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Abstract. Branch and bound procedures are the most efficient known means for solving many NP-hard 
problems A special class of branch and bound procedures called relaxation-gutded procedures ig 
presented. While for some branch and bound procedures a worst-case complexity bound is known, the 
average case complexity is usually unknown, despite the fact that it may g~ve more useful information 
about the performance of the algorithm. A random process which generates labeled trees is introduced 
as a model of the kind of trees that a relaxatlon-gutded procedure generates over random instances of a 
problem Results concerning the expected time and space complexity of searching these random trees 
are derived with respect to several search strategies. The best-bound search strategy is shown to be 
optimal in both time and space. These results are illustrated by data from random traveling salesman 
instances Evidence ~s presented that the asymmetric traveling salesman problem can be solved exactly 
in time O(n31n(n)) on the average. 

Categories and Subject Descnptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu- 
mencal Algorithms and Problems, G.2.1 [Discrete Mathematics]: Combinatorics; G.I.6 [Numerical 
Analysis]. OpUmlzatlon 
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1. Introduction 
A discrete minimization problem H is a triple H = (S, D, f )  where S is a discrete 
set of objects called feasible solutions, D is a set of  input instances, and f: S × D 

Z ÷ (positive integers) is a cost function. An instance of  II has the form 
(S',  d, f )  where S'  C_ S and d E D. ($1, d, f )  is a subinstance of  (So, d, f )  if 
$1 _c So. When no confusion can arise we will identify an instance by S' ,  its set of  
feasible solutions. An optimal solution to an instance S'  is an object x ~ S'  which 
has minimal cost; that is, for all y E S' fix, d) <_ f(y, d). The goal is to find an 
optimal solution to a given instance of  II. The basic branch and bound procedure 
works as follows. An instance of a problem H is analyzed, and if the minimal-cost 
object is not easily extracted, then the instance is decomposed into subinstances 
and a lower bound is computed on the cost of  the minimal-cost object in each 
subinstance. Those subinstances whose bound exceeds the cost of  some known 
(perhaps nonoptimal) solution can be discarded since they cannot contain an 
optimal solution. The remaining subinstances are repeatedly analyzed, decom- 
posed, and bounded until an object is found whose cost does not exceed the bound 
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on any subinstance, hence that object is an optimal solution. The search process 
generated by a branch and bound procedure is often represented by a tree in which 
instances are represented by nodes, and the decomposition of instance S, 
into subinstances is represented by arcs from the node representing S, to each 
subinstance. 

Branch and bound seems to have emerged as the principal method for solving 
discrete minimization problems which are classified as NP-hard [6]. Theoretical 
treatments of branch and bound procedures may be found in [2], [14-16], [22], 
[25], [31], and [33]. Just a few of the applications of the branch and bound method 
include integer programming [8], flow shop and job shop sequencing [ 17], traveling 
salesman problems [3, 4], knapsack problems [9, 13], puzzles and other cognitive 
tasks [32], optimal decision tress [30], and pattern recognition [ 18]. 

In this paper we focus on a class of branch and bound procedures which we call 
relaxation guided. A relaxation of a discrete minimization problem II = (S, D, f )  
is a problem II '  = ( T, D, g) where S _ T, and for all x ~ S and d E D fix, d) = 
g(x, d). Each instance S, of II corresponds to a unique instance T, of II '  such that 
S n T, --- S,. T~ is called the relaxed instance with respect to S,. A relaxation-guided 
procedure makes use of a fast algorithm for solving II ' .  If an optimal solution z to 
a relaxed instance T, is also feasible (z E Si), then z is also an optimal solution to 
instance S,. If z is not feasible, then it is used to decompose T, into subinstances 
in such a way that z is precluded from further consideration. A few of the problems 
for which relaxation-guided algorithms have been devised are the symmetric and 
asymmetric traveling salesman problems [4, I I, 12, 37], the integer linear program- 
ming [8], quadratic assignment [24], set covering [27], and knapsack problems 
[131. 

The complexity of an algorithm has usually been measured by its worst-case 
behavior over all instances of a problem (i.e., an upper bound on its performance). 
The obvious problem with such a' measure is that it gives little information about 
the usual or average performance of the algorithm. For example, Klee and Minty 
[20] construct some examples which cause the simplex algorithm for solving linear 
programs to run in exponential time, yet its usual performance is so good that it is 
one of the most widely used computer algorithms. It is especially true of branch 
and bound proceduresmwhich can have widely varying behaviors over the set of 
instances of a p r o b l e m l t h a t  the average case complexity gives more useful 
information than a worst-case measure about the performance of the algorithm. 

