 0; 1; :::; n rep-

resents a structured speci�cation (diagram) and the arrows

+ are re�nements (represented as diagram morphisms). The

re�nement from Si to Si+1 embodies a design decision which

cuts down the number of possible implementations. Finally an
inter-logic morphism translates a low-level speci�cation Sn to

code in a programming language. Semantically the e�ect is to

narrow down the set of possible implementations of Sn to just
one, so speci�cation re�nement can be viewed as a construc-
tive process for proving the existence of an implementation
of speci�cation S0 (and proving its consistency).

Clearly, two key issues in supporting software development by re�nement are:
(1) how to construct speci�cations, and (2) how to construct re�nements.Most

of the sequel treats mechanizable techniques for constructing re�nements.

3.1 Constructing Speci�cations

A speci�cation-based development environment supplies tools for creating new
speci�cations and morphisms, for structuring specs into diagrams, and for
composing speci�cations via importation, parameterization, and colimit. In

addition, a software development environment needs to support a large library
of reusable speci�cations, typically including specs for (1) common datatypes,

such as integer, sequences, �nite sets, etc. and (2) commonmathematical struc-
tures, such as partial orders, monoids, vector spaces, etc. In addition to these
generic operations and libraries, the system may support specialized construc-

tion tools and libraries of domain-speci�c theories, such as resource theories,

or generic theories about domains such as satellite control or transportation.

3.2 Constructing Re�nements

A re�nement-based development environment supplies tools for creating new

re�nements. One of our innovations is showing how a library of abstract re�ne-
ments can be applied to produce re�nements for a given speci�cation. In this

paper we focus mainly on re�nements that embody design knowledge about (1)

10

algorithm design, (2) datatype re�nement, and (3) expression optimization.
We believe that other types of design knowledge can be similarly expressed and

exploited, including interface design, software architectures, domain-speci�c

requirements capture, and others. In addition to these generic operations and

libraries, the system may support specialized construction tools and libraries

of domain-speci�c re�nements.

The key concept of this work is the following: abstract design knowledge about

datatype re�nement, algorithm design, software architectures, program opti-

mization rules, visualization displays, and so on, can be expressed as re�ne-
ments (i.e. diagrammorphisms). The domain of one such re�nement represents

the abstract structure that is required in a user's speci�cation in order to ap-

ply the embodied design knowledge. The re�nement itself embodies a design

constraint { the e�ect is a reduction in the set of possible implementations.

The codomain of the re�nement contains new structures and de�nitions that
are composed with the user's requirement speci�cation.

A +3

��

S0

��

B +3 S1

The �gure to the left shows the application of a library re�ne-
ment A =) B to a given (structured) speci�cation S0. First
the library re�nement is selected. The applicability of the re-

�nement to S0 is shown by constructing a classi�cation arrow

from A to S0 which classi�es S0 as having A-structure by mak-
ing explicit how S0 has at least the structure of A. Finally the
re�nement is applied by computing the pushout in the cate-

gory of diagrams. The creative work lies in constructing the

classi�cation arrow [5,6].

4 Scaling up

The process of re�ning speci�cation S0 described above has three basic steps:

(1) select a re�nement A =) B from a library,

(2) construct a classi�cation arrow A =) S0, and
(3) compute the pushout S1 of B (= A =) S0.

The resulting re�nement is the cocone arrow S0 =) S1. This basic re�nement

process is repeated until the relevant sorts and operators of the spec have su�-
ciently explicit de�nitions that they can be easily translated to a programming

language, and then compiled.

In this section we address the issue of how this basic process can be further

developed in order to scale up as the size and complexity of the library of
specs and re�nements grows. The �rst key idea is to organize libraries of specs

11

Container

��

Proto-Seq

�� &&
L
L
L
L
L
L
LL

L
L

Proto-Bag

��xxq
qq
qq
qq
q
qq

Seq

Bag Proto-Set

wwoo
oo
oo
oo
oo
oo

�� ''
NN

NN
NN

NN
NN

NN

::: ::: :::

Fig. 2. Taxonomy of Container Datatypes

and re�nements into taxonomies. The second key idea is to support tactics

at two levels: theory-speci�c tactics for constructing classi�cation arrows, and
task-speci�c tactics that compose common sequences of the basic re�nement

process into a larger re�nement step.

4.1 Design by Classi�cation: Taxonomies of Re�nements

A productive software development environment will have a large library of
reusable re�nements, letting the user (or a tactic) select re�nements and decide
where to apply them. The need arises for a way to organize such a library, to
support access, and to support e�cient construction of classi�cation arrows. A
library of re�nements can be organized into taxonomies where re�nements are

indexed on the nodes of the taxonomies, and the nodes include the domains

of various re�nements in the library. The taxonomic links are re�nements,
indicating how one re�nement applies in a stronger setting than another.

