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Abstract

Getting agents to communicate requires translating the data structures of the sender
(the source representation) to the format required by the receiver (the target represen-
tation). Assuming that there is a formal theory of the semantics of the two formats,
which explains both their meanings in terms of a neutral topic domain, we can cast the
translation problem as solving higher-order functional equations. Some simple rules and
strategies apparently suffice to solve these equations automatically. The strategies may
be summarized as: decompose complex expressions, replacing topic-domain expressions
with source-domain expressions when necessary. A crucial issue is getting the required
formal theories of the source and target domains. We believe it is sufficient to find
partial formalizations that grow as necessary.

1 Introduction

This paper is about getting agents to communicate with each other. By “agent” we mean
programs that operate at a high enough semantic level that they can form new connections
to other programs in order to get a job done. To make such a connection, an agent must find
other agents that might carry out a task on its behalf, and then establish a dialogue with
them. Several researchers have examined facets of this interchange, including how agents
might search for each other [13], how they might communicate once they have linked [7],
and what “speech acts” they might employ [2]. However, the most pressing problem is
getting them to speak the same language. This is our focus here.

Suppose one agent, A, needs a certain fact, and agent B can supply it. Assuming that some
previous “brokering” or “advertising” phase has brought the two agents together, there
remains the problem that the way A represents facts and the way B represents them are
probably not compatible. It is necessary to interpose a translation program between the
two. We call this glue code. The problem is to generate glue code automatically.

For example, suppose we are given a scheduling agent S that produces an airlift schedule.
For each aircraft, the schedule gives the sequence of flights that it is scheduled to make.

!This work was supported by the Air Force Research Lab (Rome, NY) and the DARPA CoABS program
under contracts F30602-98-C-0168 and F30602-98-C-0169.



We also have an agent R that maintains what is known as a “commitment matrix,” a table
that specifies, for each time slot, the number of each type of aircraft that are committed
to scheduled flights (i.e. not free for allocation) in that time slot. The problem is to derive
a translator f from schedules to commitment matrices, so that R is able to accept the

information derived from the scheduler according to its declared input specification format
(APT).

Some commonly considered approaches to this problem are to:

e Engineer the agents to be compatible in advance by changing one or the other to
accept or generate the form required by the other.

e Attempt to develop a “general purpose” translation agent that will convert all mes-
sages that can be produced by agents using one semantic model or ontology into
equivalent messages using a second ontology, to the extent that translations between
those ontologies are well defined.

We are developing a third approach, namely, to submit the specification of the source and
target messages to an agent that produces a very specific translator for that purpose. This
has the potential advantage of being much more efficient if similar messages will be sent
frequently once the agents have been “introduced”, or when the data to be passed in a
single message contains a large number of similar forms.

This approach to the problem can be considered as a form of the automatic programming
problem, but one that we believe is simpler than the general case. It “feels like” an exercise
in moving data around, with a bit of condensing, summarization, and totaling thrown in.
On the other hand, problems like this one are not trivial. The reader may wish to stop and
try to produce the glue code for S and R by hand.

In what follows, we will describe our framework, and illustrate with several examples.
Although, we do not have a full implementation of our approach as yet, we have developed
several prototypes that can handle a variety of examples like those described in this paper.
At the end of the paper, we will talk about opportunities and challenges in automating the
process more fully, and in applying it in a distributed agent environment.

In addition to the agent-communication work we mentioned at the outset, much work has
been done by the database community on the problem of translating between databases,
where it is called the problem of schema integration, with subproblems of query translation
and value translation. [10, 5, 3, 9]. The main differences are:

1. Database researchers assume that the main problem is to translate queries (and their
results) from one formalism to another. Queries are written in a standard language
such as SQL[4], and the only issue is how the relation and argument names are
mapped. We want to be able to translate an arbitrary formula (or functional ex-
pression) from one formalism to the other.



2. Database researchers assume that the results of a query are tables in a standard
format. Hence if you can find a translation of a query you automatically can translate
the result. We will tackle the more general case of automatically generating data-
structure-translation code given expressions that describe what one agent wants and
what another can produce.