In this paper we use a random process similar to a branching process [10] in 
order to model the kinds of trees generated by a branch and bound procedure. The 
model enables us to derive several results on the expected time and space complexity 
of branch and bound procedures under best-bound-first and depth-first search 
strategies. With these results a model of a subtour-elimination algorithm for the 
traveling salesman is constructed, and empirical performance data are compared 
with values predicted by the model. 

Section 2 discusses the branch and bound procedure. In Section 3 our model of 
branch and bound search trees is introduced and properties of the model trees are 
derived. Sections 4 and 5 develop results on the complexity of best-bound-first, 
depth-first, and general search strategies. Also in Section 5, the expected time 
complexity of a depth-first search is studied as a function of the depth of the first 
solution found in the search tree. A subtour-elimination algorithm for the traveling 
salesman problem is modeled in Section 6, and evidence is provided that it has an 
expected running time of O(n31n(n)). 
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2. Branch and Bound Procedures 

A branch and bound procedure has three major components. A branching function 
B is a rule determining if and how a given instance is to be decomposed into 
subinstances. In a relaxation-guided branch and bound procedure B uses an 
algorithm A which finds solutions to the relaxed instances; that is, A: 2 r ~ T such 
that for any T, C T and for all y E 7", f(A(T,), d) <_ f(y,  d). Formally B is a mapping 
from subinstances of T to a collection of subinstances of T (B: 2r---~ 22r) such that 

(1) ifA(T,) ~ S or 7", is a singleton, then B(T,) is the empty set (i.e., no instances 
are produced); 

(2) otherwise, if A(T,) q! S, then B(T,) = {T,t, T,2 . . . . .  T, kt where 
(a) U~=, T U C T,, 
(b) ,,k,_,j=l = --- Su = S,, and where 7", N S S, and T,j n S S~j, 
(c) A(T,) ~ Ok=, T U. 

The second component of a branch and bound procedure is a lower bound 
functlon (LB) which maps subinstances of T into nonnegative integers. For any 
instance (T,, d, f )  define 

{)c( if 7", is the empty set 
LB(T,, d) = A(T,), d) otherwise. 

The following properties are satisfied by this definition of LB: 

(1) LB(T,, d) _ f(s, d) for all s ~ S, = T, N S, since A(T,) is a least-cost object 
in 7",; 

(2) LB(T,, d) ___ LB(Tv, d) if Tv E B(T,), since Tu C T,; 
(3) ifA(T,) E S, then A(T,) is the minimal-cost object in S, = T, n S. 

When A(7;) E S, the branching function does not decompose the instance, precisely 
because an optimal solution of the instance has been found. In practice there may 
be ways to further improve the lower bound beyond the simple approach given 
above. See, for example, [12] and [37]. 

The lower bound function is used to eliminate from consideration those sub- 
instances of T which can be shown not to contain an optimal solution to the 
original instance. If it is known that the optimal solution has a cost of  at most q,  
then any instance 7", for which LB(T,, d) > q cannot yield an optimal solution. 
An instance is said to have been explored if it has been terminated by this bounding 
test or if the branching function has been applied to it. An instance which has been 
generated by the branching function, but not yet explored at some point during a 
computation, is said to be active. 

The third component of a branch and bound procedure is a search strategy, 
which is a rule for choosing to which of the currently active instances of S the 
branching rule should be applied. For conceptual simplicity and uniformity of  
notation, a search strategy will be realized here by a heuristic function h: 2 r---} 
priority, where priority is a linearly ordered set which depends on the particular 
search strategy. Of those instances waiting to be explored via the branching rule 
we choose that instance 7", with the smallest heuristic value h(T,). 

A relaxation-guided branch and bound procedure for finding a single least-cost 
object is given below in a Pascal-like language. The principal data structure is a 
priority queue which stores instances with an associated priority given by the 
heuristic function h. The queue is accessible only by the following three operators: 
NONEMPTY, which returns true if and only if the priority queue is nonempty; 
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SELECT, which removes and returns the instance in the priority queue with 
smallest heuristic value; and INSERT, which inserts an instance into the priority 
queue with its associated heuristic value. Efficient algorithms for priority queues 
are discussed in [ 1 ]. 

