
Transformations for Generating Type Refinements?

Douglas R. Smith and Stephen J. Westfold

Kestrel Institute
3260 Hillview Avenue

Palo Alto, CA 94304 USA
{smith,westfold}@kestrel.edu

10 April 2019

Abstract. We present transformations for incrementally defining both inductive sum/variant types
and coinductive product/record types in a formal refinement setting. Inductive types are built by
incrementally accumulating constructors. Coinductive types are built by incrementally accumulating
observers. In each case, when the developer decides that the constructor (resp. observer) set is complete,
a transformation is applied that generates a canonical definition for the type. It also generates definitions
for functions that have been characterized in terms of patterns over the constructors (resp. copatterns
over the observers). Functions that input a possibly-recursive sum/variant type are defined inductively
via patterns on the input data. Dually, functions that output a possibly-recursive record type are defined
coinductively via copatterns on the function’s output. The transformations have been implemented in
the Specware system [5] and have been used extensively in the automated synthesis of concurrent
garbage collection algorithms [10, 13] and families of protocol-processing codes for distributed vehicle
control [6].

1 Introduction

We address the problem of incrementally defining types and their operators. Rather than work in
the context of a programming language, where expressions are intended to have a single precise
meaning, we work in a specification and refinement setting, where a specification denotes a set
of possible models or implementations that satisfy a set of constraints. Incremental development
by refinement can allow a more natural staged introduction of design commitments in a formal
derivation. For example, program families are naturally expressed as a refinement tree where each
branch defines a distinct subfamily of programs. A natural way to express such family trees is
via the incremental accumulation of constraints on the types, functions, procedures, components,
and other system structure. A type may have alternative elaborations in the various branches of
the family tree. A similar pattern is seen in product lines of systems and the class hierarchies of
object-oriented languages.

The development of correct-by-construction code via a formal refinement process has the abstract
derivation form S0

// S1
// ... // Sn

// Code . A derivation process starts with a spec-
ification S0 of the requirements on a desired software artifact. Each Si, i = 0, 1, ..., n represents a
structured specification and the arrows → are refinements. The refinement from Si to Si+1 embod-
ies a design decision which narrows down the number of possible implementations. In our approach,

? This work has been sponsored in part by DARPA under agreements FA8750-10-C-0241 (CRASH) and FA8750-12-
C-0257 (HACMS).

most refinement steps are generated (semi)automatically by specification transformations. The fi-
nal step translates the lowest-level specification Sn to code in a suitable programming language.
Semantically the effect is to narrow down the set of possible implementations of S0 to just one,
so specification refinement can be viewed as a constructive process for proving the existence of an
implementation of specification S0; i.e. proving its consistency.

We are interested in specification transformations that generate refinements together with machine-
checkable proofs [12]. If a formal derivation is generated by a sequence of such refinement+proof-
generating transformations, then we can chain the resulting proofs together to get a proof that
the final generated specification is a correct refinement of the initial requirement-level specification.
Here, we introduce transformations for incrementally defining both (1) inductive sum/variant-types
and functions inductively defined on them, and (2) coinductive product/record-types and functions
that are coinductively defined to produce them.

Inductive types are characterized by their constructors. In a refinement setting, we can introduce a
type symbol, say T , for an intended inductive type in a specification, with some of its constructors,
and without a definition. A function f that takes a T input can be characterized by axioms that
specify how f acts on the existing constructors. A pattern-based or constructor-based characteriza-
tion of function f : T → A with respect to constructor c is an axiom that essentially has the form
f ◦ c = e for some well-defined expression e (e.g. see Figure 1). In subsequent refinements, we add
other constructors, and add pattern-based axioms for f . At each stage in the derivation (i.e. at an
intermediate specification), the models of T include a set for T defined by just the current set of
constructors, and well as models that allow other constructors, and even models that are not in-
ductive. At some point in the derivation, the developer decides that the constructor set is complete
by applying a transformation, called CompleteSumType, that gives a canonical definition of T
as a sum/named-variant type with just the current set of constructors. It also generates inductive
definitions for functions that have been characterized by pattern-based axioms.

Dually, coinductive types are characterized by their observers – all that can be known about an
element of the type is given by various observations of it. In a refinement setting, we can introduce
a type symbol T for an intended coinductive type (cotype) in a specification, along with some of
its observers. A function f that produces a T value can be characterized by axioms that specify
observations of its output. A copattern-based or observer-based characterization of function f :
A → T with respect to observer p is an axiom that essentially has the form p ◦ f = e for some
well-defined expression e (e.g. see Figure 6). In subsequent refinements, we add other observers,
and add appropriate copattern-based axioms that specify the output of f . At each stage in the
derivation, the models of T include a set for T with just the current set of observers, and well as
models that allow other observers, and even models that are not coinductive. At some point in
the derivation, we declare that the observer set is complete by applying a transformation, called
CompleteProductType, that gives a canonical definition of T as a product/record type with
just the current set of observers as projections/fields. It also generates coinductive definitions for
functions that have been characterized by copattern-based axioms.

