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Abstract. We represent state machines in the category of specifications,
where assignment statements correspond exactly to in terpretations be-
tween theories [6, 9]. However, the guards on an assignment require a
special construction. In this paperweraise guards to the same level as
assignments by treating each as a distinct category over a shared set of
objects.A guarded assignment is represented as a pair of arrows, a guard
arrow and an assignment arrow. We give a general construction for com-
bining arrows over a factorization system, and show its specialization
to the category of specifications. This construction allows us to define
the fine structure of state machine morphisms with respect to guards.
Guards define the flow of control in a computation, and how they maybe
translated under refinement is central to the formal treatment of safety,
liveness, concurrency, and determinism.

1 Introduction

1.1 Software Philosophy

Software has become an essential part of the mental tissue of western society. The
global market of goods and informations is now implemented as a global network
of software systems and agents, pervading ourhomes and offices. They interact
with us,and depend on human guidance as much as our science, communication,
banking, even our ability to move in space, essentially depend on them.

As carriers of our evolution, software systems and agents have been evolving
together with our society. However, their adaptability to new tasks and new
environments (often created by their own modifications) has been a fact of life
before it became a subject of science. While generations of software systems
lived and died in front of every computer user, computer scientists patiently
analyzed some static mathematical models of programming structures. Besides
the various technical reasons, a possible conceptual reason of this may be that
the software evolution did not have an intrinsic carrier, “softwareDNA”, but was
imposed from outside, by the developers, reluctantly passing to each other the
evolutionary invariants embedded in “project documentation”.

* This work was supported by the DARPA project “Specification-Carrying Software”,
contract number F30602-00-C-0209, and the ONR, project “Game Theoretic Frame-
work for Reasoning about Security”, contract number N00014-01-C-0454.
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The research agenda outlined in the present paper pursues a semantically
based approach to dynamics, evolution and adaptability of software. An obvious
prerequisite is a mathematical model of software components, and their compo-
sition, that should display their evolution and adaptability as a process and a
property intrinsic to software itself, as it plays its role of a fundamental carrier of
everyday life — rather than just an aspect of software development and mainte-
nance, or a factor in its economy. We contend that the technical and conceptual
prerequisites, necessary for studying the complex and natural processes of soft-
ware evolution and adaptation as a crucial aspect of modern computation, have
become available through recent technical advances in semantics of computation,
software science, and engineering.

1.2 Software Engineering

In recent years, software engineering has largely abandoned the long-standing
waterfall model of the development of software systems, obeying the strict rhythm
of analysis-design-implementation-maintenance. Nowadays, the main challenge
is to find the methods that would help us comprehend and support the multi-
faceted dynamics of the software systems, always open to change, whether they
have been long deployed, or are still under development; to accommodate, rather
than try to dam the evolutionary changes in the real systems, old and young.

In the traditional approach, the formalization of the requirements has been
seen as the hardest problem of software development for a long time; a view be-
ing most convincingly propounded by David Parnas [8]. The requirements hardly
ever exists as a static entity: formal or not, they change during the lifetime of the
system. This shift of focus is also reflected in some newer publications in soft-
ware development approaches, for instance the continuous software engineering
approach by H. Weber et al. in [15,14] and [16]. In this approach, the develop-
ment of a piece of software is seen as a continuous circle of engineering/reverse-
engineering steps triggered by changing requirements.

The relation between requirements and the software realizing them is some-
what more complex than a simple dependency in one or in the other direction, be-
cause the requirements interact and dynamically change with their realizations.
In our view, requirement specifications and the implementations are insepara-
ble as the constituents of software systems. They interact with the environment
through each other, and evolve supporting and carrying each other.