The code assumes the user-defined data types instance (representation of relaxed 
problem instances); solutiontype (representation of T), priority (representation of 
priorities); and priority queue (representations for priority queues). In addition, the 
following generic functions are employed: 

A: instance ---, solutiontype (A finds solutions to relaxed instances); 
LB: instance --> integer (LB computes the lower bound function); 
FEASIBLE: solutiontype --, boolean (FEASIBLE distinguishes elements of S from 
elements of T - S). 

function BB(N: mstance, UB: integer): solutiontype; 
var 

i, j: integer; 
solution: solutiontype; 
PQ: prtority queue; 

begin 
1 if FEASIBLE(A(N)) then return(A(N)); 
2 INSERT(N, PQ, h(N)); 
3 while NONEMPTY(PQ) do /* while there are active instances... */ 
4 begin N := SELECT(PQ); /* find instance with least heuristic value */ 
5 if LB(N) < UB /* and explore i t . . .  */ 
6 then if FEASIBLE(A(N)) /* if relaxed solution is feasible... */ 

then begin /* then save it */ 
7 UB := LB(N); solution := A(N) 

end 
else begin /* otherwise apply the branching rule... */ 

8 Apply branching rule to N generating subinstances Nj, N2 . . . . .  Nk; 
9 for i :----- 1 to k do /* and store the subinstances */ 

10 INSERT(N,, PQ, h(N,)) 
end 

end; 
11 return(solution) 
end 

The procedure BB is typically invoked with T and oo as arguments where oo is 
an upper bound on the cost of  any object in T. The variable UB serves-to record 
the cost of  the least-cost feasible object currently known during the search process. 
An obvious improvement of BB is to check that LB(N,) < UB in statement 10, 
before the instance N, is inserted in the priority queue. While such a test will 
improve the performance of BB somewhat in practice, we omit it here for the sake 
of simplifying our analysis of the behavior of BB. Its inclusion would not affect 
our order of magnitude results on the time complexity of branch and bound search, 
but would have the effect of lowering the space complexity somewhat. In practice 
several other enhancements of the pruning power of BB may be added to this code, 
but they depend on the special structure of a particular problem. A dominance 
relation [15, 16, 22] is a relation on subinstances of Tsuch that if T, dominates Tj, 
then Tj cannot contain a better solution than T,, so T~ can be eliminated from 
further consideration. An equivalence test [ 16] is based on an equivalence relation 
over subinstances of T. In many applications the branching structure generated by 
BB is a graph; a well-chosen equivalence test between nodes can eliminate much 
redundant search. 
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The best-bound-first (bbf) search strategy [5, 25] chooses to apply the branching 
rule to that active instance with the smallest lower bound. This strategy is realized 
by the heuristic function 

h(T,) = LB(T,) 

where LB is the lower-bound function. The relation ---h is just the usual relation _< 
on the integers. In practice a priority queue is indeed the appropriate data structure 
for implementing a best-bound-first search. Also, in practice ties will be broken in 
favor of deeper nodes in the search tree since, in general, it represents a more 
tightly constrained instance and may be closer to producing a relaxed solution that 
is feasible. 

The ordered-depth-first (odf) search strategy applies the branching rule to the 
least cost of the most recently generated instances, and may be realized by 

h(T,) = (d(T,), LB(T,)) 

where d(T,) --- depth of the instance T, in the tree generated by BB and the range 
of h is the set of ordered pairs of integers. The generation-order-depth-first (godf) 
search strategy applies the branching rule to the first generated of the most recently 
generated instances and can be realized by 

h(T,) = (d(T,), i) 

for the ith generated instance. Again, h produces an ordered pair. For both of these 
heuristic functions we define (a, b) -<h (c, d) if and only if a > c or (a -- c and 
b_< d). 

The breadth-first search strategies are another well-known class of search strate- 
gies which are, however, rarely used in relaxation-guided branch and bound 
procedures. Under a breadth-first search strategy all instances generated at depth 
i ___ 0 are explored before the subinstances they generate at depth i + 1. 

As an example of a relaxation-guided branch and bound procedure we will 
consider a subtour-elimination algorithm for solving the traveling salesman prob- 
lem (TSP). An n-city TSP can be described as follows: TSPn = (Cn, D, f )  where 
Cn is the set of cyclic permutations of {l, 2, 3 . . . . .  n}, D is the set of  positive 
integral n x n matrices, and 

f(~r, d) = Y, d(i, 7r,) for all 7r E Cn, d ~ D. 
Iml 

The well-known assignment problem is used as the relaxation of the traveling 
salesman problem. An assignment problem of order n may be described by 
ASSIGN~ = (S,, D, f )  where D and f a r e  as defined above, and Sn is the set of 
permutations of {l, 2 . . . .  , n}. The assignment problem is solvable in O(n 3) time 
for an initial instance and O(n 2) for subsequent modified instances [4] and [26]. 