A variety of examples illustrate these transformations. Although our techniques are applied in a
purely logical/functional setting, we show how to use the transformations to develop mutable global
states and heap-allocated mutable types for targeting imperative and object-oriented programming
languages.

2

2 Basic Concepts

We present basic concepts of the formal specification-and-refinement approach used in our Specware
system [5, 14]. A specification defines a language and constrains its possible meanings via axioms.
A specification is given by a finite collection of type symbols (optionally including a definition),
function symbols and their signature (optionally including a definition), and axioms over the type
and function symbols. We treat predicates as Boolean-valued functions. For purposes of this paper,
we focus on first-order specifications (i.e. functions do not take functions as arguments), although
Specware allows higher-order specifications. The deductive closure of the axioms is a theory, so a
specification is a finite presentation of a theory. Let Spec denote the type of specifications.

A refinement can be expressed formally via a specification morphism which translates the language
of one specification into the language of another specification in a way that preserves theorems.
Formally, a signature morphism from specification S0 to specification S1 is a type-consistent map
from the vocabulary of S0 (i.e. its type and function symbols) to the vocabulary of S1. A specifica-
tion morphism from S0 to S1 is a signature morphism that preserves theorems; i.e. that translates
each theorem of S0 to a theorem of S1. To establish a specification morphism, it is sufficient to
prove that each axiom of S0 translates to a theorem of S1. Let Morphism denote the type of
specification morphisms (or simply morphisms).

Specification S1 is an extension of specification S0 if there is an specification morphism S0 → S1
whose underlying signature morphism is injective. We use importation (with possible renaming)
to express extension, allowing the construction of complex specifications. More generally, specifica-
tions and their morphisms constitute a category that has colimits, which provide a general means
for constructing complex specifications. A pushout is a special case of a colimit that we will use

frequently. The pushout of two morphisms with a common domain specification B A
ioo j //C

is another pair of morphisms with a common codomain, B
j′ //D C

i′oo , called a cocone, where
D is the pushout specification. Intuitively, D is the simplest specification that combines B and C
modulo the common structure of A [14].

As models of specification S, we admit any structure of sets and functions that interprets at least
each type and function symbol in S and that satisfies the function signatures and the axioms.
This loose semantics allows structures for extensions of S to be models of S. The denotation of a
specification morphism m is a map from models of the codomain of m into models of the domain
– every model of S1 is mapped to some model of S0.

Specification S0 refines to S1 if there is a specification morphism m : S0→ S1. We refer to m as a
refinement and a morphism, and in context, S1 as a refinement of S0. In this paper we are interested
in transformations that (semi)automatically generate refinements. A specification transformation is
a partial function on specifications that generates a refinement: t : Spec→ Morphism. That is, if
t(S) = m, then m : S → codomain(m) is a refinement of S.

An extension e : S0→ S1 is conservative if every theorem of S1 that is expressed over the language
of S0, is also a theorem of S0. A specification morphism is consistent if it preserves consistency
– whenever the source specification is consistent (has a nonempty set of models), then the target
specification is also consistent.

3

The following “modularization” theorem provides general conditions for the generation of consistent
refinements [11, 16].

P
c //

r
��

S

r′
��

P ′ c′ // S′

Theorem 1. Let P , P ′, and S be first-order specifications, where
c : P → S is a conservative extension and r : P → P ′ is a
consistent refinement. If S′ is the pushout with cocone morphisms
c′ : P ′ → S′ and r′ : S → S′, then c′ is a conservative extension
and r′ is a consistent refinement.

Theorem 1 is typically applied when the goal is to refine a given specification S. A generic specifica-
tion transformation based on the theorem performs the following steps (we present several instances
below):

SpecTransformation(S:Spec):Morphism
1. analyze S
2. generate the refinement morphism r : P → P ′

3. generate a classification morphism c : P → S which shows how r applies to S

4. compute the pushout of P ′ P
coo r //S yielding cocone P ′ c′ //S′ S

r′oo

5. return r′.

The generated morphism r′ : S → S′ is the desired consistent refinement of S. The refinement
r represents the core design decision and each transformation embodies its own class of design
knowledge. The pushout extends its application to the whole specification. Theorem 1 provides the
most general conditions known to us under which the generated refinement r′ is consistent. A proof
that r′ is a consistent morphism from S and that it embodies an instance of the design knowledge
codified by the transformation can be generated automatically at refinement-generation time [12].

3 Incrementally Constructing Sum/Variant/Inductive Types

A constructor for a type T is a function of type c : A[T] → T where A[T] is a (possibly empty)
product of auxiliary types and zero or more positive occurrences of T . A base constructor has a
signature c : A → T with no occurrence of T in its domain. A constructor set is well-founded if
it contains at least one base constructor. An inductive type is defined by a well-founded set of
constructors (aka injections).

