
In: Constructing Programs from Specifications
B. Möller (Ed.), North-Holland, 1991, pp 91–124.

Structure and Design of Problem Reduction Generators

Douglas R. Smith
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304-1216

ABSTRACT

In this paper we present an axiomatic theory for a class of algorithms, called problem
reduction generators, that includes dynamic programming, general branch-and-bound,
and game tree search as special cases. This problem reduction theory is used as the
basis for a mechanizable design tactic that transforms formal specifications into problem
reduction generators. The theory and tactic are illustrated by application to the problem
of enumerating optimal binary search trees.

1

Contents

1. Introduction 3

2. Basic Concepts And Notation 3

2.1. Language . 3

2.2. Signatures and Structures . 4

2.3. Problem Specifications . 5

3. Enumerating Feasible Solutions 6

3.1. Problem Reduction Theory . 6

3.2. Design Tactic – Enumerating Feasible Solutions 13

4. Enumerating Optimal Cost Solutions 20

4.1. Optimization Problem Structure . 20

4.2. Problem Reduction Theory for Optimization Problems 23

4.3. Extended Design Tactic - Enumerating Optimal Solutions 27

5. Extensions 30

6. Related Work 32

7. Concluding Remarks 33

References 33

2

1. Introduction

Problem reduction is a general technique for solving problems by reducing them to sim-
pler problems, often recursive instances of the initial problem. In this paper we focus
on problem reduction generators which enumerate all solutions to a given problem. Two
slogans serve to characterize the class of problem reduction generators:

“All feasible solutions are composed of feasible components”

and
“All optimal solutions are composed of optimal components”.

We first develop a formal model, called an algorithm theory, of the class of problem reduc-
tion generators. The algorithm theory then provides the foundation for a sound design
tactic that prescribes how to derive a problem reduction generator from a given formal
specification. Problem reduction theory underlies the well-known algorithm paradigms
of branch-and-bound, dynamic programming, and game tree search. The design tactic is
related to those that we developed and implemented earlier for divide-and-conquer [23],
global search [24], and others [26].

The paper has two parts. The first part presents the formal basis for enumerating feasible
solutions to a given problem via problem reduction. In the second part, this basis is
extended to handle optimization problems. The example of enumerating (optimal) binary
search trees is used to illustrate the abstract theory.

2. Basic Concepts And Notation

2.1. Language

A functional specification/programming language augmented with set-theoretic data
types is used in this paper. By and large we adhere to standard notations from first-order
logic, set theory, and contemporary functional languages.

⊕/S denotes the reduction of the set S by the associative, commutative, and idempotent
binary operator ⊕; e.g., ∪/{{1, 2}, {2}, {3}}) = {1, 2, 3}
f ∗ S denotes the image of function f over set S, thus f ∗ S = {f(s) | s ∈ S}.
f · g denotes the composition of function f and g, thus f · g(x) = f(g(x)).
f × g denotes the product of functions f and g, thus f × g(x, y) = < f(x), g(y) >.
Π(S1, . . . , Sn) denotes the cartesian product of sets S1, . . . , Sn,
thus Π(S1, . . . , Sn) = {< s1, ..., sn > | s1 ∈ S1 ∧ . . . ∧ sn ∈ Sn}.

Since we are concerned with enumerating sets of solutions in this paper, it is natural
that relations play an important role. We use first-order predicate calculus for reasoning

3

about relations. The usual connectives and quantifiers apply (∧ , ∨ ,¬, =⇒ , ∀, ∃)
with the exception that equality (=) is used for logical equivalence. A binary relation
O over D × R is declared O : D × R. The converse of O will be written Ŏ : R ×
D. Let O1 : D1 × R1 and O2 : D2 × R2 be binary relations, then the product of
O1 and O2, denoted O1 × O2 : (D1 × D2) × (R1 × R2), is a binary relation such that

O1 × O2(〈〈x1, x2〉, 〈y1, y2〉〉) = O1(x1, y1) ∧ O2(x2, y2).

For convenience we may qualify a type D with a unary predicate I, written D|I; the
expression ∀(x : D|I)(P (x)) is equivalent to ∀(x : D)(I(x) =⇒ P (x)).

2.2. Signatures and Structures

The following concepts and notation are based on the algebraic data type [7, 8] and
mathematical logic [20] literature. Let S denote a nonempty set of symbols called sorts
and let ŝ ∈ S be a distinguished sort called the principal sort. An S-sorted signature
Σ is a family 〈Σv,s〉 of finite disjoint sets indexed by S∗ × S, where Σv,s is the set of
operator symbols of arity < v, s >. Let 〈As〉s∈S be an S-indexed family of sets. If v ∈ S∗

then Av denotes the product Av1 × . . . × Avn where n = length(v). Letting ǫ denote
the empty string, Aǫ denotes the set consisting of the 0-tuple, {<>}. Let 〈Fs〉s∈S be an
S-indexed family of functions, and v ∈ S ∗, then F v denotes the product Fv1 × . . .× Fvn

where n = length(v). F ǫ denotes the identity function on the set {<>}. Analogously,
if 〈Os〉s∈S is an S-indexed family of binary relations, and v ∈ S ∗, then Ov denotes the
product Ov1 × . . .×Ovn where n = length(v). Oǫ denotes the identity relation on {<>}.

In this paper we will often interpret the operator symbols of a signature as binary rela-
tions, generalizing the usual interpretation as functions. The arities of relation symbols
will always have the form < v, ŝ >. A 〈S,Σ〉-relational structure T comprises a family
of sets 〈Ts〉s∈S (called the domains of T) and for each symbol σ ∈ Σ of arity < v, ŝ > a
binary relation σT : T v×Tŝ . Sometimes the binary relations of a structure will be viewed
as (many-to-many) constructors. In such a view it makes sense to define an analogue
to the notion of term-generated or reachable structure – all values of a domain are the
interpretation of some finite expression. Consider the following sequence

Ts(0) =



























Ts if s 6= ŝ

⋃

σ∈Σǫ,ŝ

{z | σT (<>, z)} if s = ŝ

Ts(i+ 1) =



















Ts(i) if s 6= ŝ

Ts(i)
⋃

⋃

σ∈Σv,ŝ

v∈S∗

{z | σT (v, z) ∧ v ∈ T v(i) } if s = ŝ

4

A 〈S,Σ〉-relational structure T is inductive if Tŝ is exactly limi→∞ Tŝ(i). Inductive rela-
tional structures have the property that for each x in the principal domain T ŝ , there is
some σ ∈ Σ of arity < v, ŝ > and y : T v such that σT (y, x). A 〈S,Σ〉-relational structure
is total if for each σ ∈ Σ of arity < v, ŝ > and y : T v there is some x : Tŝ such that
σT (y, x).

A 〈S,Σ, Ax〉-theory presentation comprises a S-sorted signature 〈S,Σ〉 and a set of axioms
Ax. A 〈S,Σ, Ax〉-relational structure is a 〈S,Σ〉-relational structure that satisfies the
axioms Ax.

2.3. Problem Specifications

A problem is specified by a domain of problem instances or inputs and a binary relation
that defines the acceptable solutions to a given problem instance. Formally, a problem
specification is a 4-tuple B = 〈D,R, I, O〉, where the input condition I (x) constrains the
input domain D . The output condition O(x , z) describes the conditions under which
output domain value z : R is a feasible solution with respect to input x : D |I. The set of
feasible solutions for x : D|I is

FS(x) = {z : R | O(x, z)}.

Problem specification and program are combined in a program specification written

function F (x : D | I(x))
returns {z : R | O(x, z)}
= Body(x)

where the expression Body is a (possibly recursive) program that can be executed to
compute F . A program F satisfies (or is consistent with) problem specification B =
〈D,R, I, O〉, if for all possible inputs satisfying the input condition, the program computes
the set of feasible solutions:

∀(x : D|I) (F (x) = FS(x)). (1)

A program specification is consistent if the program satisfies its problem specification.

Example: Binary Search Trees

A binary tree is either the empty tree nil or a collection of nodes with a root and a left
child binary tree and a right child binary tree. A binary search tree over a totally ordered
set V is a binary tree whose vertices are drawn from V such that the following properties
hold:

5

datatype Binary−tree(α : type)
constructor nil : Binary−tree(α)
constructor fork : Binary−tree(α)× α× Binary−tree(α) → Binary−tree(α)
function members : Binary−tree(α) → set(α)
axiom members(nil) = {}
axiom members(fork(t1, b, t2)) = members(t1) ∪ {b} ∪members(t2)

end−datatype

Figure 1: Presentation of a Binary Tree Theory

1. if u is a vertex in the left subtree of vertex v then u < v;

2. if u is a vertex in the right subtree of vertex v then v < u;

3. each element of V occurs exactly once as a vertex.