2 The Setting

To explain our approach, we will start with a problem that s almost trivial. Suppose
that we have two agents that use data structures that represent the same population of
people, but that record different information about them. In particular, let S record the
name, identification number, and age of each person, and let T' record the name and the id
number of the person if he/she is over age 30 and 0 otherwise. S is the output of agent 1,
and T is the input to agent 2. If agent 1 is to feed information to agent 2, then we must
derive a translator f such that f(S) = T. We call S the source domain, and T the target
domain.

This problem is solvable only if S and T" capture “the same” information, or, more precisely,
if all the information to be included in T occurs in S. But by itself a database captures
no information at all. It’s just a meaningless pile of symbols unless its users understand
what the symbols are supposed to mean, and use the database in accordance with that
understanding. Such an informal notion of meaning is sufficient if the users are all humans,
but not in the case we’re concerned with, where the glue-code generator is supposed to be
automatic.

Hence we must supply every agent with a formal semantics for its input and output rep-
resentations. This may seem like a big commitment, but we see no way to evade it. We’ll
avoid being distracted by this issue here, but return to it in Section 7.

A key requirement of the formal semantics for agents is that if two agents are to be con-
nected, then their semantics must overlap. If one of the agents contains the symbol person,
and the other contains the symbol employee, then there must be a semantic domain whose
topic is people, and the symbols must be defined in roughly the same terms from that
domain. It must be possible to infer, for instance, that if a data structure in one domain
represents information about employees, it can be translated into a data structure in the
other that represents information about persons. This requirement raises many tough is-
sues, which again we defer for later discussion. We will simply assume that there is an
abstract common theory of the application domain that includes a dataset P with the
property that we can define S and T in terms of P. The common theory of the application
domain provides symbols for the concepts, operations, and relationships in the domain. Its
axioms constrain the meaning of the vocabulary. In our example, we specify an abstract
theory, called a spec, of persons P of sort? set(person) where each person is an object that
has a name, id, age, and other attributes, as follows:

2In this paper, we use the word “type” informally, reserving the word sort for technical contexts.



spec Person-DB is
sort Person
op P : set(Person)
op name : Person — string
op id : Person — nat
op age : Person — nat
...other sorts, operations, and axioms ...
end-spec

We will call the domain common to both S and T' the topic domain and the specification
above the topic theory. Sorts like nat and string correspond to manipulable data objects,
which can be used as concrete representations of objects of sorts like Person. As we will
see, agents cannot manipulate pure topic-domain entities directly, but can only perform
computations over their representations.

We use a A-calculus notation for functions. As usual in the functional-programming commu-
nity, we will assume that a A\ expression has just one argument, but this argument will often
be a tuple. The #’th element of a k-tuple t = (z1,...,7;) will be written II¥(t) = z;. Ap-
plication of function f to argument x will be written fx. Soif f: Ay x Ay Xx...x Ay — B
(i.e., f’s sort is “function from k-tuples to B, where the i’th element of its argument is
from domain A;”), then rather than write f = (At g(IT¥(¢),...,115(2))), we will write
f = ((z1,...,zr) g(x1,...,2k)). In some circumstances, when we write (Az ...), we
intend to cover the case where z is a tuple, but we don’t currently care how long it is.

Now let’s suppose that S and T both represent aspects of the set P. S is a set of triples
(name, id, age), one per person, SO we can express it as

S = image(Ap (name p,id p, age p), P)
where image(f, X) = {f(z)|z € X}. We can express S more concisely using a couple of
abbreviatory devices. Function tupling allows us to write

(name, id, age) for Ap (name p,id p, age p)

and we write F'x X for image(F, X). So we can write S as

S = (name, id, age) x P
Similarly,
T = (name, A p if agep > 30 then id p else 0) x P

The problem is to find a function f such that f(S) = T. This type of equation will occur
repeatedly in what follows, so we write it as

Find : f((name,id, age) x P) =
(name, A p if agep > 30 then id p else 0) x P



It seems clear that we can construct f by creating a function that does something to each
element of the input dataset S. In other words, if we could solve:

Find : i((name, id, age)(z)) =
(name, A p if agep > 30 then id p else 0) x

where z is an arbitrary element of P, then the solution to the original equation would be
f=2XixX

We express this as a subgoal-formation rule:

Image-Decomposition Rule
Giveng: A — B,
and h: A — C,
To find: f(g*xY) = h*xY
Solution : f=AX ix X
<= Find: i(gx) = hz for arbitrary z € X.