For example, the specification to the left in Figure 1 contains a well-founded set of constructors for
the type of leaf-labeled binary trees, where Empty constructs the empty BinTree, Leaf constructs
leaves labeled with natural numbers, and Fork builds a BinTree from a pair of (unlabeled) subtrees.
There are many possible models of BinTree, but if we refine BinTree to BinTree1 where BinTree

is now defined as recursive variant type (i.e. named sum-type), then there is only one model (up
to isomorphism). It also defines a function on BinTrees by means of pattern-based axioms that
specify how BinTreeDepth behaves on each constructor. Overall, Figure 1 exemplifies the kind of
refinement that we generate. This definition can be proved complete, consistent, and terminating
using the induction rule for BinTree. The construction gives rise to an induction rule which reflects
that, by construction, every element of the type is the valuation of a unique term built out of
constructors, and conversely, that each term built out of constructors evaluates to a unique element

4

Bintree = spec

type BinTree

op Empty: BinTree

op Leaf: Nat -> BinTree

op Fork: BinTree*BinTree -> BinTree

op BinTreeDepth: BinTree -> Nat

ax BinTreeDepth Empty = 0

ax BinTreeDepth Leaf n = 1

ax BinTreeDepth Fork(bt1,bt2)

= max(BinTreeDepth(bt1),

BinTreeDepth(bt2))

end-spec

n //

Bintree1 = spec

type BinTree = | Empty | Leaf Nat

| Fork BinTree*BinTree

op BinTreeDepth(bt:BinTree):Nat =

case bt of

| Empty -> 0

| Leaf n -> 1

| Fork(bt1,bt2) -> max(BinTreeDepth(bt1),

BinTreeDepth(bt2))

end-spec

Fig. 1. Refinement to Inductive Bintree Specification

of the type. Under various conditions it is possible to allow axioms that, for example, identify two
distinct terms over the constructors (e.g. to admit a commutative constructor). Our examples will
not require this capability.

3.1 Incremental Accumulation of Constructors

Tspec = spec

type T

op c0:T

op c1:Nat*T-> T

op f:T->B

ax f(c0) = b0

ax f(c1(n,a1)) = b1

end-spec

Tspec1 = spec

import Tspec

op c2:T*T->T

ax f(c2(a1,a2)) = b2

end-spec

The idea of incrementally defining an inductive type is simple. Dur-
ing a derivation, we introduce a new undefined type symbol and
incrementally add constructors. We also introduce function symbols
and incrementally add pattern-based axioms that specify how the
function behaves on each constructor. In the end, the developer de-
clares the constructor set complete and applies a transformation that
defines the type as a sum/variant type and provides inductive defi-
nitions for the function symbols.
As an abstract example, Tspec introduces T as an undefined type
that has two constructors c0 and c1. Tspec also introduces f as an
undefined function that is constrained by its type and by axioms
that characterize its functionality by specifying how it behaves on
the two constructors. Tspec1 refines Tspec by (1) extending it with
a new constructor c2, and (2) extending the characterization of f

by showing how it behaves on the new constructor. Tspec1 can be
further extended in a similar manner.

3.2 CompleteSumType Transformation

At some point in a derivation, the developers decide that no more constructors are needed. The
CompleteSumType transformation is then applied to generate a refinement in which T and its
functions are given definitions. This is a strong refinement in the sense that it narrows down the
possible interpretations of T and its functions from a possibly infinite set to a singleton – they are
given canonical definitions (up to isomorphism).

We present the CompleteSumType transformation as an instance of the SpecTransformation

transformation pattern in Section 2. We factor the transformation into two steps. The first, exem-

5

plified in Figure 2, analyzes the given specification S to abstract out a subspecification Scons that
contains just the constructors over a given undefined type T. If the constructor set is well-founded,
then it generates a refinement/morphism r:Scons→ Scons’) where Scons’ introduces a sum-type
definition for T in place of the constructor axioms. It then generates a refinement of S by taking

Scons = spec

type T

op c0:T

op c1:Nat*T-> T

op c2:T*T->T

end-spec

r //
Scons’ = spec

type T = | c0 | c1 Nat*T | c2 T*T

end-spec

Fig. 2. Abstract Refinement Morphism

the pushout of r and the conservative extension c:Scons → S. It is straightforward to show that
r is a consistent refinement, since it picks out the one model of T that is the least fixpoint of the
well-founded constructor set. By Theorem 1, if c is conservative and S’ is the pushout of r and c,
then the generated refinement r’:S→ S’ is consistent.

The second step analyzes S’ to abstract out a subspecification Sfuns that contains just the func-
tion symbols that have pattern-based axioms over the constructors in Scons. It then generates a
refinement n:Sfuns → Sfuns’ where Sfuns’ introduces case-based definitions for each function
in place of the inductive axioms, as exemplified in Figure 3. It then generates a refinement of S’

Sfuns = spec

type T = | c0 | c1 Nat*T | c2 T*T

op f:T->B

axiom f(c0) = b0

axiom f(c1(n,a1)) = b1

axiom f(c2(a1,a2)) = b2

end-spec

r //

Sfuns’ = spec

type T = | c0 | c1 Nat*T | c2 T*T

op f(a:T):B =

case a of

| c0 -> b0

| c1(n,a1) -> b1

| c2(a1,a2) -> b2

end-spec

Fig. 3. Generated Refinement Morphism

by taking the pushout of r and the conservative extension c:Sfuns → S’. It is straightforward to
show that r is a consistent refinement, using the induction rule that goes with the definition of a
recursive sum-type. By Theorem 1, if c is conservative and S’’ is the pushout of r and c, then
the generated refinement r’:S→ S’’ is consistent. Note that specification S may have constraints
on f beyond the pattern-based axioms, but the conservativeness of c requires that they imply no
additional theorems.