Theory presentations for binary trees and binary search trees are shown in Figures 1 and
2 respectively. The latter theory contains specifications for enumerating all binary search
trees over a given set S (all-BST) and for enumerating all optimal binary search trees
over a given set S (OBST). The cost function and optimization problem will be treated
in Section 4.

End of Example.

3. Enumerating Feasible Solutions

3.1. Problem Reduction Theory

The notion of problem reduction can be illustrated in terms of the binary search tree
problem:

S0 : set(β)
BST

> t0 : binary−tree(β)
∧

S0 = S1
⋃

{a}
⋃

S2

∧ S1 < a < S2

∨

t0 = fork(t1, b, t2)

< S1, a, S2 >
BST × Id× BST

> < t1, b, t2 >

6

module Binary−Search−Tree(〈V,<〉 : Total−Order)
imports Binary−tree(V)

function legal−bst : Binary−tree(V) → Boolean
function level : V × Binary−tree(V) → Nat
function wgt1 : V → Real
function weight : Binary−tree(V) → Real

function all−BST (S : set(V))
returns {t : Binary−tree(V) | members(t) = S ∧ legal−bst(t)}

function cost(t : Binary−tree(V) | legal−bst(t)) : Real
= Σx∈members(t)level(x, t)× wgt1(x)

function OBST (S : set(V))
returns optima(λ(t1, t2) cost(t1) ≤ cost(t2), all−BST (S))

axiom legal−bst(nil) = true
axiom legal−bst(fork(t1, b, t2))

= ∀(v : V)(v ∈ members(t1) ⇒ v < b) ∧ legal−bst(t1)
∧ ∀(v : V)(v ∈ members(t2) ⇒ b < v) ∧ legal−bst(t2)

axiom level(b, fork(t1, b, t2)) = 1
axiom a ∈ members(t1) =⇒ level(a, fork(t1, b, t2)) = 1 + level(a, t1)
axiom a ∈ members(t2) =⇒ level(a, fork(t1, b, t2)) = 1 + level(a, t2)
axiom weight(nil) = 0
axiom weight(fork(t1, b, t2)) = weight(t1) + wgt1(b) + weight(t2)
theorem cost(nil) = 0
theorem cost(fork(t1, b, t2)) = weight(fork(t1, b, t2)) + cost(t1) + cost(t2)
. . .

end−module

Figure 2: Binary Search Tree Theory

7

where BST relates set Si to binary search tree ti, i ∈ {0, 1, 2}, and Id is the identity
relation. In words, a binary search tree for input set S0 can be computed in three steps.
First, S0 is decomposed into a triple of subproblem instances < S1, a, S2 > such that
S0 = S1

⋃

{a}
⋃

S2 ∧ S1 < a < S2 (where S1 < a < S2 means that each element of S1

is less than a and a is less than each element of S2). The subproblem instances are then
solved in parallel yielding a triple of subproblem solutions < t 1, b, t2 > where t1 and t2
are binary search trees over S1 and S2 respectively, and a = b. The subproblem solutions
are then composed, via fork, resulting in a binary search tree t0 for the initial problem
instance S0.

Generally, problem reduction is characterized by the following diagram:

x : Dŝ

Oŝ

> z : Rŝ

∧

σD(y, x)

∨

σR(w, z)

y : Dv Ov

> w : Rv

Problem instance x is solved by decomposing it into a structure of subproblem instances
y such that solutions w to y can be composed to produce a solution z to x. A prob-
lem reduction structure involves a collection of such reduction diagrams, one for each
operator symbol in a signature. Roughly speaking, a problem reduction structure is a
relational homomorphism between a decomposition structure on the input domain and
a composition structure on the output domain.

Formally, a 〈S,Σ〉-reduction structure 〈D,R, P,≻〉 comprises

1. a 〈S,Σ〉-relational structure D, called the decomposition structure;

2. a 〈S,Σ〉-relational structure R, called the composition structure;

3. an S-indexed collection of problem specifications 〈Ps〉s∈S, called the component
problems, where Ps = 〈Ds, Rs, Is, Os〉. The principal problem Pŝ = 〈Dŝ , Rŝ , Iŝ , Oŝ〉
corresponds to the given problem specification discussed in the previous section;

4. a well-founded order ≻ on Dŝ . For convenience we sometimes overload ≻: if x : D ŝ

and y : Dv then x ≻ y means that for each i such that vi = ŝ , x ≻ yi.

We say z is a reductive solution to input x if there is some way to decompose x to y,
solve y to obtain w, and compose w to obtain z. More precisely, z is a reductive solution
to input x if there is some σ ∈ Σ of arity < v, ŝ > and some y : Dv and w : Rv such that

σD(y, x) ∧ Ov(y, w) ∧ σR(w, z). (2)

8

The set of reductive solutions is defined as follows:

RS(x : Dŝ |Iŝ) =
⋃

σ∈Σv,ŝ

v∈S∗

{z : Rŝ | σD(y, x) ∧ Ov(y, w) ∧ σR(w, z)}.

A reductive solution is not necessarily feasible. We now concentrate on structures in
which the reductive solutions are exactly the feasible solutions.

A complete 〈S,Σ〉-reduction structure 〈D,R, P,≻〉 is a 〈S,Σ〉-reduction structure that
satisfies the axiom

Ax1. Comprehension of feasible solutions: ∀(x : Dŝ |Iŝ)(FS(x) = RS(x)).

We will use the term complete problem reduction theory to refer to the axiomatic pre-
sentation above (comprising decomposition signature, composition signature, component
problem signatures, well-founded ordering, and axiom). A related definition for an admis-
sible problem reduction theory provides the foundation for divide-and-conquer algorithms
[22, 23]. Instead of axiom Ax1, divide-and-conquer theory has an admissability axiom
that asserts that the reductive solutions are a nonempty subset of the feasible solutions
(when there exist feasible solutions).

The following theorem mediates the transition from a complete 〈S,Σ〉-reduction struc-
ture to a totally-correct, concrete program, called a problem reduction generator. This
particular theorem yields a functional program utilizing a top-down control strategy. In
Section 5 we mention a similar theorem utilizing a bottom-up control strategy typical
of dynamic programming. The complete 〈S,Σ〉-reduction structure provides the essen-
tial structure of the algorithm and program theories [26] such as Theorem 3..1 provide
relatively independent choices of target language and control strategy.

Theorem 3..1 Let 〈D,R, P,≻〉 be a complete 〈S,Σ〉-reduction structure and let 〈Fs〉s∈S,
〈Decomposeσ〉σ∈Σ, and 〈Composeσ〉σ∈Σ be indexed families of functions. If

(1) for each σ ∈ Σ of arity < v, ŝ >, Decomposeσ is a program that satisfies 〈Dŝ, D
v, Iŝ, σ̆D〉:

Decomposeσ(x : Dŝ|Iŝ) = {y | σ̆D(x, y) ∧ Iv(y) ∧ x ≻ y },

(2) for each σ ∈ Σ of arity < v, ŝ >, Composeσ is a program that satisfies 〈Rv, Rŝ, true, σR〉:

Composeσ(w) = {z | σR(w, z)},

(3) for each s ∈ S − {ŝ}, Fs satisfies Ps

then the following program specification is consistent (i.e. Fŝ satisfies Pŝ).

9

function Fŝ(x : Dŝ|Iŝ)
returns FS(x)

=
⋃

σ∈Σv,ŝ

v∈S∗

(∪/ · ∪/ ∗ Composeσ ∗ ∗(Π · F v) ∗Decomposeσ(x))

Proof: The task is to show that Fŝ(x) = FS(x) by Noetherian induction overD. Consider
Fŝ(x) for some x : Dŝ|Iŝ. We first concentrate on the essence of the induction. For any
σ ∈ Σ of arity < v, ŝ >, if y ∈ Decomposeσ(x), then by Assumption (1) we have
σD(y, x) ∧ Iv(y) and furthermore x ≻ yi for any i such that vi = ŝ . By the induction
hypothesis we obtain

Fvi(yvi) = FS(yvi) = {wvi | Ovi(yvi, wvi)}.

By Assumption (3) of the theorem, we have

Fvi(yvi) = {wvi | Ovi(yvi, wvi)}

for all i such that vi 6= ŝ . Therefore we have

F v(y) = 〈. . . , {wvi | Ovi(yvi, wvi)}, . . . 〉 i = 1, . . . , length(v).

