
to appear in Proceedings of the Third International Conference on
Generative Programming and Component Engineering (GPCE’04),

Springer-Verlag LNCS, 2004.

A Generative Approach to Aspect-Oriented Programming

Douglas R. Smith
Kestrel Institute

Palo Alto, CA 94304 USA
smith@kestrel.edu

Dedicated to the memory of Robert Paige

Abstract

Aspect-Oriented Software Development (AOSD) offers new insights and tools for the
modular development of systems with cross-cutting features. Current tool support for AOSD
is provided mainly in the form of code-level constructs. This paper presents a way to express
cross-cutting features as logical invariants and to use generative techniques to produce the
kind of code that is usually written manually in AOSD. In order to state invariants that
express cross-cutting features, we often need to reify certain extra-computational values
such as history or the runtime call stack. The generative approach is illustrated by a variety
of examples.

1 Introduction

Aspect-Oriented Software Development (AOSD) contributes to the broad goal of modular pro-
gramming, with a particular focus on cross-cutting concerns [1, 2]. A concern is cross-cutting
if its manifestation cuts across the dominant hierarchical structure of a program. A simple
example is an error logging policy – the requirement to log all errors in a system in a standard
format. Error logging necessitates the addition of code that is distributed throughout the system
code, even though the concept is easy to state in itself. Cross-cutting concerns explain a sig-
nificant fraction of the code volume and interdependencies of a system. The interdependencies
complicate the understanding, development, and evolution of the system.

AOSD, as exemplified by AspectJ [3], is based on a key insight: many cross-cutting concerns
correspond to classes of runtime events. One can think of aspects as providing a kind of “when-
ever” construct: whenever an event of type e occurs during execution, perform action a. For
example, whenever an exception is thrown, log it. The runtime events are called join points,
descriptions of join points are called pointcuts, and the method-like actions to apply at joinpoints
are called advice. An aspect is a modular treatment of a crosscutting concern that is composed
of pointcuts, advice, and other Java code. The process of detecting when events of type e occur
and folding action a into the code may occur statically (i.e. the actions are folded into the source

1

code), or dynamically (e.g. in Java, the actions are triggered by tests for the e events in the
JVM).

AOSD typically has a programming language character in order to attract a wide user com-
munity. AspectJ for example [3] targets Java programmers: aspects are written in a Class-like
syntax and have a semantics that closely adheres to Java semantics. Despite its attractiveness to
programmers, this code-level approach has its disadvantages. First, the intent of an aspect may
not be clear, since it is stated operationally. Second, the correctness of an aspect may be difficult
to ascertain or to prove. Third, the completeness of the pointcut (i.e. will the pointcut apply to
all occurrences of the intended runtime events?) may not be obvious. Fourth, the advice method
may need to embody many case distinctions that cater for the various contexts that arise at
the joinpoints, giving rise to inefficiency and complexity. Fifth, aspects may interfere with one
another – since the order in which they are applied makes a semantic difference, the burden is on
the programmer to order them and resolve interferences. Sixth, evolution of the program may
require extending the pointcut and advice description to cover any extra cases (which requires
an understanding of the modified set of runtime events being targeted, and what code to execute
in each specific context of occurrence). In addition, the AspectJ pointcut description language
has limited expressiveness; for example, security constraints typically disallow certain behavior
patterns which do not correspond to a natural class of run-time events (cf. [4]).

In this paper we present a generative approach to AOSD that aims to overcome these disad-
vantages. Generative programming has the broad goals of reducing the effort in producing and
evolving programs by generating them from high-level models or specifications. The result is
higher assurance of correctness, greater productivity through automation, and reduced cost of
evolution by allowing change at the model level versus the code level. In a sense, AOSD is
a special case of generative programming, with a valuable special emphasis on treatment of
crosscutting concerns.

Our approach is (1) to express an aspect by a logical invariant, and (2) to generate code to
maintain the invariant throughout the system. The generated maintenance code corresponds to
statically woven advice in AspectJ, and could be expressed either directly as AspectJ aspects,
or by direct generation and insertion of maintenance code into the system. To state invariants
that express cross-cutting features often entails the need to reify certain extra-computational
values such as history or the runtime call stack.