3.3 Example: Specifying Reference Types

The need to specify and design programs that use references in Specware was a motivation for
developing CompleteSumType. A key challenge is knowing the type of a reference. A polymorphic

6

definition of a reference type doesn’t allow retrieval of the underlying type. One solution is to
maintain a ghost record of the current types at all memory locations, where the allowed types are
those supported by the underlying architecture [7, 2, 15]. In a specification setting, it is necessary
to reference user-introduced types that may not yet have a definition, so a more general mechanism
is needed. Another solution is to directly tag all dynamically allocated objects with their type,
although this is just an expensive variant of the first.

RefTypes = spec

type State

type Value

type Ref

op deref: State*Ref -> Value

end-spec

Our solution is to introduce an inductive type Value that
represents all referenceable types in our application. It need
not represent all possible types, just those that are used.
It is desirable to be able to extend Value with new refer-
enceable types (e.g. for a program family). Ref is the type
of references, and a dereference function then determines
in a given State, what the Value is of a given Ref.

During the refinement process, for each referenceable type T that is introduced, we introduce a
new constructor for T. We also introduce testors (to decide if a Value represents a T element) and
coercion/destructor functions (to invert a constructor).

Nat32Ref = spec

import RefTypes

type Nat32

op c_Nat32: Nat32 -> Value

op Nat32?(val:Value):Bool =

(ex(pkt:Nat32) val = c_Nat32 pkt)

op coerce_Nat32(val:Value | Nat32? val):

{pkt:Nat32 | val=c_Nat32 pkt}

end-spec

PacketRef = spec

import RefTypes

type Packet

op c_Packet: Packet -> Value

op pkt?(val:Value):Bool =

(ex(pkt:Packet) val = c_Packet pkt)

op coerce_Packet(val:Value | pkt? val):

{pkt:Packet | val=c_Packet pkt}

op data: Packet -> Int32

op get_data(st:State, pktRef:Ref

| pkt?(deref st pktRef)):Int32 =

data(coerce_Packet(deref st pktRef))

end-spec

For example, specification Nat32Ref, introduces
constructors for Nat32 (eventually refining to un-
signed 32-bit integers) and Packets (a user-defined
type for use in communication software). The pred-
icate is Nat32? tests whether a Value represents a
Nat32. The function coerce Nat32 coerces a Value

back to a Nat32 assuming that it represents a
Nat32. coerce Nat32 would be implemented as a
type cast in many programming languages. Analo-
gous functions are introduced for the user-defined
Packet type.
As a simple example, the function get data takes
in a reference to a Packet and returns the data
value of the packet. In Section 4.3, we extend this
development by allowing referenceable types that
are also mutable.

3.4 Subtyping

One might want a family tree of sum-types and an appropriate notion of sum-type subtyping. The
example in Figure 4 introduces T as an intended inductive type, and then introduces T1 as an
intended supertype T1:>T, and T2 as another intended supertype T2:>T. We can then import S1

and S2 and transform as shown in Figure 5. In specification S3’, the function f1 may be passed a
T or T1 element, and f2 may be passed a T or T2 element.

7

S = spec

type T % intended sum-type

op c1: D1 -> T

op c2: D2 -> T

op f(a:T):A =

... pattern-based axioms

over c1 and c2 ...

end-spec

S1 = spec

import S

type T1 :> T

op c3: D3 -> T1

op f1(a:T1):A1 =

... pattern-based axioms

over c1, c2, and c3 ...

end-spec

S2 = spec

import S

type T2 :> T

op c4: D4 -> T2

op f2(a:T2):A2 =

... pattern-based axioms

over c1, c2, and c4 ...

end-spec

Fig. 4. Sum Subtype Development

S3 = spec

import S1,S2

...

end-spec

CompleteSumType(S3,T)
//

CompleteSumType(S3,T1)
CompleteSumType(S3,T2)

S3’ = spec

type T = |c1:D1 | c2:D2

type T1 = |c1:D1 | c2:D2 | c3:D3 :> T

type T2 = |c1:D1 | c2:D2 | c4:D4 :> T

op f(a:T) :A = ... inductive def on T ...

op f1(a:T1):A1 = ... inductive def on T1 ...

op f2(a:T2):A2 = ... inductive def on T2 ...

...

end-spec

Fig. 5. Sum Refinement

4 Incrementally Constructing Product/Record Types

Suppose that our requirement modeling or design direction requires a type T but a priori we don’t
know its content. It may be natural to introduce constraints on T as needed during the derivation
process in the form of additional observations of T . An observer of type T is a function p : T → A[T]
where A[T] is a a (possibly empty) product of auxiliary types and zero or more positive occurrences
of T . An observer extracts information of type A[T] from a T object.