Subtour-elimination algorithms differ mainly in their choice of branching rule. 
The following branching rule was proposed by Shapiro [34]: Given cost matrix d, 
solve the assignment problem with respect to d. If the least-cost solution, ~r, is 
cyclic, then we have extracted the least-cost cyclic permutation over the feasible 
set of d, so there is no need to branch. If ~r is noncyclic, then pick one of its 
subcycles, say the smallest, and let this cycle be denoted (/1, /2 . . . . .  ik). In an 
optimal cost cyclic permutation at least one of the nodes in this cycle must be 
directed outside the cycle, since the subcycle cannot be a part of a eyelie permuta- 
tion. The instance is decomposed as follows: In the j th  subinstance the node i~ is 
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forced to connect to a node not in the cycle (it,/2 . . . .  , ik) by setting the matrix 
entries d,/m = oo for 1 <_ m _< k. Throughout this paper we use the symbol oo to 
denote a number which is sufficiently large in context to be effectively infinite. 
Variations on this branching rule are given in [3], [7], and [37]. 

3. A Model of Branch and Bound Search Trees 

3.1 RANDOM INSTANCES AND RANDOM TREES. It was noted previously that the 
branch and bound process generates a tree structure. In this section we use this 
abstraction to define a probabilistic model of  the kind of  tree structures that BB 
generates over the instances of  a discrete minimization problem. Within this model 
we can derive various results concerning the expected time and space requirements 
of  BB under various search strategies. 

The collection of  subinstances of  T that are inserted in the priority queue during 
the execution of  BB is called the search tree; the time complexity of a branch and 
bound search will be measured by the size of the search tree. The space complexity 
will be measured by the maximum number of  instances in the queue at any time 
during the search. The time and space complexities of  a given search by BB under 
search strategy h, given an initial bound of  b, will sometimes be denoted by the 
variables Nr(b) and Ns(b), respectively. When appropriately defined the expected 
value of Nr and Ns will be denoted Eh(Nr(b)) and Eh(Ns(b)). When the initial 
bound is oo, we will simply write Nr and Ns in place of Nr(oo) and Ns(oO). This 
definition of  time complexity does not include the amount of time spent executing 
the branching rule or inserting nodes in the queue. We assume that these times are 
relatively independent of  the choice of  branching function, so they should factor 
out of  the comparison of the different search strategies, leaving the size of the 
search tree as the essential measure of  performance. 

The question of interest is how to model the behavior of  BB on a random 
instance of  a problem, apart from the details of  the problem. That is, which features 
of  a branch and bound search are relevant to branch and bound and which are 
problem dependent? First, by the action of  the branching rule a tree structure is 
generated so that BB is a tree searching algorithm. Second, the lower bound 
function of  BB associates a number with each node in this tree. The search strategy 
does not affect the tree per se, but only the order in which the algorithm examines 
the tree. So a tree with costs associated with each node is another way of representing 
the domain of BB. In this setting the goal of  BB is to find the least-cost leaf of the 
tree. These considerations are formalized in the following definition. An arc-labeled 
tree is a tree t = (N, A, C) where N is a set of nodes, A is a set of arcs, and C: A ---> 
Z + (positive integers) is a cost function on the arcs of  the tree. (For example, see 
Figure 1.) In an arc-labeled tree the cost of  a node is defined to be the sum of the 
costs on the arcs on the path from the root to the node. The cost of the root is 
zero. 

The next step is to map the notion of a random instance of given size into the 
arc-labeled tree domain. A probability function is assigned to the class of arc- 
labeled trees which should somehow correspond with a probability measure on the 
instances of  a discrete minimization problem. Our model of  this mapping is to 
regard the generation of  a tree as a random process in which each application of 
the branching rule is replaced by an independent random experiment where the 
outcome is the number of  sons that a node has. In a similar manner, the assignment 
of a cost to a node is treated as the outcome of a different independent random 
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experiment. Formally, let P and Q be probability mass functions. The mean of P 
will be written P. It is assumed that P and Q satisfy the following properties: 

(1) P(0) > 0 (a node is terminal with nonzero probability), 
(2) Q(0) = 0 (an arc has cost zero with probability zero). 