We use the symbol “ <= " to indicate subgoaling.

Because we’re trying to find an 7 that works for all elements z of P, we can treat z as an
arbitrary constant from now on. The subgoal may now be rewritten as

Find : i(name z,id x, age ) = (name z,if age z > 30 then id z else 0)

To make further progress, we need the concepts of imitation and projection from higher-
order matching theory [6], embodied in the following rules:

Imitation Rule
Giveng: By x...x B, = C

To Find: fu=g(vi,...,vp)

Solution: f = Az g(hy z,hex,... hy, )
<— Find: hju=v;for1 <i<n

Projection Rule
To Find: f(ay,...,ar) = a;
Solution: f =TI¥F = X\ (z1,...,21) z;

That is, we let the structure of f mirror the desired structure on the right-hand (“target”)
side of the equation.



In our example, imitation with g = (name, Ap if agep > 30 then idp else 0) allows us to
solve for ¢ thus:

o= )\(’I’L,d, Cl) (hl(nada a’)th(nada a’))
— Find : hi(name p, id p, age p) = name p
and Find : ha(name p, id p, age p) = if agep > 30 then idp else 0

The projection rule then gives us by = (A (n,,a) n). Imitation applied to he gives

he = X(n,i,a) if hoi(n,i,a)
then hoo(n,i,a)
else hoz(n,i,a)
— Find : hoi(name p, id p, age p) = (name p > 30)
and Find : hoo(name p,id p, agep) = id p
) =

and Find : hog(name p,id p, agep) =0

A few more rounds of imitation and projection eventually yield:
f=XX (A(n,i,a) (n, if a > 30 then i else 0)) x X

and T' = f(S). In English, to translate source dataset S into target dataset T, translate all
the triples in S, leaving the name alone, and combining the age and id as shown.

3 More Complex Examples

If this example seems too simple, here is how we would represent the commitment-matrix
problem we described above. We will need some more notational machinery. Let = — y be
the ordered pair (z,y), considered as a component of a finite map; it records the association
between element x and the element y it maps to. Let P<U = filter(P,U) = {u € U|P(u)},
i.e., the subset of U satisfying predicate P. Let (size U) be the cardinality of finite set U.

The topic-domain spec describes schedules:

spec Schedule-DB is
import set, cargo, integer, port
sort Reservation, time
sort-axiom time = integer
op R : set(Reservation)
op aircraft : Reservation — string
op flt-no : Reservation — string
op depart : Reservation — time
op arrive : Reservation — time



op manifest : Reservation — set(cargo)
op origin : Reservation — port

op destination : Reservation — port

op aircraft-class : Reservation — string

axiom VY(rl,72 € R)
rl # r2 A (aircraft r1) = (aircraft r2)
D ((arrive rl) < (depart r2) V (arrive r2) < (departrl))
end-spec

where integers are used to represent time. The last axiom states that no two flights by the
same aircraft overlap.

The source agent is a mission planner MP that produces a description of all reservations in
the form:
S = (aircraft, depart, arrive, manifest) x R

The target agent requires a summarization of the schedule that indicates how many aircraft
are flying at a given time over a given time interval. This summary, known as a commitment
matriz’, is

T(i,7) = (At t— size((Ar (departr) <t < (arriver)) < R))x{i..j}.
(The notation {i..j} denotes the set of all integers between ¢ and j inclusive.)

The goal is to derive a translator from an arbitrary schedule Sched to a commitment
matrix*:

Find : f(S,i,) = T(i, ).
A translator from S (domain DB) to T (domain MP) might be derived as follows®:

Find:  f((aircraft,depart, arrive, manifest) x R, i, 7)
= (At t = size((Ar (departr) <t < (arriver)) <R)) *{i..j}
Solution: f =X (X,4,7) (At (g(t, X,4,7))) x h(X,4,7) by imitation.
—
Find: g(t, (aircraft, depart, arrive, manifest) xR, i,7)
=t size((Ar (departr) <t < (arriver)) <R)
and Find: h(t, (aircraft, depart, arrive, manifest) xR, i,7) = {i..j}

3 A commitment matrix is supposed to give the number of each type of aircraft that is in use. For clarity,
we have simplified this to a a “commitment vector” that gives the total number of aircraft flying for each
time period.