The generative techniques in this paper derive from transformational work on incremental com-
putation, in particular Bob Paige’s pioneering work on Finite Differencing [5]. Finite Differencing
is intended to optimize programs by replacing expensive expressions by new data structures and
incremental computation. It achieves this by maintaining invariants of the form c = f(x) where
c is a fresh variable, x is a vector of program variables, and f(x) is an expensive expression
(usually in a loop). Code to maintain the invariant is automatically generated and inserted at
points where the dependent variables change.

After introducing some notation, we work through a variety of examples and conclude with
general discussion and directions for future work.

2

2 Preliminaries

For purposes of this paper, a behavior of a program can be represented graphically as alternating
states and actions

state0
act0 �� state1

act1 �� state2
act2 ��state3 · · ·

or more formally as a sequence of triples of the form 〈statei, acti, statei+1〉, where states are
a mapping from variables to values, and actions are state-changing operations (i.e. program
statements). The details of representing an action are not important here, although some form of
concrete or abstract syntax suffices. The representation is a system-, language- and application-
specific decision. The operators nil and append, written S :: a, construct sequences, including
behaviors. The selectors on behaviors are

preState(〈state0, act, state1〉) = state0

action(〈state0, act, state1〉) = act
postState(〈state0, act, state1〉) = state1

If x is a state variable and s a state, then s.x denotes the value of x in s. Further, in the context
of the action triple 〈state0, act, state1〉, x will refer to the value of x in the preState, state0.x,
and x′ refers to the value in the postState, state1.x.

Several higher-order operators will be useful:

image: Written f � S, computes the image of f over a sequence S:

f � nil = nil
f � (S :: a) = (f � S) :: f(a)

filter: Written p � S, computes the subsequence of S comprised of elements that satisfy p:

p � nil = nil
p � (S :: a) = if p(a) then (p � S) :: a else p � S

always: The temporal logic operator �I holds for a behavior when I is true for each state in
the sequence.

We specify actions in a pre- and post-condition style. For example, the specification

assume: x ≥ 0
achieve: x′ ∗ x′ = x ∧ x′ ≥ 0

is satisfied by the action x :=
√

x.

This paper presents its results in a generic imperative language framework, even though most
AOSD approaches target object-oriented languages and even though some of the details of static
analysis and code generation are necessarily language-specific. The specifications that we work
with are sufficiently abstract that we believe it will not be difficult to generate code in most
current programming languages.

3

3 An Example

A simple example serves to introduce the technique: maintaining an error log for a system.
More precisely, whenever an exception handler is invoked, we require that an entry be made in
an error log.

The overall approach is to specify an invariant that gives a declarative semantical definition
of our requirement, and then to generate aspectual code from it. First, what does the error
log mean as a data structure? Informally, the idea is that at any point in time t, the error
log records a list of all exceptions that have been raised by the program up to time t. In or-
der to formalize this we need some way to discuss the history of the program at any point in time.

Maintaining a history variable

The execution history of the program can be reified into the state by means of a virtual variable
(also called a shadow or ghost variable). That is, imagine that with each action taken by the
program there is a concurrent action to update a variable called hist that records the history up
until the current state.

s0
act0

hist := hist::〈s0,act0,s1〉
�� s1

act1

hist := hist::〈s1,act1,s2〉
�� s2

act2

hist := hist::〈s2,act2,s3〉
�� s3 · · ·

Obviously this would be an expensive variable, but it is only needed for specification purposes,
and usually only a residue of it will appear in the executable code.

Invariant

Given the history variable, action�hist represents the sequence of actions so far in the execution
history. To express the invariant, we need a test for whether an action represents an error; i.e.
whether it represents the invocation of an exception handler. Let error?(act) be true when act
is an exception, so error? � action � hist is the sequence of error actions so far in the execution
history.

We can now represent the semantics of the error log:

Invariant: � errlog = error? � action � hist

i.e. in any state, the value of the variable errlog is the sequence of error actions that have
occurred previously.

The idea is that the programmer asserts this formula as a requirement on the code. It is a
cross-cutting requirement since exceptions can be raised anywhere in the code, regardless of its
structure.