Let RANDOM(F) be a random function which returns k with probability F(k). 
The following procedure generates a random arc-labeled tree. 

(1) Let a root node exist. The root is unsprouted. 
(2) Select an unsprouted node n (according to some search strategy) and sprout it 

as follows: Let n have RANDOM(P) sons. For each arc from n to its sons, label 
the arc with cost RANDOM(Q)• 

(3) Repeat step 2 until all nodes have been sprouted. 

This dynamic means of defining a random arc-labeled tree is easily implemented 
on a machine for experimental purposes. This process is related to the well-known 
branching process [ 10], which has applications to population growth, nuclear fission 
reactions, and particle cascades. 

We need to define a probability function on the set of arc-labeled trees. This can 
be accomplished as follows. The generation of a tree is viewed as a sequence of 
trials, where each sprouting of step 2 in the above procedure is a trial. Le t j  denote 
the number of sons generated in a random trial and let c~, c2 . . . .  , c: denote the arc 
costs assigned to the arcs. The probability of the outcome of a trial then is 
P ( j ) Q ( c l ) O ( c 2 )  . . .  O(cj) .  Clearly, if we sum over all possible outcomes of a trial, 
the probabilities sum to 1, 

o0 co oo 

~'. P(n) ~ Q(c0 . . .  ~ Q(c~)= 1. 
n = O  C I = I  cj=l 

We can formulate the probability of a tree generated by this process as follows. 
Consider the probabilities of the outcomes of the trials during the generation 
of a tree in a sequence (go, gl, g2, . . .  ), where g, is the probability of  the par- 
ticular outcome of the ith trial. Let us call the product gog~ . . .  g, the ith partial 
probability of the randomly generated tree. The probability of a randomly gener- 
ated tree then is the limit as i goes to infinity of the ith partial probability. 
For example, the probability of the arc-labeled tree in Figure 1 is P(2)Q(I)Q(2) 
• P(O)P(3)Q(3)Q(5)Q(7)P(O)P(O)P(O). 

Let sons(n) denote the number of sons of  the node n. The arc-labeled tree t --- 
(N, A, C) is in the class of  (P, Q)-random trees if and only if (sons(n)) > 0 for all n 

N and Q(C(a)) > 0 for all a E A. We will omit the prefix (P, Q) and call t a 
random tree when P and Q are clear from context. 

The key simplifying assumption in this model is the independence of each 
application of the branching rule and the independence of each assignment of  arc 
costs. The mdependence assumptions will not hold exactly in branch and bound 
applications. Many branch and bound algorithms are not relaxation guided and 
find their solutions at a fixed depth k. In these algorithms the opportunity of  
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finding an optimal solution at an intermediate depth d < k is precluded and, thus, 
they are not well modeled by a depth-independent P. In general the branching and 
arc cost probabilities are dependent on many factors, some of them problem 
dependent. A more sophisticated problem-independent model might include the 
depth of a node as a parameter in P and Q. Alternatively, one might include as 
parameters the number of siblings of a node and the cost of  the arc to its parent, 
thus modeling the branching rule and arc cost assignment by the state transition 
probabilities of a Markov process. 

The key strength of the model is that it allows a tractable and general analysis of  
the expected performance of branch and bound under several search strategies. We 
claim that the model is useful in analyzing relaxation-guided branch and bound 
procedures and we provide an example in Section 6. More broadly, the indepen- 
dence assumptions may play a role in understanding the asymptotic properties of 
general branch and bound procedures. In many branch and bound applications 
each branching corresponds to the imposition of  some constraints on a small 
number of variables in a parent instance. If the average number of variables affected 
by a decomposition is asymptotically negligible in comparison to the total number 
of variables in the problem, then we might expect that as the problem size increases 
the statistical properties of the child instance become more and more like the 
statistical properties of the parent instance. In the limit we may have statistical 
independence. In addition, for sufficiently large trees the branch and bound process 
examines only the topmost part of the full tree, which may have much more 
uniform properties than the tree as a whole. We present evidence in Section 6 that 
the trees produced by the branching function of a subtour-elimination algorithm 
from the traveling salesman problem do have a degree of uniformity in the 
probability of various branching factors. This uniformity can be exploited in the 
asymptotic analysis and and derivation of bounds on the expected running time of 
subtour-elimination algorithms. 