Then since

Π · F v(y) = {〈. . . , wvi, . . . 〉 | Ovi(yvi , wvi) ∧ i ∈ {1..length(v)}}

or simply
Π · F v(y) = {w | Ov(y, w)} ,

and we obtain

Composeσ ∗ (Π · F v(y)) = {Composeσ(w) | O
v(y, w)} . (3)

The proof that the program specification is consistent is shown in Figure 3. Λ

Theorem (1) provides the basis for translating a complete 〈S,Σ〉-reduction structure into
a correct, well-structured program. The theorem reduces the problem of designing a cor-
rect algorithm to that of constructing a complete 〈S,Σ〉-reduction structure. However,
constructing a complete 〈S,Σ〉-reduction structure may be difficult owing to the compre-
hension axiom Ax1. It is not obvious how to use this axiom in a constructive way and
it can be difficult to verify. Below we explore sufficient conditions on the comprehension
axiom which can be used to help derive a complete 〈S,Σ〉-reduction structure.

Let 〈D,R, P,≻〉 be a complete 〈S,Σ〉-reduction structure. AxiomAx1 can be decomposed
into two somewhat simpler axioms. The soundness axiom asserts that all reductive
solutions are feasible and the completeness axiom asserts that all feasible solutions are
reductive.

10

Fŝ(x) = by definition

⋃

σ∈Σv,ŝ

v∈S∗

(∪/ · ∪/ ∗ Composeσ ∗ ∗(Π · F v) ∗Decomposeσ(x))

= using Assumption (1) and x : Dŝ|Iŝ

⋃

σ∈Σv,ŝ

v∈S∗

(∪/ · ∪/ ∗ Composeσ ∗ ∗(Π · F v) ∗ {y | σD(y, x)})

= distributing image over setformer twice

⋃

σ∈Σv,ŝ

v∈S∗

(∪/ · ∪/ ∗ {Composeσ ∗ (Π · F v(y)) | σD(y, x)})

= by Equation (3)

⋃

σ∈Σv,ŝ

v∈S∗

(∪/ · ∪/ ∗ {{Composeσ(w) | O
v(y, w)} | σD(y, x)})

= using Assumption (2)

⋃

σ∈Σv,ŝ

v∈S∗

(∪/ · ∪/ ∗ {{{z | σR(w, z)} | Ov(y, w)} | σD(y, x)})

= propagating ∪ / twice

⋃

σ∈Σv,ŝ

v∈S∗

{z | σD(y, x) ∧ Ov(y, w) ∧ σR(w, z)}

= by definition

RS(x)

= by Ax1

FS(x).

Figure 3: Proof of Theorem 1

11

Ax2 Soundness: For each σ ∈ Σ of arity < v, ŝ >,

∀(x : Dŝ|Iŝ, y : Dv|Iv, w : Rv, z : Rŝ) (σD(y, x) ∧ Ov(y, w) ∧ σR(w, z) =⇒ O(x, z))

Ax3 Completeness:

∀(x : Dŝ|Iŝ, z : Rŝ)

(O(x, z) =⇒
∨

σ∈Σv,ŝ

v∈S∗

∃(y : Dv|Iv, w : Rv) (σD(y, x) ∧ Ov(y, w) ∧ σR(w, z)))

Theorem 3..2 Let A = 〈D,R, P,≻〉 be a 〈S,Σ〉-reduction structure. If axioms Ax2, and
Ax3 are satisfied, then A is a complete 〈S,Σ〉-reduction structure.

Proof: Let x : Dŝ|Iŝ. From Ax2 it is straightforward to translate from predicate to
set-former notation in order to show that RS(x) ⊆ FS(x). Similarly, from Ax3 it is
straightforward to show FS(x) ⊆ RS(x). Therefore FS(x) = RS(x) and Ax1 (compre-
hension of feasible solutions) holds in A. Λ

The advantage of this formulation of complete problem reduction theory is that the
soundness axiom can be used in a constructive way, as described in the next section.
Unfortunately, verifying that the completeness axiom holds is more difficult than could
be desired. The following axioms are slightly stronger than soundness and completeness,
but remain broadly applicable. They are substantially easier to work with because there
are fewer existentially quantified variables to deal with than in the completeness axiom
and there are separate axioms for each operator symbol in the signature rather than one
large axiom.

Ax4.1 Strong Soundness-1: For each σ ∈ Σ of arity < v, ŝ >,

∀(x : Dŝ|Iŝ, y : Dv|Iv, w : Rv, z : Rŝ) (Ov(y, w) ∧ σR(w, z) =⇒ (σD(y, x) = O(x, z)))

Ax4.2 Strong Soundness-2: For each σ ∈ Σ of arity < v, ŝ >,

∀(x : Dŝ|Iŝ, y : Dv|Iv, w : Rv, z : Rŝ) (σD(y, x) ∧ Ov(y, w) =⇒ (σR(w, z) = O(x, z)))

Ax5 Completeness w.r.t. feasibility: For each σ ∈ Σ of arity < v, ŝ >,

∀(x : Dŝ|Iŝ, z : Rŝ, w : Rv) (O(x, z) ∧ σR(w, z) =⇒ ∃(y : Dv|Iv)(Ov(y, w)))

Axiom Ax5 can be interpreted to mean that all feasible solutions are composed from
feasible solutions to subproblems. Notice that Ax5 is easiest to verify when the component
problems are inverses of functions.

12

Theorem 3..3 Let A = 〈D,R, P,≻〉 be a 〈S,Σ〉-reduction structure where R is an in-
ductive 〈S,Σ〉-relational structure. If axioms Ax4.1 and Ax5 are satisfied, then A is a
complete 〈S,Σ〉-reduction structure.

Proof: We’ll show that Ax4.1 and Ax5 together imply Ax2 and Ax3 (soundness and com-
pleteness). First, it is easily seen that Ax4.1 (strong soundness) implies Ax2 (soundness).
To show that Ax3 (completeness)

∀(x : Dŝ|Iŝ, z : Rŝ)








Oŝ(x, z) =⇒
∨

σ∈Σv,ŝ

v∈S∗

∃(y : Dv|Iv, w : Rv) (σD(y, x) ∧ Ov(y, w) ∧ σR(w, z)))









holds, assume axioms Ax4.1 and Ax5 are satisfied and that Iŝ(x) ∧ Oŝ(x, z) holds for
some x : Dŝ and z : Rŝ. We must find some v ∈ S∗, σ ∈ Σ of arity < v, ŝ >, y : Dv,
and w : Rv such that σD(y, x) ∧ Ov(y, w) ∧ σR(w, z). Since R is inductive, and z : Rŝ,
there is some σ ∈ Σ of arity < v, ŝ > and w : Rv such that σR(w, z). Now we can
apply Ax5 to infer Ov(y, w) for some y. This in turn allows us to apply Ax4.1 to infer
σD(y, x) = O(x, z), but since we have assumed Oŝ(x, z), we obtain σD(y, x). We have
now inferred the desired result. Λ

Theorem 3..4 Let A = 〈D,R, P,≻〉 be a 〈S,Σ〉-reduction structure where D is an in-
ductive 〈S,Σ〉-relational structure. If axioms Ax4.2 and Ax5 are satisfied, then A is a
complete 〈S,Σ〉-reduction structure.

The proof is similar to the proof of Theorem 3..3.

3.2. Design Tactic – Enumerating Feasible Solutions

Complete problem reduction theory provides the basis for a design tactic that prescribes
how to construct a correct generator of feasible solutions from a given specification. The
tactic works by extending the given problem specification to a complete 〈S,Σ〉-reduction
structure and then applying Theorem 3..1 or an analogue. Technically, the tactic con-
structs an interpretation between complete problem reduction theory and binary search
tree theory – a translation of the symbols of complete problem reduction theory into
binary search tree theory such that the axioms of complete problem reduction theory
translate to theorems of binary search tree theory [26, 27]. The tasks of the tactic are to
determine the signature 〈S,Σ〉, the interpretations of the signature for the composition
structure and the decomposition structure, the component problems, the well-founded
ordering, and meanwhile to assure that the axioms translate to theorems. In order that

13

it be mechanizable, the tactic attempts to effectively combine input from the user, selec-
tion of standard information from a library, deductive propagation of the consequences
of choices, and verification of axioms.

Theorems 3..3 and 3..4 suggest two variant tactics analogous to those presented in [22, 23].
We can choose from a handbook or library a standard decomposition structure and use
the soundness axiom Ax4.2 to derive a composition structure. Alternatively we could
choose a standard composition structure and use the soundness axiom Ax4.1 to derive a
decomposition structure. In either case we must verify axiom Ax5 (completeness w.r.t.
feasibility).