Disruptive Code and Static Analysis

In order to enforce the invariance of the asserted formula, we must find all actions in the code that

4

could possibly disrupt the invariant, and then generate new code for maintaining the invariant
in parallel with the disruptive action. The set of all code points that could disrupt the invariant
corresponds to the AspectJ concept of code points that satisfy a pointcut. The maintenance
code that we generate for each such disruptive code point corresponds to a point-specific instance
of the advice of an aspect.

Generally, the characterization of disruptive code is based on the Liebniz or substitutivity rule:

x = x′ =⇒ I(x) = I(x′)

where x is the vector of state variables and I(x) is the invariant. The disruptive actions are
necessarily those actions in the code that might change the dependent variables of the invariant.
A static analyzer would be used to (1) find all actions in the source code that could possibly
change the dependent variables of the invariant, and (2) when possible, run inexpensive tests
to determine if the invariant is actually violated by the action. For each potentially disruptive
action that the static analyzer finds, action-specific maintenance code needs to be generated.

In our example, the dependent variable of the invariant is hist, which is changed by every pro-
gram action. The error? predicate serves as an inexpensive test that an action might violate
the invariant. A static analyzer would scan the code (i.e. the abstract syntax representation of
the code) looking for all actions that satisfy error?.

Specification and Derivation of Maintenance Code

Suppose that act is an action such that error?(act). In order to preserve the invariant, we need
to perform a maintenance action that satisfies

assume: errlog = error? � action � hist
achieve: errlog′ = error? � action � hist′

The postcondition can be simplified as follows:

errlog′ = error? � action � hist′

≡ {using the definition of hist}

errlog′ = error? � action � (hist :: 〈 , act, 〉)

≡ {distributing action� over :: }

errlog′ = error? � ((action � hist) :: act)

≡ {distributing error? � over ::, using assumption that error?(act) }

errlog′ = (error? � action � hist) :: act

≡ {using the precondition/invariant inductively }

errlog′ = errlog :: act

5

which is easily satisfied by the simple update

errlog := errlog :: act.

This maintenance action is to be performed in parallel with act. Again, note that this generated
maintenance code corresponds to an instance of an aspect’s advice that is applicable where act
occurs in the source code.

More generally, suppose that static analysis has identified an action act as potentially disruptive
of invariant I(x). If act satisfies the specification

assume : P (x)
achieve : Q(x, x′)

then the maintenance code maint can be formally specified as

assume : P (x) ∧ I(x)
achieve : Q(x, x′) ∧ I(x′)

Code for maint often takes the form of a parallel composition

act||update

of the actions act and update. Implicit in this specification is the need to preserve the effect of
act while additionally reestablishing the invariant I. If it is inconsistent to achieve both, then
the specification is unrealizable.

By specifying a maintenance action that includes the existing disruptive action, we generalize
several options. In AspectJ, programmers must specify whether the maintenance code goes
before, after, or replaces the disruptive action. These alternatives all satisfy our specification.
A further possibility is that the satisfaction of one constraint may cause the violation of another
constraint, triggering an action to maintain it, causing the violation of another constraint, and
so on. Our specification may need to be realized by maintenance code that iterates to a solution
(as in constraint propagation systems, cf. [6]). Another possibility is that multiple invariants
may need to be maintained, and it may be possible (or necessary) to implement the disruptive
action and various maintenance actions differently to find a mutually satisfactory solution.

Unfortunately, most programming languages do not have a parallel composition control struc-
ture, despite its naturality. This fact has prompted most related work on programming with
invariants [7, 8], as well as AspectJ, to prematurely sequentialize the maintenance action – either
as a before-method, after-method, or around-method. Conceptually, the maintenance action is
parallel to the disruptive action so that the invariant is always observed to hold in all states. The
sequentialization of the parallel composition should be treated as an opportunity for machine
optimization, not as additional information that must be prescribed by a programmer. However,
the sequentialization should take care that no (external) process that depends on the invariant
could observe the state between the two actions and notice that the invariant is (temporarily)
violated. One technique for assuring that no observation of the intermittent violation can be
made is to lock the relevant variables while the maintenance is being performed.

6

4 More Examples

4.1 Model-View Consistency Maintenance

The classic model-view problem is to maintain consistency between a data model and various
graphical views when the program and/or user can change any of them. That is, whenever the
program changes the data model, the graphical views should be updated to maintain consistency,
and conversely, if the user changes one graphical view interactively, then the data model and
the other views must be updated to reflect the change.