Changing software during its lifetime precludes all software development ap-
proaches that don’t provide means for accessing at least some internal structure
of the system, because then it would be impossible to change or extend its func-
tionality. A prominent reason for the recent triumphal procession of component-
based approaches across many fields of software engineering is mainly based on
the fact, that this paradigm provided a framework for providing this kind of
information without revealing implementation details. Moreover, in many ap-
proaches, components are runtime artifacts that can be assembled dynamically.
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1.3 Specification Carrying Software

However, the use of components alone doesn’t solve the problem of correctly
(re-)constructing software systems. In most cases, the quantity and quality of
information available for the components is not enough to assure satisfaction
of the desirable, or even essential functionality, safety, reliability, performance,
security, or other system properties. Also, the specification of a component —
even if it exists and is expressive enough to be used in a meaningful way while
composing software — is often not accessible whenit is actually needed, because
it resides in some document that has not been shipped with the component
itself for one or the other reason, leave alone those cases, where a component
specification doesn’t exist at all.

The general approach to this problem, that we shall present in this paper,
is based on the idea of specification carrying software. Very roughly, software
components should carry the specifications they implement, just like organisms
carry the genes that they embody, and are carried by them; just like genes and
organisms, specifications and components should evolve together. The mainpoint
of this metaphor is that the compatibility of components needs to be resolved on
their specifications, just like the compatibility of organisms is resolved on their
genes. Specifications, as the first class citizens of software, available at runtime,
are the carriers of both the preservation and the variation in a population of
components, just like the genes are in a population of organisms.

In the dynamic world of the Web, data are used in always different, un-
predictable ways, and therefore cannot be structured in advance. The need for
semistructured, self-describing data [1] is addressed by markup languages like
XML.

In the same dynamic world, software components are also used in always
different, unpredictable ways. The idea of structuring modules in advance has
become unfeasible. The OO-development, with prefabricated class templates
spawning all objects that constitute systems, has become too rigid. Whichever
form the solution may take, it will have to be based on semi-structured, self-
describing software components, carrying their mutable specifications like XML
data carry theirs.

In this way, software adaptation, as the precondition of software composi-
tion, and the essence of the paradigm of components [7], is hoped to extend
beyond COTS reuse, based on glue and system designers’ interventions, and to
enable runtime reconfigurations, possibly even involving on-the-fly source code
regeneration and recompilation [11].

2 Evolving Specifications

In previous work [9] we introduced Ewvolving Specifications (abbreviated to es-
pecs) as a framework for specifying, composing and refining behavior. The point
of such a framework is, at the very least, to help us cross the path from ideas
to running code. Programming languages are designed to support us at the final
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sections of that path. On one hand, especs are evolving specifications: diagrams
of specs, displaying how the conditions, satisfied by the variables of computation,
change from state to state. On the other hand, especs are specification-carrying
programs: pieces of code, given with some global requirements and invariants, as
well as annotated with some local conditions, state descriptions, satisfied at some
states of computation and not at others. They can be construed as formalized
comments, or Floyd-Hoare annotations, but made in to the first-class citizens of
code, i.e. available at runtime.

While such global and local specifications of the intent of computation are
hard to reconstruct if the design record shave been lost or thrown away, they
are easy to verify if the design records are carried with the code.

2.1 State machines and algebraic specifications

Originally, state machines were introduced and studied (by Turing, Moore, Mealy,
and many others) as abstract, mathematical models of computers. More recently,
though, software engineering tasks reached the levels where practical reasoning
in terms of state machines has become indispensable: designing reactive, hybrid,
embedded systems seems unthinkable without the various state modeling tools
and languages, like Esterel, or Statecharts. Verifying high assurance systems by
model checking is based on such state machine models. Moreover, one could
argue that the whole discipline of object oriented programming is essentially a
method for efficient management of state in software constructs.

However, there seems to be a conceptual gap between state machines as
theoretical versus practical devices. A notable effort towards bridging this gap
are Gurevich’s Abstract State Machines [4]: on one hand, they are a founda-
tional paradigm of computation, explicitly compared with Turing machines; on
the other hand, they have been used to present practically useful programming
languages, capturing semantical features of C, Java, and others. However, the
absence of powerful typing and structuring (abstraction, encapsulation, compo-
sition...) mechanisms makes them unsuitable for the development and manage-
ment of large software systems.

We wish to investigate a representation of state machines in a framework for
large-scale software specification development (“from-specs-to-code”). Previous
work at Kestrel Institute has implemented the Specware/Designware framework
for the development of functional programs that is based on a category of higher-
order logical specifications, composition by colimit, and refinement by diagram
morphisms [12, 13]. The current work builds on and extends this framework with
behavioral specifications (especs), representing state machines as diagrams of
specifications, and again using composition by colimit and refinement by diagram
morphism. Related approaches to representing behavior in terms of a category
of specifications include [3, 5].