“Note that the parameters i and j control how much of S must be used to generate T. For technical purity,
we could write this equation as f(i,7)(S), but here and elsewhere we will move freely between expressing a
multiargument function with currying and expressing it with tupling, generally favoring the latter.

®Technically, the first subgoal produced should be of the form Find: g((...)* R,i,5) = (At t = ...), but
we move the ¢ into the arguments of g by the “decurrying” rule alluded to above.



By straightforward imitation and projection we derive
h = )\(t’X’/L’]) {/L"]}

The other subgoal is attacked using imitation again:

Solution: 9= A(taXaZaj) gl(taXai?j) = 92(t,X,’i,j)
—
Find: g1(t, (aircraft, depart, arrive, manifest) x R,i,7) =t
and
[G*] Find: ga(t, (aircraft, depart, arrive, manifest) *R, i,7)
= size((Ar (departr) <t < (arriver)) <R))

The g1 part succumbs to projection, with solution g; = (A (¢, X, ,7) t). But if we attempt
to apply imitation to go, we will get something useless:

Solution attempt: go = X (t,X,1,7) size(hpyg(t, X,4,7))
<
Find: hyyy(t, (aircraft, depart, arrive, manifest) x R,i,5) = (...) <R

The problem is that (...) < R is of sort set(Reservation), a topic-domain sort, whereas
hpug has access only to the source data, (...) x R. There is no reason why hy,, could
not exist as a mathematical abstraction, but it can’t be the denotation of a computable
process, because computations output data structure that represent reservations, not the
reservations themselves. We must find a way to transform the target side of goal [G*] so
that it is expressed in terms that can be found in the source representation.

4 Sourcifying Rules

The key heuristic we employ is to replace occurrences of target-domain terms with their
images under functions mentioned in the source sides of goals. This heuristic is licensed by
the following rule:

*-Introduction Rule

For any m: A — Band C C A
C=mtxm*C

<= m is injective

If we have a problematic occurrence of a topic term C, and we know that m x C' occurs in
the source term S, then we try replacing C' with m !« m « C. The hope is that the m~!
part can be simplified away by further transformations, leaving us with a term (mC') that



is closer to what is available on the source side. A rule of this kind that pushes a target-side
term closer to being identical with a source-side term is called a sourcifying rule.

The following rule can be used to remove an inverse function that is introduced by the
*-Introduction Rule.

Inverse-Composition Rule

For any f: B — C

and injective g : B — A

To Find: hz = f(g ' z)

<= Find: h(gy) = fy for arbitrary y € B

In other words, to find an A that is the composition of f and g~!, find an h such that
f = hog.5 To understand the rule, note that, since g is injective, for any = € A, there is a
unique y € B such that z = gy. Then hz = h(gy) = fy = f(g ' z).)

All the previous rules matched an entire goal of the form “Find: f...= ....)” producing a
solution (and possibly some subgoals). We call them solution rules. The image-introduction
rule matches a particular subterm of a goal, allowing us to produce a new goal by substi-
tuting another term for that subterm (again possibly accompanied by new subgoals). We
call rules with this behavior rewrite rules. Unless stated otherwise, they are applied left-to-
right. That is, &« = [ is used to rewrite terms matching o with terms matching 5. Rewrite
rules that do not “sourcify” are labeled with the catch-all phrase simplification rule. Al-
though in the end we will require dozens of simplification rules, for the purposes of our
commitment-matrix example we need only two:

Image-Filter Rule
For any p : A — boolean
and any f: A— B
p<L(f*X) = fx(p' <X)
< Find: p'x = p(fz)forallz € X

“You can switch the order of a filter and image operation if you adjust the type of the
filtering predicate.”

Size-Image Rule

For any f: A— B
size(f x X) = size(X)
<= f is injective

This looks a little different from the previous solution rules, because the h found in the subgoal happens
to be identical to the & the rule finds. So rather than write Solution: h = b', and <= Find: h'(gy) = ...,
we just write the rule as shown.



“If f is injective, it preserves the size of any set it operates on.”

Now we derive the commitment-matrix generator by proceeding as shown in Figure 1 with
our problematic subgoal.

Putting it all together, we have:
fF=XS,4,7) (At t— (size(A(a,d,r,m) d<t<r)<a8)) *{i..j})

In this example, the Size-Image Rule served as “deus ex machina” to cause the function
(aircraft, depart, arrive, manifest) ™!

to vanish completely. In general, the process isn’t so abrupt or tidy. Typically several
rounds of simplification are necessary to eliminate all such vestiges of the topic domain.