Problem: Maintain consistency between a data model and its various views. For simplicity we
focus on eager evaluation – maintaining consistency with every change to data models or
views.

Domain Theory: At any particular time there are a set of data models of type Model.
Each model has one or more graphical views of type V iew. Views have an attribute
ModelOf : Model that gives the unique model that they display (written vw.ModelOf for
view vw). For simplicity, we assume that the data content of mod : Model is given by an
attribute MV alue : Model → V alue, and, similarly, the data content of a view is given
by V alue : V iew → V alue for V iew. Although we use equality between these values to
express consistency, in practical situations, a more complex predicate is needed.

Invariant: � ∀(md, vw) md = vw.ModelOf =⇒ vw.V alue = md.MV alue

Disruptive Actions: There are two classes of disruptive actions: changes to a view or changes
to a model.

Specification and derivation of maintenance code: for each disruptive action act, gener-
ate a specification for an action that jointly achieves the effect of act and maintains the
invariant:

assume : vw.V alue = md.MV alue ∧ precondition(act)
achieve : vw′.V alue = md′.MV alue ∧ postcondition(act)

For example, an action act that updates a view

vw.V alue := expr

results in the maintenance specification

assume : vw.V alue = md.MV alue
achieve : vw′.V alue = md′.MV alue ∧ vw′.V alue = expr

which is satisfied by the concurrent assignment

vw.V alue := expr || md.MV alue := expr

Similar code is derived for other cases.

7

4.2 Procedure Calls and Dynamic Context

This exercise treats procedure calls and the reification of dynamic procedure call context.

Problem: Maintain a global that flags when a Sort procedure is executing.

Reification: This problem requires that we reify and maintain the call stack, analogously to the
way that history is maintained in hist. To reify the call stack, it is necessary to elaborate

the model of behavior presented in Section 2. A call to procedure P , s0
x:=P (x)�� s1 , can be

elaborated to a sub-behavior

s0
eval args �� s00

enter P

parms:=argvals
�� s01

execute P �� s02
exit P

x:=result
�� s1

With this elaboration, it is straightforward to maintain a call stack variable cs with oper-
ators Initialize, Push, and Pop:

s0
eval args�� s00

enter P

cs:=Push(cs,〈P,argvals〉)
�� s01

execute P �� s02
exit P

cs:=Pop(cs)
�� s1

Procedural languages abstract away these details so a static analyzer must take this finer-
grain model into account when appropriate.

Domain Theory: The boolean variable sorting? is to be true exactly when a call to Sort is
on the call stack cs. In the invariant, we use a (meta)predicate pcall?(act, f) that is true
exactly when action act is a procedure call to f .

Invariant: � sorting? = ∃(call)(call ∈ cs ∧ pcall?(call, Sort))

Incrementally maintaining a boolean value is difficult, and a standard technique is to trans-
form a quantified expression into an equivalent set-theoretic form that is easier to maintain
[5]:

� sorting? = size({call | call ∈ cs ∧ pcall?(call, Sort)}) > 0

and introduce a second invariant:

� sortcnt = size({call | call ∈ cs ∧ pcall?(call, Sort)})

By maintaining sortcnt, we can replace sorting? by sortcnt > 0 everywhere it occurs.

Disruptive Actions: The static analyzer seeks actions that change the dependent variable cs;
i.e. pushes and pops of that call stack cs that satisfy pcall?(call, Sort).

8

Specification and derivation of maintenance code: There are three basic cases that can
arise: Initialize, Push, and Pop operations. For a push operation of the form

cs := Push(cs, 〈Sort, 〉)

the maintenance specification is

assume: sortcnt = size({call | call ∈ cs ∧ pcall?(call, Sort)})
achieve: sortcnt′ = size({call | call ∈ cs′ ∧ pcall?(call, Sort)})

∧ cs′ = Push(cs, 〈Sort, 〉)

which an easy calculation shows to be satisfied by the concurrent assignment

cs := Push(cs, 〈Sort, 〉) || sortcnt := sortcnt + 1

For a pop operation of the form cs := Pop(cs) where top(cs) = 〈Sort, 〉, the maintenance
specification is

assume: top(cs) = 〈Sort, 〉
∧ sortcnt = size({call | call ∈ cs ∧ pcall?(call, Sort)})

achieve: sortcnt′ = size({call | call ∈ cs′ ∧ pcall?(call, Sort)})
∧ cs′ = Pop(cs)

which is satisfied by the concurrent assignment

cs := Pop(cs) || sortcnt := sortcnt − 1

The concurrent formulation of the maintenance code can be implemented by sequentializing
the sortcnt updates into the body of the procedure, just after entry and just before return.