For example, in a vehicle context, we might introduce a State type together with observations
about the current time, and position of the vehicle, and a drive function that changes state; see
specification Vehicle in Figure 6. Later we might add an observation of the vehicle’s velocity;
see specification Vehicle1 in Figure 6. There are many possible models of State, but if we refine
Vehicle1 to Vehicle2 where State is now defined as record type (i.e. named product), then there
is only one model (up to isomorphism). The refinement in Figure 6 also defines a function that
changes State by means of copattern-based axioms that specify drive in terms of observations of its
output. This definition can be proved complete, consistent, and terminating using the coinduction
rule that can be generated for State. Overall, Figure 6 exemplifies the kind of refinement that our
CompleteProductType transformation generates.

A possibly-recursive record (named product) is defined in the form
type T= {p1 : A1[T], ..., pn: An[T]}

where pi:T-> Ai[T] for 1<=i<=n is the complete set of observers of T (aka projections and fields).
An element of st:State is written as a constant in the form

st = {time = 0, position = -1, velocity = 2}
and a functional update to a record is written

8

st << {time = 1, position = 1}
to denote a new record that differs from st only in the fields time and position:

{time = 1, position = 1, velocity = 2} .

Streams provide a prototypical example of a recursive record type:
type Stream Nat = {hd:Nat, tl: Stream Nat}

Current thought is that possibly-recursive record types and especially the infinite objects in coin-
ductive types are best understood in terms of their observers.

Deciding that the observers of State are complete, we can define State as a record of current
observations, and then give a definition to drive by simply updating the input state to satisfy
its copattern-based axioms. Completeness and consistency can be proved trivially by coinduction.
The resulting specification can be readily translated to monadic or imperative form, when the
occurrences of T are single-threaded. The construction of T gives rise to a coinduction rule which

Vehicle = spec

type State

op time : State -> Nat

op position : State -> Integer

op drive:Integer->State->State

ax time (drive newVel st) = time st + 1

ax position (drive newVel st)

= position st + newVel

end-spec

Vehicle1 = spec

import Vehicle

op velocity : State -> Integer

ax velocity (drive newVel st) = newVel

end-spec

n //

Vehicle2 = spec

type State = {time : Nat,

position: Integer,

velocity: Integer}

op drive(newVel:Integer)(st:State):State

= st << { time = st.time + 1,

position = st.position + newVel,

velocity = newVel}

end-spec

Fig. 6. Refinement to Record-based Coinductive Vehicle Specification

reflects that, by construction, every element of the type is uniquely identified by its observed values.
Intuitively, if we cannot distinguish two elements of T through any sequence of observations, then
the elements are equal. With some care it is possible to allow axioms that, for example, require a
relationship between observers (e.g. that p1(t) ≤ p2(t) for all t ∈ T). Our examples will not require
this capability.

4.1 CompleteProductType Transformation

The idea of incrementally defining a coinductive type T is simple. During a derivation, we introduce
a new type symbol and incrementally add observers. We also introduce function symbols and
incrementally add copattern-based axioms on them. At some point in the derivation, the developers
decide that no more observers are needed on type T. The CompleteProductType transformation
is then applied to generate a refinement in which T and its functions are given definitions. This
is a strong refinement in the sense that it narrows down the possible interpretations of T and its

9

functions from a possibly infinite set to a singleton – they are given canonical definitions (up to
isomorphism).

We present the CompleteProductType transformation as an instance of the SpecTransformation
transformation pattern in Section 2. As before, we factor the transformation into two steps. The
first, shown in Figure 7, analyzes the given specification S to abstract out a subspecification
Sobservers that contains just the observers over a given undefined type T. It then generates a
refinement/morphism r:Sobservers→ Sobservers’ where Sobservers’ introduces a record-type
definition for T, as exemplified in Figure 7. It then generates a refinement of S by taking the pushout

Sobservers = spec

type T

op p0:T -> 1

op p1:T -> Nat

op p2:T -> T

end-spec

r //
Sobservers’ = spec

type T = {p0:1, p1:Nat, p2:T}

end-spec

Fig. 7. Abstract Refinement Morphism on Type T

of r and the extension c:Sobservers→ S. It is straightforward to show that r is a consistent refine-
ment, since it picks out the one model of T that is the greatest fixpoint of the recursive record type.
By Theorem 1, if c is conservative and S’ is the pushout of r and c, then the generated refinement
r’:S→ S’ is consistent.

The second step analyzes S’ to abstract out a subspecification Sfuns that contains just the function
symbols that have copattern-based axioms over the observers in Sobservers. It then generates a
refinement r:Sfuns→ Sfuns’ where Sfuns’ introduces record update definitions for each function,
as exemplified in Figure 8. Since the function definition is co-recursive, and producing a recursive
record-type may not terminate, its translation to a programming language must be handled with
care. The transformation then generates a refinement of S’ by taking the pushout of r and the

Sfuns = spec

type T = {p0:1, p1:Nat, p2:T}

ax p0(f(a)) = e0(a)

ax p1(f(a)) = e1(a)

ax p2(f(a)) = e2(a)

end-spec

r //

Sfuns’ = spec

type T = {p0:1, p1:Nat, p2:T}

op f(a:A):T = {p0 = e0(a), p1 = e1(a), p2 = e2(a)}

end-spec

Fig. 8. Abstract Refinement Morphism for a Coinductively Defined Function

extension c:Sfuns → S’. It is straightforward to show that r is a consistent refinement, using the
coinduction rule that goes with the definition of a recursive record type. By Theorem 1, if c is
conservative and S’ denotes the pushout of r and c, then the generated refinement n’:S→ S’ is
consistent.