The tactic that we now describe is based on selection of a standard composition structure
and use of Theorem 3..3. The description of each step of the tactic is interleaved with
its application to the problem of enumerating binary search trees.

Step pr-1. Obtain problem specification.

From the domain theory for binary search trees we have the problem following specifica-
tion.

function All−BST (S : set(β))
returns {bst : Binary−Tree(β) | S = members(bst) ∧ legal−bst(bst) }

Since the given problem is the principal problem of the desired 〈S,Σ〉-reduction structure,
we immediately have the interpretation

Dŝ 7→ set(β)
Iŝ 7→ λ(S) true
Rŝ 7→ Binary−tree(β)
Oŝ 7→ λ(S, t) members(t) = S ∧ legal−bst(t)

Step pr-2. Select a standard composition structure on the principal output domain Rŝ.

We select a composition structure on Rŝ from a library. We can abstract from this choice
a signature 〈S,Σ〉 to use for the overall reduction structure.

For All−BST we select the domain theory Binary−Tree(β) presented in Section 2.3. The
signature of this theory has two sorts, say ŝ and s, with interpretation

Rŝ 7→ Binary−Tree(β)
Rs 7→ β

and two constructors:

14

nil :→ Binary−Tree(β)
fork : Binary−Tree(β)× β × Binary−Tree(β) → Binary−Tree(β)

To view Binary−Tree(β) as a 〈S,Σ〉-relational structure we can lift the constructors nil
and fork to their graphs nil′ and fork′ respectively as follows:

nil′(<>, a) = (nil = a)
fork′(〈t1, a, t2〉, t0) = (fork(t1, a, t2) = t0)

giving us the signature

Σǫ,ŝ = {σ0}
Σŝsŝ,ŝ = {σ1}

and interpretation

σ0R 7→ nil′

σ1R 7→ fork′

In succeeding steps we construct a decomposition structure with the same signature.
Note that this composition structure is both inductive and total.

Step pr-3. Derive the component problems.

There are two aspects to this task: interpreting the sorts and the relations of the com-
ponent problems. The principal problem P ŝ = 〈Dŝ, Rŝ, Iŝ, Oŝ〉 is already known. For the
remaining component problems, a useful heuristic is to interpret them as the identity
relation, all−Id , on the composition domain which was fixed in the previous step (Rs for
s 6= ŝ).

For all-BST there will be one component problem Ps in addition to the principal problem.
According to the heuristic, Ps is interpreted as all-Id:

Ds 7→ β
Is 7→ λ(a) true
Rs 7→ β
Os 7→ λ(a, b) a = b

Note that the input domains of the component problems provide interpretations for the
sort symbols for the decomposition structure.

Step pr-4. Derive a 〈S,Σ〉-decomposition structure.

15

Deriving the decomposition structure is more interesting and makes constructive use of
the strong soundness axiom.

Ax4.1 For each σ ∈ Σ of arity < v, ŝ >,

∀(x : Dŝ|Iŝ, y : Dv|Iv, w : Rv, z : Rŝ) (Ov(y, w) ∧ σR(w, z) =⇒ (σD(y, x) = O(x, z)))

At this point in the construction we have an interpretation for all relation symbols in
Axiom Ax4.1 except σD. There is a general technique that uses Ax4.1 to solve for an
appropriate interpretation of σD: Replace the formula σD by a boolean-valued variable,
say φ, and existentially quantify it so that it depends on x and y. Axiom Ax4.1 becomes

∀(x : Dŝ|Iŝ, y : Dv|Iv, w : Rv) ∃(phi : boolean) ∀(z : Rŝ)

(Ov(y, w) ∧ σR(w, z) =⇒ (φ = O(x, z))) . (4)

In other words, we “unskolemize” σD(y, x). Formula (4) is now translatable and we can
attempt to prove it in the target problem theory. A proof of (4) yields a substitution of
the form {φ 7→ p(x, y)} where p(x, y) is a boolean-valued expression over variables x
and y. If we interpret σD to be p(x, y) then by construction axiom Ax4.1 translates to a
theorem of the target problem theory.

For each operator σ ∈ Σ of arity < v, ŝ > the strategy for proving the translation of (4)
is to assume Iŝ(x) ∧ Iv(y) ∧ Ov(y, w) ∧ σR(w, z) and then to use equational reasoning
on O(x, z) to derive an expression over variables {y, x}.

For all-BST, consider the fork′ operator. The following reduction diagram illustrates
the situation.

S0 : set(β)
all−BST

> t0 : binary−tree(β)
∧

?

∨

fork′

< S1, a, S2 >
all−BST × all−Id × all−BST

> < t1, b, t2 >

We assume

S1 = members(t1) ∧ legal−bst(t1)
∧ a = b
∧ S2 = members(t2) ∧ legal−bst(t2)
∧ t0 = fork(t1, b, t2)

16

and perform equational reasoning towards an expression over the variables {S0, S1, a, S2}
as follows:

S0 = members(t0) ∧ legal−bst(t0)

= using t0 = fork(t1, b, t2)

S0 = members(fork(t1, b, t2)) ∧ legal−bst(fork(t1, b, t2))

= distributing members and legal−bst over fork

S0 = members(t1)
⋃

{b}
⋃

members(t2)
∧ ∀(c : β)(c ∈ members(t1) =⇒ c < b) ∧ legal−bst(t1)
∧ ∀(c : β)(c ∈ members(t2) =⇒ b < c) ∧ legal−bst(t2)

= using assumptions

S0 = S1
⋃

{a}
⋃

S2

∧ ∀(c : β)(c ∈ S1 =⇒ c < a)
∧ ∀(c : β)(c ∈ S2 =⇒ a < c)

This last expression is expressed over the required set of variables, so we can take it as
the counterpart to fork′ in the decomposition structure. We will abbreviate the second
and third conjuncts as S1 < a < S2.

Now consider the nil′ relation. The following reduction diagram illustrates the situation.

S : set(β)
All−BST (t)

> t : binary−tree(β)
∧

?

∨

nil′

<>
Oǫ

> <>

We assume

<>=<>
t = nil

and perform equational reasoning towards an expression over the variables {S} as follows:

S = members(t) ∧ legal−BST (t)

17

= by assumption t = nil

S = members(nil) ∧ legal−BST (nil)

= distributing members and legal−BST over nil

S = {}.

This last expression is expressed over the required set of variables, so we can take it as
the counterpart to nil′ in the decomposition structure.

Altogether we have derived the decomposition structure

σ0D 7→ λ(<>, S) (S = {})
σ1D 7→ λ(< S1, a, S2 >, S0) (S0 = S1

⋃

{a}
⋃

S2 ∧ S1 < a < S2)

such that the strong soundness axiom Ax4.1 is satisfied.

Step pr-5. Select a well-founded order ≻.

The purpose of ≻ is to ensure program termination. A common and general method
for obtaining a well-founded ordering on a domain to develop or select a map from the
domain Dŝ into the natural numbers under the > relation. For the binary search tree
problem, the input domain is sets. A standard map for sets is size and this could be
selected from a library.

Step pr-6. Verify axiom Ax5.

We show that Ax5 holds by interpreting its structure in the current problem and then
verifying the result.

Ax5 Completeness w.r.t. feasibility: For each σ ∈ Σ of arity < v, ŝ >,

∀(x : Dŝ|Iŝ, z : Rŝ, w : Rv) (O(x, z) ∧ σR(w, z) =⇒ ∃(y : Dv|Iv)(Ov(y, w)))

We consider the relation symbols in turn. For σ0 the axiom translates to the following
formula which is trivially valid:

∀(S : set(β), t : binary−tree(β), w : {<>})
(S = members(t) ∧ legal−BST (t) ∧ t = nil =⇒ ∃(y : {<>})(w = y)) .

Next, for σ1 our task is to verify:

18

∀(S0 : set(β))
∀(t0 : binary−tree(β))
∀(< t1, b, t2 >: Binary−Tree(β)× β × Binary−Tree(β))

(S0 = members(t0) ∧ legal−BST (t0) ∧ t0 = fork(t1, b, t2)
=⇒ ∃(< S1, a, S2 >: set(β)× β × set(β))

(S1 = members(t1) ∧ legal−BST (t1)
∧ S2 = members(t2) ∧ legal−BST (t2)
∧ a = b)).

From the antecedent we can infer legal−BST (fork(t1, b, t2)) or

legal−BST (t1) ∧ ∀(n : N)(n ∈ members(t1) ⇒ n < b)

∧ legal−BST (t2) ∧ ∀(n : N)(n ∈ members(t2) ⇒ b < n).