The goal is to build a practical software development tool, geared towards
large, complex systems, with reactive, distributed, hybrid, embedded features,
andwith high assurance, performance, reliability, or security requirements, all on
a clean and simple semantical foundation.
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2.2 Evolving Specifications

There are four key ideas underlying our representation of state machines as
evolving specifications (especs). Together they reveal an intimate connection
between behavior and thecategory of logical specifications. The first two are
folklore, the third one is due to Gurevich, and lies in the foundation of his
Abstract State Machines [4], and we have contributed the fourth one,as a way
to represent state machines and behaviors in a category of specifications.

1. A state is a model — A state of computation can be viewed as a snapshot of
the abstract computer performing the computation. The state has a set of
named stores with values that have certain properties.

2. A state tramsition is a finite model change — A transition rewrites the stored
values in the state.

3. An abstract state is a theory — Not all properties of a state are relevant,
and it is common to group states into abstract states that are models of a
theory. The theory presents the structure (sorts, variables, operations), plus
the axioms that describe common properties (i.e. invariants). We can treat
states as static, mathematical models of a global theory thy 4, and then all
transitions correspond to model morphisms. Extensions of the global theory
thy 4 provide local theories for more refined abstract states, introducing local
variables and local properties/invariants.

4. An abstract transition is an interpretation between theories — Just as we ab-

stractly describe a class of states/models as a theory, we abstractly describe
a class of transitions as an interpretation between theories [6,9]. To see this,
consider the correctness of an assignment statement relative to a precondi-
tion P and a postcondition @); i.e. a Hoare triple P{z := e}Q). If we consider
the initial and final states as characterized by theories thy,,.. and thy,,
with theorems P and @ respectively, then the triple is valid iff Q[e/z] is a
theorem in thy,,... That is, the triple is valid iff the symbol map {z + e} is
an interpretation from thy,,, to thy,,... Note that interpretation goes in the
opposite direction from the state transition.
Thus interpretations between theories correspond exactly to (parallel) as-
signment statements. However, to model guarded assignments, we introduced
the notion of guarded interpretation [10]. The idea is that guards and assign-
ments can each be regarded as arrows in their own categories, that together
form a factorization system. Theguards areepis andtheassignments are the
monics. A general construction that combines an epi and a monic into a
single morphism in a cocomplete category is given in [10]. The category of
guarded assignments/interpretations falls out as a special case.

The basic idea of especs is to use specifications (finite presentations of a the-
ory) as state descriptions, and touse guarded interpretations to represent tran-
sitions between state descriptions.

The idea that abstract states and abstract transitions correspond to specs
and interpretations suggests that state machines are diagrams over Spec®?. Fur-
thermore, state machines are composed via colimits, and state machines are
refined via diagram morphisms [9].
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2.3 Example

As a simple introductory example, we will present the greatest-common-denominator
using especs. The following espec GCD_base defines the basic operators and ax-
ioms that form the basis for subsequent refinements of the gcd specification.

espec GCD_base is
spec
op divides: PosNat * PosNat -> Boolean
axiom gcd_spec is
gecd(x,y) = z
=> (divides(z,x) & divides(z,y)
& fa w:PosNat
(divides(w, x) & divides(w,y)
=> w <= z))
end-spec
end-espec

Espec: LD v

import GCD_base
spec
theorem fa x:PosNat
ged(x,x) = x
end-spec

_in:PosNat
Y_in:PosNat
Out:

One Z :=gcd(X_in,Y_in)

Two:
axi om
Z = gcd(X_in,Y_in)
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The espec in this case only consists of the “spec” part, the logical specifi-
cation. The state machine itself is in this case trivial, with a one state andone
transition.

The espec GCD_0 defines the gcd of two natural numbers and the state ma-
chine specifies the required behavior of a greatest-common-denominator compu-
tation.