An initialization operation on cs will cause sortcnt to be set to zero.

4.3 Counting Swaps in a Sort Routine

This problem builds on the previous problem and illustrates the execution of advice within
dynamic contexts, a key feature of AspectJ.

Problem: Count the number of calls to a swap procedure that are invoked during the execution
of a sort procedure Sort.

Domain Theory: As in the previous problem, let cs be the reified call stack, with operators
Initialize, Push, and Pop.

Invariant: The invariant uses a sequence comprehension notation, so that
swpcnt is the length of a sequence of actions satisfying various properties. Also, recall
that the notation s0.cs refers to the value of variable cs in state s0.

9

� swpcnt = length([act | 〈s0, act, s1〉 ∈ hist ∧ pcall?(act, swap)
∧ ∃(pc)(pc ∈ s0.cs ∧ pcall?(pc, Sort))])

Disruptive Actions: The dependent variable is hist. It is easy to statically analyze for
pcall?(act, swap). Let’s assume that it is not statically determinable whether a partic-
ular call to swap occurs within the dynamic context of a call to Sort. To proceed, we
extract the subexpression that cannot be checked statically and formulate an invariant for
it:

� sorting? = ∃(call)(call ∈ cs ∧ pcall?(call, Sort))

Using the result in the previous example allows a simpler formulation for the swpcnt
invariant:

� swpcnt = length([act | 〈s0, act, s1〉 ∈ hist ∧ pcall?(act, swap)
∧ s0.sortcnt > 0])

Specification and derivation of maintenance code: Any call to swap is a potentially dis-
ruptive action. The following specification jointly achieves the effect of act and maintains
the invariant:

assume: hist′ = hist :: 〈st0, act0, st1〉
∧ pcall?(act0, swap)
∧ swpcnt = length([act | 〈s0, act, s1〉 ∈ hist

∧ pcall?(act, swap)
∧ s0.sortcnt > 0])

∧ precondition(act0)
achieve: swpcnt′ = length([act | 〈s0, act, s1〉 ∈ hist′

∧ pcall?(act, swap) ∧ s0.sortcnt > 0])
∧ postcondition(act0)

The postcondition can be simplified as follows (where changes are underlined):

swpcnt′ = length([act | 〈s0, act, s1〉 ∈ hist′

∧ pcall?(act, swap) ∧ s0.sortcnt > 0])

≡ {using the assumption about hist’ }

swpcnt′ = length([act | 〈s0, act, s1〉 ∈ hist :: 〈st0, act0, st1〉
∧ pcall?(act, swap) ∧ s0.sortcnt > 0])

≡ {distributing ∈ over :: }

swpcnt′ = length([act | (〈s0, act, s1〉 ∈ hist ∨ 〈s0, act, s1〉 = 〈st0, act0, st1〉)
∧ pcall?(act, swap) ∧ s0.sortcnt > 0])

≡ {driving ∨ outward through ∧, sequence-former, and length}

swpcnt′ = length([act | 〈s0, act, s1〉 ∈ hist

10

∧ pcall?(act, swap) ∧ s0.sortcnt > 0])
+ length([act | 〈s0, act, s1〉 = 〈st0, act0, st1〉

∧ pcall?(act, swap) ∧ s0.sortcnt > 0])

≡ {using assumption about swpcnt, distribute equality in sequence-former}

swpcnt′ = swpcnt + length([act0 | pcall?(act0, swap) ∧ st0.sortcnt > 0])

≡ {using assumption about act0, and simplifying}

swpcnt′ = swpcnt + length([act0 | st0.sortcnt > 0])

≡ {using using independence of act0 from the sequence-former predicate}

swpcnt′ = swpcnt + (if st0.sortcnt > 0 then length([act0 | true])
else length([act0 | false])

≡ {simplifying}

swpcnt′ = swpcnt + (if st0.sortcnt > 0 then 1 else 0).