5 Search Management

Of course, there is a big gap between a bunch of higher-order equations and an algorithm for
applying them. It is out of the question to fill this gap with a general-purpose higher-order
theorem prover, because the search space for even small problems is enormous. However,
for this application we believe that there is considerable guidance available. The strategy
we followed in the examples above may be summarized thus:

To solve fS =1T:

Use imitation, projection, and simplification rules whenever the result would
consist of operations on source- or target-domain entities.

When it wouldn’t, eliminate a topic-domain term ¢ in the target 7' by replacing
it with a term that may be schematized as o !'(ct). Here ot stands for a
functional expression that appears in the source specification S, and o~! stands
for whatever “upstream adjustment” is necessary to preserve the meaning of 7.
Continue simplifying with imitation and projection. During this process, mark
o(t) as encapsulated, so that it can be incorporated into other terms, but cannot
be decomposed.

We use the term Source-Substitution Principle for this idea of replacing ¢ by o~ '(o't).” The
principle suggests arranging sourcifying rules by what sorts of o they handle. Here are two
more. The <-Introduction Rule is used when ... < ¢ occurs in S and ¢ occurs in T'. The
Representative-Element Rule is used when a set X occurs in S, and only an element z € X
occurs in T.

"We have noticed the resemblance of this technique to the “rippling” technique of inductive theorem
provers [1], in which the object is to transform a deductive goal into a form that matches an induction
hypothesis. Our “encapsulations” correspond roughly to the “wave fronts” of the rippling mechanism. We
don’t know how deep the resemblance is.
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Find: go(t, (aircraft, depart, arrive, manifest) * R, 1, )
= size((Ar (depart r) <t < (arriver)) < R)
Use x-Introduction to get:
Find: go(t, (aircraft, depart, arrive, manifest) x R, 1, j)
= size((Ar (departr) <t < (arriver))
< (aireraft, depart, arrive, manifest) ™"
*(aircraft, depart, arrive, manifest)
*R)
<= (by Image-Filter Rule and the definition of S)
92 (ta Sa i, ])
= size((aircraft, depart, arrive, manifest) !
*xp' <1 8)
= (by Size-Image Rule)
size(p’ < .9)
< Find : p'(a,d,r,m)
= (A7 (departr) <t < (arriver))
((adrcraft, depart, arrive, manifest) ™ (a,d,r,m))
Using the Inverse-Composition Rule:
< Find : p'((aircraft, depart, arrive, manifest) )
= ((departr) <t < (arriver))
which succumbs to imitation and projection, yielding:
P =((a,d,r,m) d<t<r)
So that the solution for go can be found easily using imitation
and projection:
g2 = \(t, X,1,7) size((A(a,d,r,m) d<t<r)<X)

Note: We have left out the required proof that (aircraft, depart, arrive, manifest) is injective,
which follows from the “non-overlap” axiom in the Schedule-DB spec. However, it would
be an unusual database that didn’t satisfy injectivity in this way.

Figure 1: Derivation of problematic subfunction
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<-Introduction Rule
For any p : A — boolean and B : set(A)
B = (p<B)U(neg p<B)

where neg p = Az —pz. This is a rewrite rule used to replace a topic-domain term B with
the more complex term on the right. The subterm p < B is encapsulated, and the other
terms must be further transformed.

Representative-Element Rule
For any f: A — B
and any g: A — C
9(x) = h(only_elt((Ay (dy) = (d(f z))) Q f * X))
— ze€X
and d o f is injective over X
and Find: h(fy) =gy forally € X.

The function only_elt: set(A) — A denotes the only element of its argument if its argument
has one element, and is undefined otherwise: (only_elt{z}) = z. In the context of this
rule it will always be defined. What the rules says is that, to perform a computation on a
topic-domain element x, you may transform it to the element of the source representation
f * X that “represents” it.