10

4.2 Example: Packets

Communication streams provide a source of examples for incremental construction, which we illus-
trate by developing network-layer and transport-layer packet structures.

BasicPacket = spec

type Data

type Packet

op data: Packet -> Data

end-spec

BasicPacket introduces a Packet type and
one observer data of the content of a Packet

which has some unspecified type Data.

TransportPacket = spec

import BasicPacket

type Port = Nat16

op srcPort,dstPort: Packet -> Port

op SeqNum : Packet -> Nat32

end-spec

TransportPacket extends BasicPacket with
observers of a packet’s source port srcPort,
its destination port dstPort, and a sequence
number SeqNum.

NetworkPacket = spec

import BasicPacket

type NetAddr = Nat32

op srcAddr,dstAddr: Packet -> NetAddr

op pktLen : Packet -> Nat16

end-spec

NetworkPacket extends BasicPacket with
observers of a packet’s source address
srcAddr, its destination address dstAddr, and
packet length pktLen. The types Nat16 and
Nat32 are subtypes of Nat restricted to [0..216)
and [0..232) respectively.

FlatNetTransPacket = spec

import NetworkPacket,

TransportPacket

end-spec

FCT //

FlatNetTransPacket1 = spec

import BasicPacket

type Port

type NetAddr = Nat32

type Packet =

{srcAddr, dstAddr: NetAddr,

pktLen : Nat16,

srcPort, dstPort: Port,

SeqNum : Nat32, data: Data}

end-spec

FlatNetworkTransportPacket incorporates the observers of BasicPacket, NetworkPacket, and
TransportPacket. The refinement m generated by CompleteProductType creates the record-
type definition for Packet.

A variation on the above formulation of Packet would distinguish header information (i.e. meta-
data) from payload content (i.e. data).

BasicPacket = spec

type Data

type Packet

op data: Packet -> Data

type Metadata

op metadata: Packet -> Metadata

end-spec

Extending this specification with various ob-
servers of Metadata would give rise to the fa-
miliar header structures of the TCP/IP stack,
by applying CompleteProductType to both
Packet and Metadata.

4.3 Example: Mutable Types

Suppose that we wish to treat Packets as dynamically allocated mutable objects. This exam-
ple combines the development of both inductive types (references from Section 3.3) and coin-
ductive types (Packet from Section 4.2). Continuing the example from Section 4.2, specification

11

MutableBasicPacket = spec

import RefTypes, BasicPacket

op c_Packet: Packet -> Value

op pkt?(val:Value):Bool = (ex(pkt:Packet) val = c_Packet pkt)

op coerce_Packet(val:Value | pkt? val): {pkt:Packet | val=c_Packet pkt}

op get_data(st:State)(pktref:Ref | pkt?(deref st pktref)): Data

= data(coerce_Packet(deref st pktref))

op set_data(st:State)(pktref:Ref | pkt? (deref st pktref))(d:Data):

{(pktRef,st’):Ref*State | get_data st’ pktRef = d }

op new_Packet(d:Data)(st:State): {(pktRef,st’):Ref*State | pkt? (deref st’ pktRef)

&& get_data st’ pktRef = d}

end-spec

Fig. 9. MutableBasicPacket

MutableBasicPacket introduces a coinductive type Packet together with its data observer. Con-
tinuing the example in Section 3.3, we treat Packet as a referenceable type by introducing a
constructor c Packet of inductive type Value. We also introduce a defined observer get data of
State which observes the data of the Packet referenced by the argument pktref. We also specify
a State transformer set data that has the effect of changing the data observation of the Packet

referenced by the argument pktref. Finally, we introduce a constructor of Packet that returns a
reference. Effectively, MutablePackets provides a class-like specification, with a constructor, ob-
servers for getter methods, and transformers serving as setters and other methods. Translation to
a suitable object-oriented language such as Java would be straightforward.

As in the previous section, we can extend Packet structure with Network structure by adding ob-
servers srcAddr, dstAddr,and pktLen, and their corresponding getters and setters. We also define a
constructor for MutableNetworkPacket, which effectively becomes a subclass of MutableBasicPacket.
See Figure 10.