Consequently, the maintenance specification is satisfied by the parallel statement

act0 || swpcnt := swpcnt + (if sortcnt > 0 then 1 else 0).

Note that a residue of the invariant appears in the maintenance code. The test sortcnt > 0
could not be decided statically, so it falls through as a runtime test.

4.4 Maintaining the Length of a List

This example does not require the reification of an extra-computational entity. It is presented as
an example of our technique that cannot currently be treated in AspectJ because it is handled
at the assignment level, rather than method level.

Problem: Maintain the length of a list �.

Domain Theory: The list data type includes constructors (nil, append,
concat), selectors (first, rest), deleteElt, as well as a length function and other operators.

Invariant: � llength = length(�)

Disruptive Actions: Any action that changes � may disrupt the invariant.

11

Specification and Derivation of Maintenance Code: for each disruptive action act, gen-
erate a specification for an action that jointly achieves the effect of act and maintains
the invariant. For example, an action act that appends an element onto � results in the
maintenance specification

assume: llength = length(�) ∧ true
achieve: llength′ = length(�′) ∧ �′ = � :: elt

from which one can easily calculate the satisfying concurrent assignment

� := � :: elt || llength := llength + 1

Other maintenance actions include: when the list � is created, then the variable llength is
also created; when � is set to nil, then llength is set to 0; etc.

Notice that in the examples of this section, the generated maintenance code is highly specific to
the disruptive action. We start with a single invariant, but in response to its possible violations,
we generate a variety of maintenance codes. Programming language approaches to AOSD would
have to provide this variety by potentially complex case analysis in the runtime aspect code.

5 Issues

This work may develop in a number of directions, some of which are discussed below.

• Implementation – We anticipate implementing the techniques of this paper in our be-
havioral extension [9] of the Specware system [10]. The calculations for simplifying the
maintenance specifications in the examples are comparable in difficulty to those that were
performed routinely and automatically in KIDS [11]. However, the simplifier requires the
presence of an adequate inference-oriented theory of the language, datatypes, and appli-
cation domain. As can be seen from the examples, most of the theorems needed are in the
form of distributivity laws.

In general, the problem of synthesizing code from pre/post-conditions is not decidable.
However, two factors help to achieve tractability. First, note that the synthesis problem
here is highly structured and incremental in nature – the goal is to reestablish an invariant
that has just been perturbed by a given action. Second, synthesis can be made tractable
by suitable restrictions on the language/logic employed. For example, in Paige’s RAPT
system, invariants and disruptive actions were restricted to finite-set-theoretic operations
from the SETL language, and the corresponding maintenance code could be generated by
table lookup.

• Granularity of Maintenance Code – It may be convenient to treat a code block or a proce-
dure/method as a single action for purposes of invariant maintenance. The main issue is
that no (external) process that depends on the invariant could observe a state in which the
invariant is violated. This notion suggests that the possibility of designing a static analyzer

12

to check both (i) change of dependent variables, and (ii) the largest enclosing scope that
is unobservable externally. An advantage of using a larger grain for maintenance is the
performance advantage of bundling many changes at once, rather than eagerly updating
at every dependent-variable-change. This is particularly advantageous when the update is
relatively expensive.

A good example arises in the model-view-consistency problem (Section 4.1). If the
model is changing quickly (say, due to rapid real-time data feed), then user may not want
screen updates at the true change frequency. Instead, aesthetics and user needs may dictate
that a time granularity be imposed, e.g. no more frequently than every 100 sec. Where is
this granularity-of-observation specified? In open system design, this is a design decision
and it can be made precise by means of a specification of environment assumptions. In our
behavioral specification formalism, called especs [9], environment assumptions are mod-
eled as parametric behaviors. Under composition, the parametric behavior of a component
must be implemented by the rest of the system. In the model-view-consistency problem,
the parametric behavior (environmental assumptions) might be that the user observes the
display screen with a frequency of at most 0.01Hz. This requirement is satisfied by code
that reestablishes the invariant at least once every 100sec.