This rule applies very generally, and hence is used only as a last resort. It applies to any
formula at all with one or more occurrences of a term x such that z € X, provided that
f x X occurs in the source, for some function f, and a function d can be found that allows
us to find = in f * X. For example, if the source contains (a,b) x X, and b is a unique
identifier for every object, then the rule matches the target size((Au v > x) < Z) with
g = (Av size((Au u > v) < Z)), and suggests rewriting the target as

h(only_elt (A (ya, ys) yo = bz) < ((a,b) x X))

after finding an h such that h(ay,by) = size((Au v > y) < Z) for all y € X. The idea is to
use b to find the element (ax,bz) of ((a,b) x X) that represents z, and hope that there is
enough information in that element so that g x may be computed by computing h(az,bx).

We have worked several examples by hand using our strategy. For instance, consider the
following source-data descriptor:

S = (51,852)
where S1 = (id,(Az (A (k,n) n>0) < (cid, (Ac qty(c,x)))) xC)) %F,
and Sy = (cid, wcl) xC

12



S consists of two substructures, S; and Sy that specify properties of a set of airplane flights,
F, and a set of cargo-item classes C. Sy is a table giving the number of items of each class
aboard each flight as a set of tuples

(ﬂlght_ldfv ((Cld C1, qt?!(Cla f))7 (Cld C2, qty(027 f))? o >)

one per flight in the set F. We use the notation (...) to indicate a list of an indefinite
number of items. The pair (cid ¢;, qty(c;, fi)) specifies the number of items of cargo type ¢;
on board flight f;. (cid c) is the id of cargo type c¢. The entry is omitted if qty(c;, f;) = 0.
The table Sy gives the weight of each item class as a set of tuples (cid ¢, cargo-type-weight c)
for every cargo type c in the set C'.. In addition to cid, we use id f to refer to the id number
of a flight; and wclc to refer to the weight of an item of class c.

The “Absent Items” problem is to derive a table showing, for each item class, whether it
occurs on any flight. The table consists of a list of tuples (cargo-id, boolean):

T= (cid,(Ac V /((Az qty(c,z) > 0)x F))) xC

(V/X is true if and only if some element of X is true.)

This problem seems quite a bit harder than the examples we described above, but our
method requires no search at all; every possible application of the Source-Substitution
Principle is necessary.

We foresee two places where the method will break down:

1. If it is required to chain together an indefinite number of tuple elements, then some
induction will be required. For example, given a relational database that shows the
immediate successors of each airplane flight, transforming it to an explicit chain re-
quires a recursive “collection” algorithm. Owur technique works, but requires some
insight, and so will be hard to mechanize.

2. When term rewriting becomes true deduction rather than mere simplification, the
number of possible search paths could become large.

For instance, suppose you wanted to produce the first component S; of the source for the

absent-items problems, which describes the classes of items on board, given a data structure

that lists the individual items on board. S is the target in this problem, and the source is

composed of two tables (R, R2), where Ry is a set of tuples (flight-id, (item-idy, item-ids, . ..)),
whose second component is a list of the ids of the items on the given flight; and Ry is a

set of tuples (item-id, item-class-id), which specifies for each item which class it belongs to.

More formally:

R = (R1, Ry)
where Ry =(id, (A f iid * {z|aboard (z, f)})) x F
and Re = (i1d, cid o icl) x C

13



where id(f) is the id of flight f, iid(x) is the id of item z, icl(x) is the class of item z, and
cid(c) is the id of class ¢. The problem is to find g such that g R = Sp; in other words:

Find: g((id, (X f iid x {z|aboard (z, f)})) xF),
(did, cid o icl) x C)
=(id, Az (A (k,n) n > 0) Q (cid, (Ac qty(c,z)))) xC)) xF

Our method can handle this, but it requires partitioning the set of all items in Ry (i.e.,
iid * {zx|aboard (x, f)}) by item class and applying the following deductive rule:

Sum-partition Rule

For any f: A — Real

and any Y : set(A)

+/{: fzlzeY}=+/{: +/{: fz|x € s}|s € P}
<= P is a partition of Y

In this rule, {: f(z)]...} is the bag (multiset) of all f(z) for z satisfying the condition
“...7. ®/b applies associative and commutative function @ to the elements of bag b. So
+/{:3,3,4} = 10.

The rule says that to add up f(z) for every element of a set, find a partition and add up the
subtotals for all the subsets the partition defines. Exactly when to apply deductive rules
instead of imitation is the subject of our current research.