Applying the reflexivity law ∀(i)(i = i) thrice yields the substitution
{S1 7→ members(t1), a 7→ b, S2 7→ order(t2)}

and the rest of the consequent follows by unification with the inferred antecedents.

Step pr-7. Produce a concrete program.

Previous steps have built up a 〈S,Σ〉-reduction structure. Axioms Ax4.1 and Ax5 were
satisfied by construction or verification in steps pr-4 and pr-6 respectively, yielding a
complete 〈S,Σ〉-reduction structure for all−BST . Applying Theorem 3..1 with the com-
ponents of the structure we obtain the program

function all−BST (S : set(V))
returns {t : binary−tree(V) | members(t) = S ∧ legal−BST (t)}
= (∪/ · ∪/ ∗ λ()({nil}) ∗ ∗(Π · F ǫ) ∗ {<> | S = {}})

⋃

(∪/ · ∪/ ∗ λ(t1, b, t2)({fork(t1, b, t2)})
∗ ∗ (Π · (all−BST × all−Id× all−BST)) ∗Decompose(S))

where Decompose satisfies the problem specification

function Decompose(S : set(V))
returns {〈S1, a, S2〉 | S0 = S1

⋃

{a}
⋃

S2 ∧ S1 < a < S2

∧ size(S0) > size(S1) ∧ size(S0) > size(S2)}

and all−Id(x) = {x}.

Step pr-8. Optimize the program.

19

Now that we have a correct and well-structured program there typically are several
optimizations that can be applied. We show only some obvious ones for this program.
See [25] for detailed applications of optimizations such as context-sensitive simplification,
partial evaluation, finite differencing, case analysis, data type refinement, and others.
Obvious optimizations here include exploiting the functional nature of the constructors
on binary trees and simplifying away the degenerate structure of the base case.

function all−BST (S : set(V))
returns {t : Binary−tree(V) | members(t) = S ∧ legal−bst(t)}
= {nil | S = {}}

⋃

(∪/ · ∪/ · fork ∗ ∗(Π · (all−BST × all−Id × all−BST)) ∗Decompose(S))

After performing case analysis on the overall union we obtain

function all−BST (S : set(V))
returns {t : Binary−tree(V) | members(t) = S ∧ legal−bst(t)}
= if S = {}

then {nil}
else ∪ / · ∪/ · fork ∗ ∗(Π · (all−BST × all−Id × all−BST)) ∗Decompose(S)

To obtain an efficient implementation of this program it is also necessary to refine the
abstract datatypes [3]. The input set S can be refined into an ordered sequence thereby
making the partitioning required by the decomposition operator linear in the size of S.

4. Enumerating Optimal Cost Solutions

An optimization problem is an extension of a feasibility problem, since we want solutions
whose cost is optimal over all feasible solutions. Ideally, an algorithm theory and design
tactic for a class of optimization algorithms would be an extension of a theory and
tactic for the underlying feasibility problem. Such is the case with problem reduction
theory. This desirable property means that the structure of the design process reflects
the structure of the problem.

4.1. Optimization Problem Structure

Given a binary preference relation p over a set S, an element of S is optimal if it is
preferable to all others in S. Define

optima(p, S) = {y | y ∈ S ∧ ∀(z)(z ∈ S =⇒ p(y, z))}.

20

A specification for an optimization problem will be given as a tuple P = 〈BP , C,≤, f〉,
where BP = 〈D,R, I, O〉 is a problem specification, C is a set called the cost domain,
〈C,≤〉 is a total order, and f : D×R → C is a cost function. The problem is to find all
feasible solutions that have minimal cost. Optimization problems can also be specified
in the form

function F (x : D|I)
returns optima(λ(z, z′) f(x, z) ≤ f(x, z′), FS(x))

The set of optimal solutions for optimization problem P is

OPT (x) = optima(λ(z, z′) f(x, z) ≤ f(x, z′), FS(x)).

Returning the our example, binary search trees are used to access elements of a totally-
ordered and weighted set V . A cost can be assigned to a binary search tree by summing
up the weighted costs of accessing each element of the tree. If a node x is at level i (where
the root is at level 1), then a binary search algorithm requires i comparisons to access x;
thus we define

cost(t) = Σx∈members(t)level(x, t)× wgt1(x).

If the wgt1 function is a probability function, then the cost is just the expected number
of comparisons needed to access a random element. An arbitrary weight function can be
reduced to a probability function by dividing each weight by the sum of the weights of
the elements of V .

This definition of the cost of a binary search tree is straightforward but unwieldy. For
the purposes of reasoning about binary search trees it is worthwhile to develop laws that
show how cost distributes over the constructors of binary trees. These laws are derived
below and in Figure 4.

cost(nil) = by definition

∑

x∈members(nil) level(x, nil) × wgt1(x)

= distributing members over nil and simplifying
0.

We can now specify the problem of enumerating binary search trees of minimal cost.

function OBST (S : set(V))
returns optima(λ(t1, t2) cost(t1) ≤ cost(t2), all−BST (S))

21

cost(fork(t1, b, t2)) = by definition

∑

x∈members(fork(t1,b,t2))

level(x, fork(t1, b, t2))× wgt1(x)

= distributing members and level over fork

∑

x∈members(t1)∪{b}∪members(t2)

level(x, fork(t1, b, t2))× wgt1(x)

=
∑

x∈members(t1)

level(x, fork(t1, b, t2))× wgt1(x)

+
∑

x=b

level(x, fork(t1, b, t2))× wgt1(x)

+
∑

x∈members(t2)

level(x, fork(t1, b, t2))× wgt1(x)

= distributing level over fork

∑

x∈members(t1)

(1 + level(x, t1))× wgt1(x)

+
∑

x=b

1× wgt1(x)

+
∑

x∈members(t2)

(1 + level(x, t2))× wgt1(x)

= distributing and rearranging

∑

x∈members(t1)

wgt1(x) +
∑

x∈members(t1)

level(x, t1)× wgt1(x)

+ wgt1(b)

+
∑

x∈members(t2)

wgt1(x) +
∑

x∈members(t2)

level(x, t2)× wgt1(x)

= folding weight and cost

weight(t1) + cost(t1)
+ wgt1(b)
+ weight(t2) + cost(t2)

= weight(fork(t1, b, t2)) + cost(t1) + cost(t2).

Figure 4: Derivation of laws for cost

22

4.2. Problem Reduction Theory for Optimization Problems

We extend the definition of 〈S,Σ〉-reduction structure 〈D,R, P,≻〉 to comprise

1. a 〈S,Σ〉-relational structure D, called the decomposition structure;

2. a 〈S,Σ〉-relational structure R, called the composition structure;

3. an S-indexed collection of optimization problem specifications 〈P s〉s∈S, called the
component problems, where Ps = 〈〈Ds, Rs, Is, Os〉, Cs,≤s, fs〉;

4. a well-founded order ≻ on Dŝ.

In a reduction structure for an optimization problem, define for v ∈ S ∗

f v(y, w) ≤ f v(y, w′)

to be
fv1(y1, w1) ≤ fv1(y1, w

′
1) ∧ . . . ∧ fvn(yn, wn) ≤ fvn(yn, w

′
n)

where n = length(v). Furthermore define

f v(y, w) < f v(y, w′)

to be f v(y, w) ≤ f v(y, w′) such that fvi(yi, wi) 6= fvi(yi, w
′
i) for some 1 ≤ i ≤ length(v).

In a reduction structure for an optimization problem, the set of reductive solutions is
defined as follows:

RS ′(x) =
⋃

σ∈Σv,ŝ

v∈S∗

{z : Rŝ | σD(y, x)

∧ w ∈ optima(λ(w1, w2) (f
v(y, w1) ≤ f v(y, w2), {w : Rv | Ov(y, w)}))

∧ σR(w, z)}.

The set of optimal reductive solutions is defined as follows:

RS−OPT (x) = optima(λ(z, z′) f(x, z) ≤ f(x, z′), RS ′(x)).

An optimal reductive solution is not necessarily optimal. Equivalence between these is
the essence of complete problem reduction theories for optimization problems.

A complete 〈S,Σ〉-reduction structure 〈D,R, P,≻〉 comprises a 〈S,Σ〉-reduction structure
and the axioms

Ax1. Comprehension of feasible solutions: ∀(x : Dŝ|Iŝ)(FS(x) = RS(x)).

23

Ax6. Comprehension of optimal solutions: ∀(x : Dŝ|Iŝ)(OPT (x) = RS−OPT (x)).

Comprehension of optimal solutions assures us that optimal reductive solutions are ex-
actly the optimal solutions, thus a reductive method can enumerate optimal solutions.