• Constraint Maintenance: Maximization versus Invariance – Sometimes a cross-cutting
feature may not have the form of an invariant for practical reasons. Consider, for example,
the quality of service offered by a wireless communications substrate. Ideally, full capacity
service is provided invariantly. However, physical devices are inherently more or less
unreliable. There are at least two characterizations of the constraint maintenance that
make sense in this situation:

1. Maximize the uptime of the service – That is, maximize the amount of time that
a prescribed level of service is provided. Design-time maintenance might involve
composing a fault-adaptive scheme to improve uptime.

2. Maximize the provided bandwidth– That is, continually make adjustments that pro-
vide maximal bandwidth given the circumstances.

• Enforcing Behavioral Policies – This paper focuses on cross-cutting concerns that can be
specified as invariants. Behavioral invariants can be equivalently expressed as single-mode
automata with an axiom at the mode. It is natural to consider cross-cutting concerns that
are specified by more complex automata and their corresponding temporal logic formulas.
As mentioned earlier, some security policies disallow certain behavior patterns, as opposed
to individual run-time events (see for example [4]). One intriguing direction is to consider
generalizing the generation techniques of this paper to classes of policy automata.

• Maintaining Interacting Constraints – Many application areas, including active databases
with consistency constraints and combinatorial optimization problems with constraint
propagation, have the characteristic that a single change (x := e) can stimulate extensive
iteration until quiescence (a fixpoint) is reached. In terms of this paper, several invariants
can refer to the same variables and their maintenance can interfere with each other’s truth.
That is, a change to maintain one constraint may cause the violation of another.

13

A sufficient condition that maintaining such a set of constraints leads to a fixpoint
may be found in [12] – constraints over a finite semilattice that are definite (a generalized
Horn-clause form x � A(x) where x is a variable over the semilattice and A is monotone)
can be solved in linear time. Using essentially the same theory, in [6, 13] we describe the
process of automatically generating a customized constraint solver for definite constraints.
The resulting solving process is an iterative refinement of variable values in the semilattice.

This context leads to a generalization of the formalism of this paper when (1) changes
to certain variables can be treated as decreasing in a semilattice, and (2) constraints are
definite. Then, a disruptive action (x := e) has postcondition (x′ � e) rather than the
stronger (x′ = e), and all constraint maintenance is downward in the semilattice, until a
fixpoint is reached.

• Comparison with AspectJ – We conjecture that many aspects in AspectJ can be expressed
as invariants, and that their effect can be achieved by means of the general process of this
paper. However, the around advice in AspectJ allows the replacement of a method call
by arbitrary code, changing its semantics. Our approach is restricted to maintenance that
refines existing actions, so it is not complete with respect to AspectJ. On the other hand
several of the examples in this paper cannot be carried out in AspectJ, so the two are
expressively incomparable.

6 Related Work

The generative techniques in this paper derive from transformational work on incremental com-
putation, especially Paige’s Finite Differencing transformation [5, 7]. Finite Differencing, as
implemented in the RAPTS system, automatically maintains invariants of the form c = f(x)
where c is a fresh variable, x is a vector of program variables, and f is a composite of set-
theoretic programming language operations. Maintenance code is generated by table lookup. In
the KIDS system [11], we extended Finite Differencing by (1) allowing the maintenance of both
language- and user-defined terms, and (2) using automatic simplifiers to calculate maintenance
code at design-time. The functional language setting in KIDS naturally reveals the concurrency
of disruptive code and maintenance updates.

As in Finite Differencing, other approaches to programming with invariants (e.g. [8]) work
exclusively with state variables. This paper introduces the notion of reifying extra-computational
information, enabling the expression of system-level cross-cutting features as invariants.

Besides AspectJ, other approaches to AOSD may also be treatable by a generative approach.
The Demeter system [14] emphasizes path expressions to provide reusable/context-independent
access to data. A typical example is to enumerate all objects that inherit from a superclass
Employee that have a Salary attribute regardless of the inheritance chain from the superclass.
Reification of the class graph is essential and is responsible for the support provided for run-time
binding of data accessors. HyperJ [15] emphasizes a symmetric notion of aspect, in contrast to
the asymmetric approach of AspectJ. The focus of HyperJ is on a cross-product-like composition
of features between classes, obtaining a multiplicative generation of code. A foundation for this
symmetric composition may be found in the colimit operation of Specware [9, 10].