6 Glue Code Middle Agents

We have implemented a prototype glue code generation agent in a demonstration system
simulating a military disaster relief scenario. In doing so, we have begun to discover and
address issues of how such agents would be utilized and deployed.

In our demonstration, a glue code agent is deployed that receives requests for translation
services and generates specific translation agents that the sender forwards messages through
when the message is of a specific kind, and the ultimate recipient is of a specific agent type.
In general, the indexing of these translators may become an issue, and various alterna-
tive schemes for, say, adding translation functions to a single middle agent responsible for
interactions between two specific classes of agents might be preferable. Indeed, even for
our simple case, there is a need to develop two different translation functions, one for the
request and one for the response.

In one example from our scenario, an agent S uses a matchmaking service to find another
agent T' capable of delivering quantities of relief supplies to different locations by specified
times. S standardly requests such services with a message like this:
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(distribute :cargo-source (:type (cargo-type)

:location (location-id)

:quantity (quantity-in-1bs)

:available-time (time-gmt))

:cargo-destination ((:type (cargo-type)

:location (location-id)
:quantity (quantity-in-lbs)
:required-delivery-time (time-gmt))*))

That is, a single source load of cargo, available at the stated time, is to be divided and
distributed to a number of sites.

The agent that is found to do these deliveries uses a different request form, where the source
and destination for a single delivery is specified together with the type and quantity, but
where the quantity is in a different unit of measure.

(deliver :items ({cargo-type)
(source-location-id)
(destination-location-id)
(quantity-in-kilograms)

(available-time-local))*)

The glue code generator is established as a middle agent that accepts requests to “spawn”
translator agents for particular messages between agents or classes of agents. In this case,
agent S uses the description of the service found by the matchmaker to request a translator
from the glue code agent. The following request expresses the above two forms in terms of
topic domain sets, variables and concepts:

Topic Variables: reg-goals : set(move-cargo-goal)
cargo-source : cargo-availablility
SourceForm =
(*distribute
:cargo-source
(:type (cargo-id (load-type cargo-source))
:location (location-id (load-loc cargo-source))
:quantity (quantity-to-lbs (load-amt cargo-source))
:available-by (time-to-zulu (load-available-time cargo-source))))
:cargo-destination
(image (A (g9) (:type (cargo-id (goal-type g))
:location (location-id (goal-destination g))
:quantity (quantity-to-lbs (goal-amt g))
:required-delivery-time (time-to-zulu (goal-deadline g))))
req-goals)
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TargetForm =
(*deliver :items
(image (A (g) ((cargo-id (goal-type g))
(quantity-to-kgs (goal-amt g))
(location-id (load-loc cargo-source))
(location-id (goal-destination g))
(time-to-local-time (load-available-time cargo-source))))

reg-goals))))

Note that the functions on topic variables produce typed quantities in some cases, and so the
topic semantic model needs to include translation functions and substitution rules to move
between quantities in different units. Our model uses abstract mounts such as quantity and
time with different attributes corresponding to different units such as quantity-to-lbs and
quantity-to-kgs. The rule that handles the translation of pounds to kilograms is as follows:

Weight-Translation Rule
To find: f(quantity-to-lbs x) = quantity-to-kgs x
Solution : f = pounds-to-kgs

This rule is an example of an ontology-specific translation rules. Included among such rules
would be such things as converting from mass and acceleration to force, and inferences such
as mother of father to grandmother, if those terms were variously defined in a source and
target representation.

The LISP code produced for this glue problem, after running through an optimizer, looks
as follows, with variable names changed for readability:

(lambda (msg-form)
(let ((cargo-src (nth 4 msg-form)))
(l1ist ’deliver :items
(mapcar #’(lambda (req)
(1ist (nth 1 req)

(pounds-to-kgs (nth 5 req))
(nth 3 cargo-src)
(nth 3 req)
(zulu-to-local-time (nth 7 cargo-src))))

(nth 2 msg-form))))))

A larger open issue for our approach to inter-agent translation arises from a difference
between the potential differences between requests and responses. It is largely taken for
granted in the agent literature that advertisements of agent services will need to include
the specification of message formats for messages to the agent so advertising. However,
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there is little or no mention of the need for advertisements to include the specifications of
allowable responses to requests generated by the agent. To translate responses, the glue
code generation system will need to know the permissible forms those responses can have, or
have direct access to the full ontology of the requesting agent, so that appropriate terms and
formulas can be chosen. This is a topic under consideration in our current work extending
the approach outlined in this paper.