ESpec: GLL_1

import GCD_base
spec
var  X:PosNat
var  Y:PosNat

end-spec
X_in:PosNat
Y_in:PosNat
I intitialize:
[ =i
X:=X_in
Y -
Y:=Y_in
One
Loopl:
Y>X |-
Y:=Y-X
Loop2:
X>Y |- Loop
X:=X-Y
Out:
X=Y |-
Z:=X
Two:
axiomZ = X

axiomZ =Y

GCD_0is shown in a graphical notation where the whitebox on top represents
the spec-part, the grey boxes the stads, and the arrows the steps. The oval nodes
contain input and output parameters; an arrow from a parameter node p to
a stad node s expresses two things: the parameters contained in p are input
parameters, and s is an initial stad. Analogously, an arrow from a stadnode s
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to a parameter node p expresses that s is a final stad and that the parameters
defined in p are output parameters of the espec. The contents of the stad boxes
are the local specs, the labels of the arrows are the update rules representing the
transformation from one stad toits successor. In general, a guard term can also
be part of a step label specifying the condition under which the step is activated
in a given state. Initial states are represented by node with no incoming step
edges; final state by nodes with no outgoing edges.

ESpec GCD_1, below, refines GCD_0. The state graph expresses the classical
GCD algorithm, which might have been generated by a design tactic. GCD_1
extends the logical spec of GCD_0 with an axiom that serves as the key loop
invariant of the program: X and Y change under the transitions, but always so
that their GCD is the same as the GCD of the input values X.in and Y.in.

The correctness of this refinement essentially amounts to showing that the
GCD_0 axiom in stad Two translates to a theorem in the GCD_1 Stad Two.
Note that the possible behaviors of GCD_1 are a proper subset of the possible
behaviors of GCD_0.

3 Implementation and Application Areas

3.1 Planware

Planware is a domain-specific generator of high-performance schedulers. The
system supports a rich modeling language, based on especs, so that users can
express complex multi-resource problems. For example, a transportation organi-
zation might want a scheduler to simultaneously handle its aircraft, crews,fuel,
and airport load/unload facilities. Each resource has its own internal required
patterns of behavior and may have dependencies on other resources.

The key to a domain-specific language for specifying scheduling problems lies
in abstract but semantically precise behavioral models of tasks and resources.
Fortunately we found that especs are well-suited for both.

The semantics of are source is the set of possible behaviors it can exhibit. We
treat these behaviors as (temporal) sequences of activities which we model as
modes/stads.Each activity has mode variables (e.g. start-time and duration) and
any services that it offers (e.g.the flying mode of an aircraft offers transportation
service) and services that it requires (e.g. the flying mode of an aircraft requires
the services of a crew). A formal theory of a resource should have as models
exactly the physically feasible behaviors of the resource. The axioms serve to
constrain the values that mode variables can take on instates (e.g. the weight of
cargo cannot exceed a maximum bound during the flying mode of an aircraft).
The transitions serve to constrain the evolution of the mode variables (e.g. the
finish time of one activity must occur no later than the start time of the next
activity).

A task is also expressed formally as an espec. The main difference from a
resource espec is that a task espec offers no service, it only requires services of
resources. For example, a cargo container requires transportation service.

The Planware design process has the following steps:
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1. Requirement Acquisition — The user supplies a model of a scheduling problem

in terms of especs for the kinds of tasks and resources that are of concern.
The problem model is formalized into a specification that can be read ab-
stractly as follows: given a collection of task instances (that accord with the
task especs) and a collection of resource instances, find a schedule that ac-
complishes as many of the tasks as possible (or (approximately) optimizes
the given cost function), subject to all the constraints of the resource models
and using only the given resources.
The required and offered services of are source express the dependencies
between resource classes. Planware analyzes the task and resource models
todetermine a hierarchy of service matches (service required matched with
service offered) that is rooted in a task model.

2. Algorithm Design — The problem specification is used to automatically in-
stantiate program schemes that embody abstract algorithmic knowledge
about global search and constraint propagation. The algorithm generation
process follows the structure of the service hierarchy, resulting in a nested
structure of instantiated search schemes.

3. Datatype Refinement and Optimization — Abstract data types are refined to
concrete programming-language types, and other optimizations are applied.