The following theorem mediates the transition from a complete 〈S,Σ〉-reduction structure
to a correct, concrete program - a problem reduction generator of optimal solutions.

Theorem 4..1 Let 〈D,R, P,≻〉 be a complete 〈S,Σ〉-reduction structure and let 〈Fs〉s∈S,
〈Decomposeσ〉σ∈Σ, and 〈Composeσ〉σ∈Σ be indexed families of functions. If

(1) for each σ ∈ Σ of arity < v, ŝ >, Decomposeσ is a program that satisfies 〈Dŝ, D
v, Iŝ, σ̆D〉:

Decomposeσ(x : Dŝ|Iŝ) = {y | σ̆D(x, y) ∧ Iv(y) ∧ x ≻ y },

(2) for each σ ∈ Σ of arity < v, ŝ >, Composeσ is a program that satisfies 〈Rv, Rŝ, true, σR〉:

Composeσ(w) = {z | σR(w, z)},

(3) for each s ∈ S − {ŝ}, Fs satisfies Ps

then the following program specification is consistent (i.e. Fŝ satisfies the principal prob-
lem Pŝ).

function Fŝ(x : Dŝ|Iŝ)
returns optima(λ(z, z′)(fŝ(x, z) ≤ fŝ(x, z

′), {z : Rŝ | O(x, z)})
= optima(λ(z, z′)(fŝ(x, z) ≤ fŝ(x, z

′)),
⋃

σ∈Σv,ŝ

v∈S∗

(∪/ · ∪/ ∗ Composeσ ∗ ∗(Π · F v) ∗Decomposeσ(x)))

The proof is similar to that for Theorem 3..1.

Theorem 4..1 reduces the problem of designing a correct problem reduction generator
to that of constructing a complete 〈S,Σ〉-reduction structure. We can use the tactic
described in the previous section to build a 〈S,Σ〉-reduction structure satisfying axiom
Ax1. It remains to satisfy axiom Ax6 (comprehension of optimal solutions). The key
lies in establishing a monotonicity condition on the cost of composed solutions as in the
following axiom.

Ax7 Strict monotonicity of cost with respect to composition of feasible solutions:

For each σ ∈ Σ of arity < v, ŝ >,

24

∀(x : Dŝ|Iŝ, y : Dv|Iv)
∀(w : Rv, z : Rŝ)
∀(w′ : Rv, z′ : Rŝ)

(σD(y, x)
∧ Ov(y, w) ∧ σR(w, z) ∧ O(x, z)
∧ Ov(y, w′) ∧ σR(w

′, z′) ∧ O(x, z′)
∧ f v(y, w) < f v(y, w′)

=⇒ f(x, z) < f(x, z′)).

The following diagram may help in understanding the axiom. In words, if w and w ′ are
both tuples of subproblem solutions to subproblem y and the cost of w dominates w ′

component-by-component, and w composes to form z and w ′ composes to form z ′, then
the cost of z dominates the cost of z ′.

z′ : Rŝ <
O

x : D
O

> z : Rŝ

∧ ∧

σR σD

∨

σR

w′ : Rv <
Ov

y : Dv Ov

> w : Rv

Theorem 4..2 Let A = 〈D,R, P,≻〉 be a 〈S,Σ〉-reduction structure where R is a total,
inductive 〈S,Σ〉-relational structure. If axioms Ax1 and Ax7 are satisfied, then A is a
complete 〈S,Σ〉-reduction structure.

Proof: By assumption, axiom Ax1 holds, so our task is to establish axiom Ax6 (compre-
hension of optimal solutions). We first establish a technical lemma.

Lemma 4..1 Let A = 〈D,R, P,≻〉 be a 〈S,Σ〉-reduction structure where R is a total,
inductive 〈S,Σ〉-relational structure. If a ∈ FS(x) and axiom Ax1 (comprehension of
feasible solutions) holds, then there is some a′ ∈ RS ′(x) such that f(x, a′) ≤ f(x, a).

Proof of lemma: Let a ∈ FS(x) for some x : Dŝ|Iŝ. Since by assumption of Ax1

FS(x) = RS(x), there is some y, w, and a such that σD(y, x) ∧ Ov(y, w) ∧ σR(w, z).
We proceed by case analysis on a: either a ∈ RS ′(x) or a /∈ RS ′(x). If a ∈ RS ′(x),
let a′ = a. We have f(x, a′) ≤ f(x, a) since ≤ is reflexive (it is a total order). On
the other hand, if a /∈ RS ′(x) then w /∈ OPT v(y); but this implies there is some w ′

such that f v(y, w′) < f v(y, w). Since R is total, we have σR(w
′, a′) for some a′ : R.

We can now apply strict monotonicity (actually nonstrict monotonicity suffices) to infer
f(x, a′) < f(x, a). To sum up, in either case we have shown f(x, a′) ≤ f(x, a). Λ

25

Proof of theorem: To establish Ax6, OPT (x) = RS−OPT (x), we’ll show RS−OPT (x) ⊆
OPT (x) and then OPT (x) ⊆ RS−OPT (x). To establish RS−OPT (x) ⊆ OPT (x),
assume z ∈ RS−OPT (x); that is, there exists y : Dv and w : Rv such that σD(y, x) ∧
Ov(y, w) ∧ σR(w, z). Our task is to show that z is optimal. By the comprehension axiom
Ax1 we have z ∈ FS(x). Next we show that for any feasible solution a ∈ FS(x) that
f(x, z) ≤ f(x, a). By Lemma 4..1 there is some a′ ∈ RS ′(x) such that f(x, a′) ≤ f(x, a).
By definition,

RS−OPT (x) = optima(λ(z, z′) f(x, z) ≤ f(x, z′), RS ′(x)).

Since z ∈ RS−OPT (x) we have

∀(z′)(z′ ∈ RS ′(x) =⇒ f(x, z) ≤ f(x, z′))

and in particular, f(x, z) ≤ f(x, a′) ≤ f(x, a), therefore z ∈ OPT (x).

To establish OPT (x) ⊆ RS−OPT (x), assume z ∈ OPT (x); by definition z ∈ FS(x) and
∀(z′)(z′ ∈ FS(x) =⇒ f(x, z) ≤ f(x, z′)). We show z ∈ RS−OPT (x). By comprehension
FS(x) = RS(x) so z ∈ RS(x) and there is y : Dv and w : Rv such that

σD(y, x) ∧ Ov(y, w) ∧ σR(w, z).

We’ll show that w is optimal. If w were not optimal, there would be some w ′ such that

σD(y, x) ∧ Ov(y, w′)

and f v(y, w′) < f v(y, w). Again since R is total, there is some z ′ such that σR(w
′, z′).

However by strict monotonicity we have f(x, z ′) < f(x, z) which contradicts our as-
sumption that z is optimal. Thus w is an optimal solution to subproblem structure
y and furthermore z ∈ RS ′(x). Now, let z′ be a arbitrary element of RS ′(x). From
RS ′(x) ⊆ RS(x) = FS(x) we have z′ ∈ FS(x). Since z is assumed to be opti-
mal we then infer f(x, z) ≤ f(x, z ′). This establishes that z ∈ RS−OPT (x) and
OPT (x) ⊆ RS−OPT (x). Λ

Comments on Theorem 4..2:

• Strict monotonicity of the cost function has been shown to be sufficient to al-
low a problem reduction generator, as in Theorem 4..2, to enumerate all optimal
solutions. An analogous (nonstrict) monotonicity condition is sufficient to allow
enumeration of one or more optimal solutions.

• Strict monotonicity is much easier to verify than Ax6 (comprehension of optimal
solutions). Previous models of dynamic programming have relied on a stronger
monotonicity condition on the cost function (See Section 6). By making the mono-
tonicity condition relative to composition of feasible solutions we have weakened it
and made it easier to verify and more generally applicable.

26

4.3. Extended Design Tactic - Enumerating Optimal Solutions

The design tactic for constructing a generator of optimal solutions is a simple extension
of the tactic described in Section 5:

pro-1. Construct a complete 〈S,Σ〉-reduction structure A for the underlying feasible prob-
lem;

pro-2. Extend the component problems to optimization problems;

pro-3. Verify that the strict monotonicity condition (Ax7) holds;

pro-4. Apply Theorem 4..1, or an analogue, to obtain a concrete program;

pro-5. Optimize the program.

Continuing the example from the previous section, we have the problem of finding optimal
binary search trees.

function OBST (S : set(V))
returns optima(λ(t1, t2) cost(t1) ≤ cost(t2), all−BST (S))

Step pro-1. Construct a complete 〈S,Σ〉-reduction structure A for the underlying feasible
problem.