Figure 2 sketches a taxonomy of abstract datatypes for collections. Details

are given in Appendix A. The arrows between nodes express the re�nement
relationship; e.g. the morphism from Proto-Seq to Proto-Bag is an extension
with the axiom of commutativity applied to the join constructor of Proto-Seqs.

Datatype re�nements are indexed by the speci�cations in the taxonomy; e.g.

a re�nement from (�nite) bags to (�nite) sequences is indexed at the node
specifying (�nite) bag theory.

The paper [7] gives a taxonomy of algorithm design theories. The re�nements

indexed at each node correspond to (families of) program schemes. The algo-
rithm theory associated with a scheme is su�cient to prove the consistency

of any instance of the scheme. Nodes that are deeper in a taxonomy cor-

respond to speci�cations that have more structure than those at shallower

levels. Generally, we wish to select re�nements that are indexed as deeply

12

in the taxonomy as possible, since the maximal amount of structure in the
requirement speci�cation will be exploited. In the algorithm taxonomy, the

deeper the node, the more structure that can be exploited in the problem,

and the more problem-solving power that can be brought to bear. Roughly

speaking, narrowly scoped but faster algorithms are deeper in the taxonomy,

whereas widely applicable general algorithms are at shallower nodes.

Two problems arise in using a library of re�nements: (1) selecting an appro-

priate re�nement, and (2) constructing a classi�cation arrow. If we organize a

library of re�nements into a taxonomy, then the following ladder construction

process provides incremental access to applicable re�nements, and simultane-
ously, incremental construction of classi�cation arrows.

A0

I0 +3

��

Spec0

��

A1

I1 +3

��

Spec1

��

A2

I2 +3

��

Spec2

��:::

��

:::

��

An
In +3 Specn

The process of incrementally constructing a re�nement
is illustrated in the ladder construction diagram to the
left. The left side of the ladder is a path in a taxonomy

starting at the root. The ladder is constructed a rung
at a time from the top down. The initial interpreta-
tion from A0 to Spec0 is often simple to construct. The
rungs of the ladder are constructed by a constraint solv-

ing process that involves user choices, the propagation

of consistency constraints, calculation of colimits, and
constructive theorem proving [5,6]. Generally, the rung

construction is stronger than a colimit { even though
a cocone is being constructed. The intent in contruct-
ing Ii : Ai

+3Speci is that Speci has su�cient de�ned
symbols to serve as the codomain. In other words, the

implicitly de�ned symbols in Ai are translated to explic-
itly de�ned symbols in Speci.

An
In +3

��

Specn

��

Bn
+3 Specn+1

Once we have constructed a classi�cation arrow An =)
Specn and selected a re�nement An =) Bn that is

indexed at node An in the taxonomy, then constructing

a re�nement of Spec0 is straightforward: compute the
pushout, yielding Specn+1, then compose arrows down

the right side of the ladder and the pushout square to

obtain Spec0 =) Specn+1 as the �nal constructed
re�nement.

Again, rung construction is not simply a matter of computing a colimit. For
example, there are at least two distinct arrows from Divide-and-Conquer to

Sorting, corresponding to a mergesort and a quicksort { these are distinct co-

cones and there is no universal sorting algorithm corresponding to the colimit.
However, applying the re�nement that we select at a node in the taxonomy is

a simple matter of computing the pushout. For algorithm design the pushout

13

simply instantiates some de�nition schemes and other axiom schemes.

It is unlikely that a general automated method exists for constructing rungs

of the ladder, since it is here that creative decisions can be made. For general-
purpose design it seems that users must be involved in guiding the rung con-

struction process. However in domain-speci�c settings and under certain con-

ditions it will possible to automate rung construction (as discussed in the next

section). Our goal in Designware is to build an interface providing the user with
various general automated operations and libraries of standard components.

The user applies various operators with the goal of �lling out partial mor-

phisms and speci�cations until the rung is complete. After each user-directed
operation, constraint propagation rules are automatically invoked to perform

sound extensions to the partial morphisms and speci�cations in the rung dia-

gram. Constructive theorem-proving provides the basis for several important
techniques for constructing classi�cation arrows [5,6].

4.2 Tactics

The design process described so far uses primitive operations such as (1) se-
lecting a spec or re�nement from a library, (2) computing the pushout/colimit
of (a diagram of) diagram morphisms, and (3) unskolemizing and translating

a formula along a morphism, (4) witness-�nding to derive symbol translations
during the construction of classi�cation arrows, and so on. These and other
operations can be made accessible through a GUI, but inevitably, users will no-
tice certain patterns of such operations arising, and will wish to have macros

or parameterized procedures for them, which we call tactics. They provide

higher level (semiautomatic) operations for the user.

The need for at least two kinds of tactics can be discerned.