4.4 Example: Mutable Heaps for a Garbage Collector

One motivation for the development of the CompleteProduct transformation was the derivation of
a family tree of garbage collectors [10, 13] that we carried out using the Specware system [5].

cotype Graph

Observers Functions

nodes add/delete node

nodeValue set node value

arcs add/delete arc

source (of an arc)

target (of an arc) setTarget (ptr swing)

In this context a model of memory starts with a directed graph
type with observers for the nodes and arcs and associated ob-
servers of the content or value of a node and the source and
target of each arc. Various functions for adding/deleting nodes
and arcs, setting the value of a node, and setting the target of
an arc are characterized using copattern-based axioms.

cotype Heap (extending Graph)

Observers Functions

roots add/delete root

supply add/delete supply node

allocate node

The Graph specification is general-purpose and reusable, but a
collector also needs to extend it to model the runtime heap, with
additional observer for roots to specify the registers and stack
sources of pointers, and the supply of nodes that can be dynami-
cally allocated.

12

MutableNetworkPacket = spec

import MutableBasicPacket

type NetAddr = Nat32

op srcAddr, dstAddr: Packet -> NetAddr

op pktLen : Packet -> Nat16

op get_srcAddr(st:State)(pktref:Ref | pkt?(deref st pktref)):Nat16

= srcAddr (coerce_Packet (deref st pktref))

op set_srcAddr(st:State)(pktref:Ref | pkt?(deref st pktref))(saddr:Nat16):

{(pktRef,st’):Ref*State | get_data st’ pktRef = get_data st pktRef

&& get_srcAddr st’ pktRef = saddr }

... similar definitions for get/set_dstAddr ...

op get_pktLen(st:State)(pktref:Ref | pkt? (deref st pktref)):Nat16

= pktLen (coerce_Packet (deref st pktref))

op set_pktLen(st:State)(pktref:Ref | pkt? (deref st pktref))(len:Nat16):

{(pktRef,st’):Ref*State | get_data st’ pktRef = get_data st pktRef

&& get_pktLen st’ pktRef = len}

op new_NetworkPacket(st:State)(d:Data)(saddr:NetAddr)(daddr:NetAddr)(pktlen:Nat16):

{(pktRef,st’):Ref*State | pkt? (deref st’ pktRef)

&& get_data st’ pktRef = d

&& get_srcAddr st’ pktRef = saddr

&& get_dstAddr st’ pktRef = daddr

&& get_pktLen st’ pktRef = pktlen}

end-spec

Fig. 10. MutableNetworkPacket

S = spec

type T

op p1: T -> D1

op p2: T -> D2

op g(a:A):T =

... copattern-based axioms

over p1 and p2 ...

end-spec

S1 = spec

import S

type T1 <: T

op p3: T1 -> D3

op g1(a:A1):T1 =

... copattern-based axioms

over p1, p2, and p3 ...

end-spec

S2 = spec

import S

type T2 <: T

op p4: T2 -> D4

op g2(a:A2):T2 =

... copattern-based axioms

over p1, p2, and p4 ...

end-spec

Fig. 11. Record Subtype Development

CollectionHeap (extending Heap)

Observers Functions

black insert/delete black

mark, sweep

Finally, we add observers that are needed by the particular collec-
tion algorithm. For example, a mark-and-sweep algorithm requires
an observer of the mark bit (called black by tradition dating to
Dijkstra) per node, and associated functions.

4.5 Subtyping

One might want a family tree of record-types and an appropriate notion of record-type subtyping,
as illustrated in Figure 11. We can import S1 and S2 and transform as shown in Figure 12. In
specification S3’, the function g may be passed a T, T1, or T2 element, but g1 may only be passed
a T1 element and g2 may only be passed a T2 element. This transformation naturally leads to the
development of object class hierarchies in an object-oriented language.

13

S3 = spec

import S1,S2

...

end-spec

CompleteProductType(S3,T)
//

CompleteProductType(S3,T1)
CompleteProductType(S3,T2)

S3’ = spec

type T = {p1:D1, p2:D2}

type T1 = {p1:D1, p2:D2, p3:D3} <: T

type T2 = {p1:D1, p2:D2, o4:D4} <: T

op g(a:A) :T = ... coinductive def over T ...

op g1(a:A1):T1 = ... coinductive def over T1 ...

op g2(a:A2):T2 = ... coinductive def over T2 ...

...

end-spec

Fig. 12. Subtype Record Refinement

5 Implementation

An implementation of CompleteProductType must gather the observers on a given type sym-
bol T. Observers are functions of a particular type T → A for some A that is not T. Of these,
there are three subclasses of observers that can arise in a derivation: (1) undefined observers, (2)
defined observers that are eagerly maintained (e.g. by a Finite Differencing transformation [9, 8]),
(3) defined observers that are computed when needed. Only the observers in classes 1 and 2 are
gathered for inclusion in the state definition. Class 3 is excluded for efficiency reasons only, under
the presumption that it is called infrequently. If it is called frequently, then it may be more efficient
to maintain a state variable for its value under all transformers (in which case it falls under class
2).

The transformations have been implemented in the Specware system [5] and have been used exten-
sively in the automated synthesis of concurrent garbage collection algorithms [10, 13] and families
of protocol-processing codes for distributed vehicle control [6].