After temporarily “forgetting” the cost structure of the given problem specification, the
tactic in Section 3 accomplishes this step.

Step pro-2. Extend the component problems to optimization problems.

This step adds back the cost structure to the principal problem. The other component
problems become optimization problems by trivially extending them with a constant cost
function (so that all feasible solutions are optimal).

For OBST the nonprincipal component problem becomes the identity optimization prob-
lem called optimal-Id.

Step pro-3. Verify that the strict monotonicity condition (Ax7) holds.

For OBST, we consider the relation symbols of the signature in turn. For σ0 ∈ Σǫ,ŝ the
axiom instantiates to a formula that is vacuously valid.

The relation symbol σ1 ∈ Σŝsŝ,ŝ is more interesting. The following reduction diagram
illustrates the situation.

27

S0 : set(β)
OBST

> t′0 : BST (β)
∧

S0 = S1
⋃

{a}
⋃

S2

∧ S1 < a < S2

∨

fork′

< S1, a, S2 >
OBST × optimal−Id ×OBST

> < t′1, b
′, t′2 >

We assume

S0 = S1
⋃

{a}
⋃

S2 ∧ S1 < a < S2

∧ b = a
∧ S1 = members(t1) ∧ legal−BST (t1)
∧ S2 = members(t2) ∧ legal−BST (t2)
∧ t0 = fork(t1, b, t2)
∧ S0 = members(t0) ∧ legal−BST (t0)

∧ b′ = a
∧ S1 = members(t′1) ∧ legal−BST (t′1)
∧ S2 = members(t′2) ∧ legal−BST (t′2)
∧ t′0 = fork(t′1, b, t

′
2)

∧ S0 = members(t′0) ∧ legal−BST (t′0)

∧ cost(t1) < cost(t′1) ∧ cost(t2) < cost(t′2)

and verify cost(t0) < cost(t′0). First, from the assumptions we can infer b = b′, wgt1(b) =
wgt1(b′) and weight(t1) = weight(t′1) and weight(t2) = weight(t′2). The rest of the proof
is given in Figure 5.

Step pro-4 . Construct a concrete program.

Applying Theorem 4..1 we obtain the code

function OBST (S : set(V))
returns optima(λ(t1, t2) cost(t1) ≤ cost(t2), all−BST (S))
= optima(λ(t1, t2) cost(t1) ≤ cost(t2),

(∪/ · ∪/ ∗ λ()({nil}) ∗ ∗(Π · F ǫ) ∗ {<> | S = {}}))
⋃

optima(λ(t1, t2) cost(t1) ≤ cost(t2),
(∪/ · ∪/ ∗ λ(t1, b, t2)({fork(t1, b, t2)})

∗ ∗ (Π · (OBST × optimal−Id × OBST)) ∗Decompose(S)))

28

cost(t0) < cost(t′0)

= using t0 = fork(t1, b, t2) ∧ t′0 = fork(t′1, b
′, t′2)

cost(fork(t1, b, t2)) < cost(fork(t′1, b
′, t′2))

= distributing cost over fork

weight(fork(t1, b, t2)) + cost(t1) + cost(t2)
< weight(fork(t′1, b

′, t′2)) + cost(t′1) + cost(t′2)

= using derived assumptions

wgt(b) + weight(t1) + weight(t2) + cost(t1) + cost(t2)
< wgt(b) + weight(t1) + weight(t2) + cost(t′1) + cost(t′2)

= cancelling

cost(t1) + cost(t2) < cost(t′1) + cost(t′2)

⇐= by monotonicity of addition

cost(t1) < cost(t′1) ∧ cost(t2) < cost(t′2)

= by assumptions

true. Λ

Figure 5: Verification of Strict Monotonicity in OBST

29

where, as before, Decompose satisfies the problem specification

function Decompose(S : set(V))
returns {〈S1, a, S2〉 | S0 = S1

⋃

{a}
⋃

S2 ∧ S1 < a < S2

∧ size(S0) > size(S1) ∧ size(S0) > size(S2)}

and optimal−Id(x) = {x}.

Step pro-5. Optimize the program.

After performing the optimizations from Section 3.2 we have

function OBST (S : set(V))
returns optima(λ(t1, t2) cost(t1) ≤ cost(t2), all−BST (S))
= if S = {}

then optima (λ(t1, t2) cost(t1) ≤ cost(t2), {nil})
else optima(λ(t1, t2) cost(t1) ≤ cost(t2),

∪/ · ∪/ · fork ∗ ∗(Π · (OBST × optimal−Id ×OBST)) ∗Decompose(S))

and after simplifying the optima expressions,

function OBST (S : set(V))
returns optima(λ(t1, t2) cost(t1) ≤ cost(t2), all−BST (S))
= if S = {}

then {nil}
else optima(λ(t1, t2) cost(t1) ≤ cost(t2),

∪/ · ∪/ · fork ∗ ∗(Π · (OBST × optimal−Id ×OBST) ∗Decompose(S))

A further optimization would be to distribute optima over ∪/.

5. Extensions

Complete problem reduction theory defines a well-founded partial order of subproblem
instances via recurrence equations. The recursive programs in Theorems 3..1 and 4..1
compute these equations top-down. Inefficiencies may arise if the same subproblem in-
stance needs to be solved repeatedly. Two techniques for handling repeated recursive
calls are memoization and tabulation [2, 4, 12].

Memoization involves the dynamic recording of previously generated subproblem in-
stances and their solutions. When a subproblem instance is generated, the record is

30

checked to see if it has already been solved. This technique reduces the redundancy
inherent in top-down control. The general problem of detecting equivalent subproblems
has been described in the branch-and-bound literature [10].

Tabulation methods also record subproblem instances and their solutions in a table.
However, the table is computed systematically from the bottom up, rather than filled on
demand as in memoization. This means that the recursion equations must be analyzed
in order to determine the dependency structure between subproblems (a well-founded
partial order) and to determine which problems form the bottom of the table (minimal
problem instances in the order). It is also necessary to schedule the computation of table
entries via a topological sort of the subproblem instances. In order to minimize space
complexity it is also necessary to determine when a table entry is no longer needed and
can therefore be recycled.

Tabulation is an essential feature of dynamic programming algorithms. Unfortunately
there are no currently known general methods for tabulating the class of recurrence
equations corresponding to problem reduction generators. Instead it seems that special
cases must be treated in various analogues to Theorems 3..1 and 4..1.

We sketch how tabulation applies to the optimal binary search tree problem. Subproblems
correspond to segments of the sequence V that results from sorting the input set S and
decomposition takes a segment into proper subsegments of itself. This leads to a table in
which each entry corresponds to a segment and singleton segments form the bottommost
problems. Let T (i, j) denote the table entry that records the set of optimal solutions
to the segment [V (i), ..., V (j)]. Computation of T (i, j) depends directly on the entries
T (i, k) for i ≤ k < j and T (k, j) for i < k ≤ j. T (i, j) ultimately depends on T (i′, j′) for
i ≤ i′ ≤ j′ ≤ j. Since there are O(n2) segments for an input sequence of length n and each
can be computed in O(n) time (when only one solution is desired), the net complexity is
O(n3). The straightforward top-down recursion generates at least n! subproblems, thus
tabulation brings about a dramatic improvement in performance.

Another generic optimization that can be applied to problem reduction generators is the
incorporation of filters, as in [24]. Filters are a mechanism for detecting that solving
a subproblem cannot lead to feasible (or optimal) solutions. Pruning mechanisms in
backtrack and lower bound functions and dominance relations in branch-and-bound are
classic examples of filters. Generally, filters can be derived as necessary conditions on
the existence of feasible (or optimal) solutions to a subproblem.

There is a known filter for optimal binary search trees. Knuth [14] shows that the table T
satisfies a certain monotonicity condition. If R(i, j) denotes the roots of trees in T (i, j),
then

R(i, j − 1) ≤ R(i, j) ≤ R(i+ 1, j) for j − i ≥ 2

where A ≤ B is defined by

a ∈ A ∧ b ∈ B ∧ b < a =⇒ a ∈ B ∧ b ∈ A.

31

If we are only interested in a single optimal solution, then this property means that
each row of R is monotonically increasing and for each nonsingleton segment R(i, j) can
be bounded above and below by R(i, j − 1) and R(i + 1, j). It is not clear how an
automated system could help discover such properties. Once such a property is obtained
however, it is relatively straightforward to derive useful pruning mechanisms that exploit
the property. Incorporating a filter that only accepts decompositions that respect the
bounds, results in an O(n2) algorithm for finding one optimal solution.