4. Code generation — Finally code in a programming language (currently Com-
monlLisp) is generated. In one recent example, we developed formal models
for air cargo packages, cargo aircraft, aircrews, and port facilities (i.e. four
espec models). In about one second Planware generates 6560 LOC in a our
local MetaSlang language, and then translates it to 19088 LOC in Common-
lisp comprising over 1780 definitions.

3.2 Evolving specifications of security protocols

Since security is an integral and improtant aspect of software, security engineer-
ing should be an integral part of software engineering. In practice, however, the
two communities, and their methods, are largely disjoint: software engineers talk
about architectures, components and processess, while security is usually treated
separately. The reason is, of course, that dealing with complex systems is based
on the abstraction, and separation of concerns. We can only capture as many
dimensions as our methods, and analytic powers permit.

Security, however, does not obey our established abstraction routines. On
one hand, the security properties mostly refer to system wide information flows,
and thus concern architectures. Security protocols often add new, secure links to
the system, and remove the insecure, or transient links (e.g. with a key server).
While they can, like all protocols, be encapsulated as architectural connectors,
security protocols can only be analyzed in the context of overall architectural
dynamics.

The extant architecture description languages do not conveniently support
this need, as they tend to encapsulate and abstract away the behavior of connec-
tors and components (leave it to extensions, or to the hardwired process calculi).
Especs, on the other hand, permit a completely flexible level of abstraction: any
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aspect of a system can be captured (if it can be mathematically expressed),
or abstracted away, as needed. Therefore, taking up the subtle task of reason-
ing about security protocols, in the context of architectural dynamics that they
induce, seems like a suitable challenge, and an important test case.

A general method for representing security protocols as especs has been de-
veloped. Each agent is specified as a separate state machine, with the state
descriptions listing respective agents’ states of knowledge. In fact, for each fixed
set of formalized security properties of interest, a generic espec, describing the
suitable process calculus can be developed: all agents can then be obtained as
instances of this generic spec. Together with the connector-especs, describing the
relevant properties of the network, the principals of a protocol then constitute a
diagram of especs, depicting the desired architecture of the protocol.!

In the first case study, we have analyzed a recent proposal of the key exchange
for the Binding Update in Mobile IPv6protocol. Representing the proposed pro-
tocol as an evolving specification has enabled us to automatically calculate the
authenticated version of this protocol, by applying a generic program trans-
formation from the library. The resulting protocol (stripped of the derivation
details) is presented in [2].

The current work extends to analyzing some of the recent proposals for the-
new IPSec keyexchange protocols. The verification framework is based on game
theory, which allows us to quantify the various forms of the Denial-of-Service
resistance, and their tradeoffs, which is one of the crucial novelties among the
requirements. The quantitative analysis is also needed for estimating the strength
of authentication against the requirement of minimizing the need for the public
key infrastructure.

3.3 Evolving tool: EPOXI

The essence of the proposed mathematical frameworkis, of course, that it can be
automated, and implemented in a tool. Our starting point is Specware, a cat-
egorically - based specification environment, that is developed and maintained
at Kestrel Institute. Evolving specifications are built as diagrams in the dual of
the category of specifications. The categorical structure of especs is completely
derived from the categorical structure of specs. Specs and their morphisms (in-
terpretations) now appear in two different roles: as global specs and structural
refinements on one hand, and as local state descriptions and transitions, or com-
putational steps between them. Furthermore, the morphisms of especs are built
by combining the spec morphisms (interpretations) with the suitable morphisms
of state machines (capturing simulations), which on their own account, also boil
down to families of spec morphisms.

So far, the category of especs and their morphisms has been developed enough
for full support of refinement of evolving specifications — down to provably

! Protecting this architecture as a diagram ensures that the information boundaries
between agents are preserved. Fusing the agents into a single evolving specification,
depicting their joint runs, would allow refinements where, e.g., Alice directly reads
Bob’s variables.
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correct, and genuinely imperative C-code. Some generic transformations and
optimization of code can be performed on especs.

Current work is focused on providing automated support for composition

of especs, and building systems of systems, i.e. on the colimits and hereditary
diagrams in the category of especs.
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