6 Related Work

A goal of programming languages and programming paradigms is to ease the cost of software evo-
lution, making it easier to add new features and to adapt to changing requirements. The expression
problem arises from the desire to define a type and its functions incrementally by cases while pre-
serving static type checking and avoiding recompilation [3, 17]. It was observed that (1) in functional
languages it is easy to add new functions but not to add cases to a type, and (2) in object-oriented
languages it is easy to add cases to a type, but not to add new functions. The refinement setting
provides a simple natural approach for developers (1) to incrementally add cases/constructors to an
inductive type, and (2) to extend functions that are defined inductively over the constructors, and
to add new functions. Dually, developers can incrementally add new observers to a coinductive type,
and extend functions/transformers that are defined coinductively with respect to the observers.

The literature on (co)algebra has long noted the duality of defining functions that input an induc-
tive type by patterns versus defining functions that produce a coinductive type by copatterns[4].
Recent work by Abel et al.[1] laid the foundation for integrating this duality into Haskell and other
programming languages by formalizing patterns and copatterns, and supporting pattern-based defi-
nitions for inductive functions, and copattern-based definitions for functions returning a coinductive
type.

14

7 Concluding Remarks

We hope that the view expressed herein offers a richer understanding of programs and program
development in general. Algebraic/inductive datatypes and functions are useful for specifying im-
mutable finite data structures. They naturally support a functional programming style. Coalge-
braic/coinductive datatypes and functions are useful for specifying mutable data structures, non-
well-founded data structures, as well as dynamical systems that are possibly nonterminating and
concurrent. They naturally support imperative, object-oriented, and multi-threaded programming
styles. Together they provide a natural foundation for a mixed use of functional, imperative, object-
oriented and concurrent programming. Embedding these dual concepts in a refinement setting pro-
vides flexibility in the face of pressures to vary software, either to produce the products of a product
line (via alternative product requirements), or to respond to evolutionary changes to requirements.

Acknowledgements: Thanks to Christoph Kreitz, Peter Pepper, and Florian Rabe for helpful
discussions and comments on the text.

References

1. Abel, A., Pientka, B., Thibodeau, D., and Setzer, A. Copatterns: Programming infinite structures by
observations. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (2013), POPL ’13, pp. 27–38.

2. Appel, A. W., Dockins, R., Hobor, A., and Beringer, L. Program Logics for Certified Compilers. Cambridge
University Press, 2014.

3. Cook, W. Object-oriented programming versus abstract data types. In Proc. REX workshop on Foundations of
Object-Oriented Languages (1990), Springer-Verlag LNCS 489.

4. Jacobs, B., and Rutten, J. A tutorial on (co)algebras and (co)induction. Bulletin of the EATCS 62 (1996).
5. Kestrel Institute. Specware System and documentation, 2003. http://www.specware.org/.
6. Kreitz, C., and Smith, D. R. Synthesis of Network Protocols: Final Report. Tech. rep., Kestrel Institute,

2016. http://www.kestrel.edu/home/people/smith/pub/HACMS-Final-Report.pdf.
7. Leroy, X., and Blazy, S. Formal verification of a C-like memory model and its uses for verifying program

transformations. Journal of Automated Reasoning 41, 1 (2008), 1–31.
8. Liu, Y. Systematic Program Design: From Clarity to Efficiency. Cambridge University Press, 2013.
9. Paige, R., and Koenig, S. Finite differencing of computable expressions. ACM Trans. Program. Lang. Syst.

4, 3 (July 1982), 402–454.
10. Pavlovic, D., Pepper, P., and Smith, D. R. Formal derivation of concurrent garbage collectors. In

Proceedings of 10th International Conference on Mathematics of Program Construction (MPC 2010) (2010),
C. Bolduc, J. Desharnais, and B. Ktari, Eds., vol. 6120, Springer Verlag, pp. 353–376. extended version in
http://arxiv.org/abs/1006.4342.

11. Smith, D. R. Another proof of the modularization theorem. Tech. rep., Kestrel Institute, February 1993.
http://www.kestrel.edu/home/people/smith/pub/modularization.pdf.

12. Smith, D. R. Generating programs plus proofs by refinement. In Verified Software: Theories, Tools, Experiments
(2008), B. Meyer and J. Woodcock, Eds., Springer-Verlag LNCS 4171, pp. 182–188.

13. Smith, D. R., Westbrook, E., and Westfold, S. J. Deriving Concurrent Garbage Collectors: Final Report.
Tech. rep., Kestrel Institute, 2015. http://www.kestrel.edu/home/people/smith/pub/CRASH-Final-Report.pdf.

14. Srinivas, Y. V., and Jüllig, R. Specware: Formal support for composing software. In Proceedings of the
Conference on Mathematics of Program Construction, B. Moeller, Ed. LNCS 947, Springer-Verlag, Berlin, 1995,
pp. 399–422.

15. Tuch, H. Formal verification of C systems code: Structured types, separation logic and theorem proving. Journal
of Automated Reasoning 42, 2 (2009), 125–187.

16. Veloso, P. A., and Maibaum, T. On the modularization theorem for logical specification. Information
Processing Letters 53, 5 (1995), 287–293.

17. Wadler, P. The expression problem. Tech. rep., Bell Labs, Murray Hill, NJ, 1998.
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt.

15