6. Related Work

Complete problem reduction theory provides the foundation for the well-known algo-
rithmic paradigms of branch-and-bound, dynamic programing, and game tree search.
Many researchers, particularly in AI, have modeled branch-and-bound as search in an
AND/OR graph (also known as hypergraphs) [18]. AND nodes correspond to our decom-
position relations and OR nodes correspond to the alternative decompositions obtained
for each input. Kumar and Kanal [15] present such a model of branch-and-bound and
show how algorithms such as AO*, B*, SSS*, and alpha-beta are special cases of the
model. In particular, the alpha-beta mechanism for searching game trees is revealed as
depth-first search for an optimal solution with respect to a cost function based on the
board evaluation function. Stockman’s SSS* algorithm is the corresponding best-first
algorithm.

There has been a long history of attempts to model dynamic programming (DP) al-
gorithms and to investigate their underlying logical structure starting with Bellman’s
pioneering work [1]. Bellman’s concept of DP treats the solution of a problem as a se-
quence of decisions (known as policies) that change one state into another. The essence
of DP is expressed in the principle of optimality :

“An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.”

This principle was made precise in a set of functional recurrence equations that charac-
terize DP. Bellman and others showed how to apply this principle to a wide variety of
kinds of problems in applied mathematics, including stochastic modeling, the calculus of
variations, and combinatorial optimization. The slogans given in Section 1 reexpress the
principle of optimality in current terms.

Mitten [17] pointed out the key role of monotonicity of the cost function as a sufficient
condition that the recurrence equations of DP indeed produce optimal solutions. Karp
and Held [11] formalized Bellman’s notions of “state”, “decisions”, and “policies” via
sequential decision processes based on finite automata theory. This model allowed precise
investigation of the relative power and applicability of various models of DP. Ibaraki [9]

32

explored various subclasses of sequential decision processes via properties of the cost
function. Smith [21] generalized sequential decision processes from a finite automaton
model to a push-down automaton model. It is straightforward to show that sequential
decision process models (and their generalizations) are special cases of complete problem
reduction theory.

The assumption that solutions are of sequence datatype has been relaxed during the
1980’s. Gnesi, Martelli, and Montanari [6] use Tarski’s fixpoint theorem to model the
recurrence equations of DP as iteration towards a fixpoint in a lattice. Complete problem
reduction theory is slightly less general than Gnesi, Martelli, and Montanari’s model of
DP in that their notion of a solution to the recurrence equations is defined in the limit,
whereas our model uses a well-founded ordering in order to assure finite termination. de
Moor [5] uses concepts from category theory to model dynamic programming.

Our notion of a decomposition structure equipped with a well-founded order is similar
to the decomposition algebras of Klaeren [13]. One difference is that Klaeren uses a
single (total) decomposition operator whereas we have a distinct (partial) decomposition
operator for each operator symbol in the signature. In both cases the point of the
decomposition is to support the definition of problem reduction algorithms.

7. Concluding Remarks

We have applied the design tactic to a variety of problems including context-free language
parsing (cf. Partsch [19]), traveling salesperson, partitions of an integer, multiplying a
sequence of matrices, optimal decision trees [16], 0,1-knapsack, and other classic prob-
lems in the dynamic programming literature. None of the deductions involved in these
derivations was very hard. The tactic has been partially implemented in the KIDS system
[25] and used to design algorithms for several of these problems.

This paper represents another in a sequence of papers exploring various algorithm theories
and formal design tactics for them [26]. It is especially pleasing that the theory underlying
dynamic programming, branch-and-bound, and game tree search turns out to have so
much in common with the theory of divide-and-conquer [22, 23]. The essential difference
between them is whether one wants one or all solutions to a given problem.

Acknowledgements

I would like to thank Richard Jüllig and Mike Lowry for their comments on a draft of this
paper. Paul Taylor’s Latex macros were used to produce the commutative diagrams. This
research was supported in part by the Office of Naval Research under Contract N00014-
87-K-0550 and by the Office of Naval Research and the Air Force Office of Scientific
Research under contract N00014-90-J-1733 monitored by the Office of Naval Research.

33

References

[1] Bellman, R. E. Dynamic Programming. Princeton University Press, Princeton,
N.J., 1957.

[2] Bird, R. S. Tabulation techniques for recursive programs. ACM Computing Surveys
12, 4 (December 1980), 403–417.

[3] Blaine, L., and Goldberg, A. DTRE – a semi-automatic transformation sys-
tem. In Constructing Programs from Specifications, B. Möller, Ed. North-Holland,
Amsterdam, 1991, pp. 165–204.

[4] Cohen, N. H. Eliminating redundant recursive calls. ACM Transactions on Pro-
gramming Languages and Systems 5, 3 (July 1983), 265–299.

[5] de Moor, O. Categories, relations, and dynamic programming. Tech. rep., Oxford
University, Programming Research Group, December 1990.

[6] Gnesi, S., Montanari, U., and Martelli, A. Dynamic programming as graph
searching: An algebraic approach. Journal of the ACM 28, 4 (October 1981), 737–
751.

[7] Goguen, J. A., Thatcher, J. W., and Wagner, E. G. An initial algebra
approach to the specification, correctness and implementation of abstract data types.
In Current Trends in Programming Methodology, Vol. 4: Data Structuring, R. Yeh,
Ed. Prentice-Hall, Englewood Cliffs, NJ, 1978.

[8] Goguen, J. A., and Winkler, T. Introducing OBJ3. Tech. Rep. SRI-CSL-88-09,
SRI International, Menlo Park, California, 1988.

[9] Ibaraki, T. Solveable classes of discrete dynamic programming. J. Math. Anal.
Appl. 43 (1973), 642–693.

[10] Ibaraki, T. Branch-and-bound procedures and state space representation of com-
binatorial optimization problems. Information and Control 36 (1978), 1–36.

[11] Karp, R., and Held, M. Finite state processes and dynamic programming. SIAM
Journal of Applied Mathematics 15, 3 (May 1967), 693–718.

[12] Khoshnevisan, H. Efficient memo-table management strategies. Acta Informatica
28, Facs. 1 (November 1990), 43–81.

[13] Klaeren, H. A. A constructive method for abstract algebraic software specifica-
tion. Theoretical Computer Science 30 (1984), 139–204.

[14] Knuth, D. E. Optimum binary search trees. Acta Informatica 1, 1 (1971), 14–25.

[15] Kumar, V., and Kanal, L. A general branch and bound formulation for under-
standing and synthesizing and/or tree search procedures. Artificial Intelligence 21,
1-2 (March 1983), 179–198.

34

[16] Martelli, A., and Montanari, U. Optimizing trees through heuristically
guided search. Communications of the ACM 21, 12 (December 1978), 1025–1039.

[17] Mitten, L. G. Composition principles for synthesis of optimal multistage pro-
cesses. Operations Research 12 (1964), 610–619.

[18] Nilsson, N. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, New
York, 1971.

[19] Partsch, H. Specification and Transformation of Programs: A Formal Approach
to Software Development. Springer-Verlag, New York, 1990.

[20] Shoenfield, J. R. Mathematical Logic. Addison-Wesley, Reading, MA, 1967.

[21] Smith, D. R. Representation of discrete optimization problems by discrete dy-
namic programs. Tech. Rep. NPS 52-80-004, Naval Postgraduate School, Monterey,
California, March 1980.

[22] Smith, D. R. The structure of divide-and-conquer algorithms. Tech. Rep. NPS52-
83-002, Naval Postgraduate School, Monterey, CA, March 1983.

[23] Smith, D. R. Top-down synthesis of divide-and-conquer algorithms. Artificial
Intelligence 27, 1 (September 1985), 43–96. (Reprinted in Readings in Artificial
Intelligence and Software Engineering, C. Rich and R. Waters, Eds., Los Altos, CA,
Morgan Kaufmann, 1986.).

[24] Smith, D. R. Structure and design of global search algorithms. Tech. Rep.
KES.U.87.12, Kestrel Institute, November 1987.

[25] Smith, D. R. KIDS – a semi-automatic program development system. IEEE
Transactions on Software Engineering Special Issue on Formal Methods in Software
Engineering 16, 9 (September 1990), 1024–1043.

[26] Smith, D. R., and Lowry, M. R. Algorithm theories and design tactics. In Pro-
ceedings of the International Conference on Mathematics of Program Construction,
LNCS 375, L. van de Snepscheut, Ed. Springer-Verlag, Berlin, 1989, pp. 379–398.
(reprinted in Science of Computer Programming, 14(2-3), October 1990, pp. 305–
321).

[27] Turski, W. M., and Maibaum, T. E. The Specification of Computer Programs.
Addison-Wesley, Wokingham, England, 1987.

35