14

7 Concluding Remarks

Aspect-Oriented Software Development aims to support a more modular approach to program-
ming, with a special focus on cross-cutting concerns. This paper explores techniques for spec-
ifying cross-cutting concerns as temporal logic invariants, and generating the code necessary
to maintain them. The reification of extra-computational entities helps in expressing many
cross-cutting concerns.

Our invariants provide an abstract yet precise, semantic characterization of cross-cutting con-
cerns. The abstraction should aid in clarifying the intention of a concern and promote stability
under evolution. The precise semantics means that the generation of maintenance code can be
performed mechanically, with assurance that the result meets intentions.

The generally accepted semantics of AspectJ is based on call-stack reification [16], suggesting
that AspectJ cross-cutting concerns can be characterized as actions to take about method calls
in a specified dynamic context. Our approach lifts to a more general perspective: what kinds
of cross-cutting concerns can be addressed when arbitrary extra-computational information is
reified.

This work advocates a design process that focuses on generating a normal-case program from
high-level models or specifications, followed by the generation and insertion of extensions to
implement various cross-cutting concerns. Code structure simplifies to a clean natural decom-
position of the basic business logic together with system-level invariants that specify cross-cutting
concerns. The improved modularity should help to ease the cost and effort of development and
evolution.

Acknowledgments: Thanks to Cordell Green, Gregor Kiczales, and Kevin Sullivan for discus-
sions of this work. Thanks to Lambert Meertens, Stephen Westfold, and the GPCE reviewers
for useful comments on the text.

References

[1] Aspect-Oriented Software Development, www.aosd.net.

[2] Elrad, T., Filman, R., Bader, A., eds.: Communications of the ACM– Special Issue on
Aspect-Oriented Programming. Volume 44(10). (2001)

[3] Kiczales, G., et al.: An Overview of AspectJ. In: Proc. ECOOP, LNCS 2072, Springer-
Verlag. (2001) 327–353

[4] Erlingsson, U., Schneider, F.: SASI enforcement of security policies: A retrospective. In:
Proceedings of the New Security Paradigms Workshop, Ontario, Canada (1999)

[5] Paige, R., Koenig, S.: Finite differencing of computable expressions. ACM Transactions
on Programming Languages and Systems 4 (1982) 402–454

[6] Westfold, S., Smith, D.: Synthesis of efficient constraint satisfaction programs. Knowledge
Engineering Review 16 (2001) 69–84 (Special Issue on AI and OR).

15

[7] Paige, R.: Programming with invariants. IEEE Software 3 (1986) 56–69

[8] Deng, X., Dwyer, M., Hatcliff, J., Mizuno, M.: Invariant-based specification, synthesis
and verification of synchronization in concurrent programs. In: Proceedings of the 24th
International Conference on Software Engineering. (May 2002)

[9] Pavlovic, D., Smith, D.R.: Evolving specifications. Technical report, Kestrel Institute
(2004)

[10] Kestrel Institute: Specware System and documentation. (2003) http://www.specware.org/.

[11] Smith, D.R.: KIDS – a semi-automatic program development system. IEEE Transactions on
Software Engineering Special Issue on Formal Methods in Software Engineering 16 (1990)
1024–1043

[12] Rehof, J., Mogenson, T.: Tractable constraints in finite semilattices. Science of Computer
Programming 35 (1999) 191–221

[13] Smith, D.R., Parra, E.A., Westfold, S.J.: Synthesis of planning and scheduling software.
In Tate, A., ed.: Advanced Planning Technology, AAAI Press, Menlo Park (1996) 226–234

[14] Lieberherr, K., Orleans, D., Ovlinger, J.: Aspect-oriented programming with adaptive
methods. CACM 44(10) (2001) 39–42

[15] Ossher, H., Tarr, P.: Using multidimensional separation of concerns to (re)shape evolving
software. CACM 44(10) (2001) 43–50

[16] Wand, M., Kiczales, G., Dutchyn, C.: A semantics for advice and dynamic join points in
aspect-oriented programming. ACM Transactions on Programming Languages and Systems
(2003)

16