7 Summary and Prospectus

We have sketched an approach to automatic derivation of “glue code,” programs for trans-
lating the output of a source agent to the input representation of a target agent. We have
argued that

1. Generating glue code requires a theory of a topic domain, the common subject matter
of the source and target representations, and mappings from the source and target to
the topic.

2. Given these mappings, the problem of glue-code generation can be solved by solving
a higher-order equation for the unknown transformation function.

It might be objected that formalizing the mappings from source and target to the topic
domain is just as difficult as writing glue code, and so we have traded a hard problem
for another problem that might be even harder. We disagree, for a variety of reasons.
For one thing, other researchers have proposed independent reasons for wanting a common
“ontological” framework for agents (for a survey, see [8]). Even simple advertising and
brokering schemes will need some kind of shared vocabulary in which to describe agents.
So this problem is already fairly urgent.

Second, if it is impossible to supply formal theories of agent semantics, then we believe it
is essentially impossible to glue agents together automatically. The only exceptions will
be agents whose outputs are to be processed directly by humans. For instance, a search
engine might look for agents that can give weather reports, and if it finds five such agents
might send the output of all five to a screen for a human to look at. If one of the weather
reports is a marine forecast, and the human is looking for an upper-atmosphere forecast,
then the human will skim through it and reject it. However, we don’t believe this paradigm
is going to apply to the majority of agent interactions. If a human has to be in the loop at
“agent-composition time,” then agent composition will be unworkable.

Third, if formalization is done right, it has to be done only once per agent. Once the
formalization is in place, it can support creation of glue code for multiple partner agents.

Fourth, we don’t believe a commitment to formalizing domain theories is a commitment to
finding a “formal theory of everything,” which is fortunate, because there are good reasons
to doubt that there is such a theory. We need to encourage agent producers to formalize
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the representations of their agents within some convenient framework. Such frameworks
must be public and well advertised, but they don’t have to be completely global. All that
is necessary is that, when two agents are to be glued together, they are formalized within
the same framework, or within two frameworks that are intertranslatable.

The third and fourth points in this list are in conflict. To avoid having to repeat work,
we want the formal framework to be as general as possible, but to keep the formalization
intuitive and clear, we want to neglect as much as possible. For instance, suppose one thing
an agent represents is a list of available airplanes. On the “simple” end of the formalization
spectrum we have theories in which available is a unary predicate. On the “complex”
end we have a theory of what it means for something to be available to someone for some
purpose over some time interval subject to a set of use constraints. It must be possible to
pick a point on the spectrum that seems to make sense, and possibly generalize it later if
that point fails to support liaison with some unanticipated class of agents.

We believe that these “meta” ideas can themselves be formalized to some degree. We need
the notion of a lattice of theories, in which T1 T T3 if T5 can express everything 7T} can
express but not vice versa. In other words, T5 makes distinctions that 77 doesn’t make. We
think this idea can be developed using the concept of theory morphism [12].

The other main unknown in this line of research is how tightly the search for a transforma-
tion can be controlled. The derivation strategy that has emerged from our examples is to
perform second-order matching modulo the laws of the domain theory. Matching rules are
applied unless doing so would expose the terms of the topic-domain theory. At that point
we use sourcifying rules to wrap topic terms inside constructs from the source domain. We
have a preliminary implementation of this strategy that is capable of performing derivations
of most of the examples in this paper in less than a second.

A key issue is acquisition of the common domain theory and the domain-specific rules. The
rules of the domain theory are used to reformulate various terms to facilitate the matching
process. This suggests that a means-end analysis might be useful in detecting the need for
rules that translate between concepts on the left and right-hand sides of the translation
equation. On a related note, one possibility is to analyze the rules of the domain theory
to determine how to orient them, and to construct a proof plan. There is an opportunity
here to use our (meta)knowledge of the derivation strategy (or proof plan) to query the
domain-expert/user for rules that link certain terms.

Another issue, to be dealt with in the future, is how to transform glue-code programs into
a more efficient form once they have been created. This goal is addressed by our past work
on program transformation [11].

Acknowledgements: Tao Gui and Dusko Pavlovi¢ provided helpful comments on drafts
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