(1) Classi�cation tactics control operations for constructing classi�cation ar-

rows. The divide-and-conquer theory admits at least two common tactics
for constructing a classi�cation arrow. One tactic can be procedurally

described as follows: (1) the user selects a operator symbol with a DRO
requirement spec, (2) the system analyzes the spec to obtain the transla-

tions of the DRO symbols, (3) the user is prompted to supply a standard

set of constructors on the input domain D, (4) the tactic performs un-
skolemization on the composition relation in each Soundness axiom to

derive a translations for OCi, and so on. This tactic was followed in the
mergesort derivation.

The other tactic is similar except that the tactic selects constructors

for the composition relations on R (versus D) in step (3), and then uses

unskolemization to solve for decomposition relations in step (4). This

14

tactic was followed in the quicksort derivation.
A classi�cation tactic for context-dependent simpli�cation provides an-

other example. Procedurally: (1) user selects an expression expr to sim-

plify, (2) type analysis is used to infer translations for the input and

output sorts of expr, (3) a context analysis routine is called to obtain

contextual properties of expr (yielding the translation for C), (4) un-

skolemization and witness-�nding are used to derive a translation for
new-expr.

(2) Re�nement tactics control the application of a collection of re�nements;

they may compose a common sequence of re�nements into a larger re-
�nement step. Planware has a code-generation tactic for automatically

applying spec-to-code interlogic morphisms. Another example is a re�ne-

ment tactic for context-dependent simpli�cation; procedurally, (1) use
the classi�cation tactic to construct the classi�cation arrow, (2) com-

pute the pushout, (3) apply a substitution operation on the spec to re-
place expr with its simpli�ed form and to create an isomorphism. Finite

Di�erencing requires a more complex tactic that applies the tactic for
context-dependent simpli�cation repeatedly in order to make incremen-
tal the expressions set up by applying the Expression-and-Function!
Abstracted-Op re�nement.

We can also envision the possibility of metatactics that can construct tactics
for a given class of tasks. For example, given an algorithm theory, there may

be ways to analyze the sorts, ops and axioms to determine various orders
in constructing the translations of classi�cation arrows. The two tactics for
divide-and-conquer mentioned above are an example.

5 Summary

The main message of this paper is that a formal software re�nement pro-
cess can be supported by automated tools, and in particular that libraries
of design knowledge can be brought to bear in constructing re�nements for

a given requirement speci�cation. One goal of this paper has been to show
that diagram morphisms are adequate to capture design knowledge about al-

gorithms, data structures, and expression optimization techniques, as well as
the re�nement process itself. We showed how to apply a library re�nement to

a requirement speci�cation by constructing a classi�cation arrow and comput-

ing the pushout. We discussed how a library of re�nements can be organized
into taxonomies and presented techniques for constructing classi�cation ar-

rows incrementally. The examples and most concepts described are working

in the Specware, Designware, and Planware systems.

Acknowledgements: The work reported here is the result of extended col-

15

laboration with my colleagues at Kestrel Institute. I would particularly like
to acknowledge the contributions of David Espinosa, LiMei Gilham, Junbo

Liu, Du�sko Pavlovi�c, and Stephen Westfold. This research has been partially

supported by the US Air Force Research Lab, Rome NY, and by the Defense

Advanced Research Projects Agency.

References

[1] Blaine, L., Gilham, L., Liu, J., Smith, D., , and Westfold, S. Planware

{ domain-speci�c synthesis of high-performance schedulers. In Proceedings of the

Thirteenth Automated Software Engineering Conference (October 1998), IEEE

Computer Society Press, pp. 270{280.

[2] Burstall, R. M., and Goguen, J. A. The semantics of clear, a speci�cation

languge. In Proceedings, 1979 Copenhagen Winter School on Abstract Software

Speci�cation), D. Bjorner, Ed. Springer LNCS 86, 1980.

[3]Meseguer, J. General logics. In Logic Colloquium 87, H. Ebbinghaus, Ed.

North Holland, Amsterdam, 1989, pp. 275{329.

[4] Pavlovi�c, D. Semantics of �rst order parametric speci�cations. In Formal

Methods '99 (1999), J. Woodcock and J. Wing, Eds., Lecture Notes in Computer

Science, Springer Verlag. to appear.

[5] Smith, D. R. Constructing speci�cation morphisms. Journal of Symbolic

Computation, Special Issue on Automatic Programming 15, 5-6 (May-June 1993),

571{606.

[6] Smith, D. R. Toward a classi�cation approach to design. In Proceedings

of the Fifth International Conference on Algebraic Methodology and Software

Technology, AMAST'96 (1996), vol. LNCS 1101, Springer-Verlag, pp. 62{84.

[7] Smith, D. R. Mechanizing the development of software. In Calculational

System Design, Proceedings of the NATO Advanced Study Institute, M. Broy

and R. Steinbrueggen, Eds. IOS Press, Amsterdam, 1999, pp. 251{292.

[8] Srinivas, Y. V., and J�ullig, R. Specware: Formal support for composing

software. In Proceedings of the Conference on Mathematics of Program

Construction, B. Moeller, Ed. LNCS 947, Springer-Verlag, Berlin, 1995, pp. 399{

422.

16