3.2 PROPERTIES OF A CLASS OF (P, Q)-RANDOM TREES. Before studying the 
behavior of BB it will be useful to develop expressions for some important properties 
of a class of random trees. For example, what is the expected path length of a 
randomly picked path in a random tree? The probability that a node is a leaf is 
P(0) and the probability that a node has some sons is 1 - P(0). A branch of length 
k then has probability (1 - P(o))k/°(O), a geometric distribution. The expected path 
length is 

oo 

Y, k(l - P(0))kp(0) = (1 -- P(0))/P(0). (3.1) 
k,=O 

A more difficult question concerns the distribution of least-cost leaves over the 
class of random trees. Let lcl(t) denote the cost of a least-cost leaf in an arc-labeled 
tree t. Let O(i) denote the probability that lcl(t) = i in a random tree t. 0 is defined 
on the nonnegative integers, since the cost of  any leaf in a random tree is a 
nonnegative integer by definition. A recurrence relation for 0 can be formulated 
by equating two expressions for the probability that lcl(t) > i in a random tree t. 
First note that no arcs can have a cost of zero, so the only way that a tree can have 
a least-cost leaf of cost zero is if the root is terminal, thus 0(0) = /9(0). One 
expression for the probability that lcl(t) > i is 

1 -  ~ O(k). (3.2) 
k=O 
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Next consider the treetop shown in Figure 2a. The subtrees h, tz . . . . .  tj are 
themselves random trees. The probability that lcl(tk) > i where & is the kth subtree 
plus the arc from the root as in Figure 2b is 

1 - i ~ Q(c)O(s - c). (3.3) 
S=I c'~! 

This expression sums over all combinations of arc costs c and costs of  least-cost 
leaves within t (letting s denote the least-cost leaf of  the combined arc and subtree, 
s - c is the cost of the least-cost leaf of the subtree) for which the sum is not greater 
than i. Since this expression applies independently to each of  any number of 
branches, the probability that the treetop of Figure 2a has j branches and lel(t) > i 
is 

P(j) 1 - Q(c)O(s - c) . 
s'~l c ~ l  

For i > 0 the probability that lcl(t) > i in a random tree t is 

Y~ P(j) 1 - Q(c)O(s - c) . (3.4) 
J~ l  S~I c~l 

The case j -- 0 is not included in this expression because then lcl(t) = 0. Finally, 
expressions (3.2) and (3.4) can be equated: 

l - O(k)  = • P ( j )  1 -  Q ( c ) O ( s -  c) . (3.5) 
k=0 J~ l  s,=l c~l 

This is a recurrence relation since O(i) appears on the left but only the values 010), 
0I I )  . . . . .  0(i  - 1) appear on the right for i _> 1. In Appendix A this recurrence 
relation is broken down into simpler recurrence relations in order to speed up the 
computation of O. Except for special P and Q, this recurrence relation seems to 
have no general analytic solution. Extrapolation of 0 based on uniformly distrib- 
uted P and Q suggests that O(n) is asymptotic to d" for some constant d that 
depends on P and Q. Figure 3 shows some of 0 for the class of  (Pip, Qi0o)-trees 
where PMk)  = 1/11 i f0  _ k _ 10 and Pl0(k) - 0 otherwise, and Qloo(c) = 1/100 
if 1 _< c -< 100 and 0 otherwise. Other properties of random trees, such as the 
probability that the shallowest least-cost leaf in a random tree occurs at depth k, 
are given in [36]. 

4. Best-Bound-First and Heuristic Search Strategies 

Let no, n~, n2 ...  denote the sequence of  nodes explored in a tree by BB under a 
heuristic search strategy h. n, is called thefirst-found leaf if  no node ni with j < i is 
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FIG. 3. O(i) for (P,o, Qi0o)-trees. 

a leaf. The first-found leaf corresponds to the first feasible solution explored during 
a branch and bound search and has the effect of changing UB so that pruning can 
take place of subsequently explored nodes whose cost exceeds UB. 

PROPOSITION 4.1. I f  nk is the first-found leaf in a best-bound-first search o f  an 
arc-labeled tree t, then nk is the least-cost leaf in t. 

PROOF. A best-bound-first search explores the nodes of a tree t in order of 
nondecreasing cost. Let s be any leaf. At the moment that the first leaf node s* is 
found, some ancestor of s is on the priority queue and has cost no less than the 
cost of s*. Since costs are nondecreasing as we proceed down any path in an arc- 
labeled tree, s must have cost no less than the cost of s*. Thus, s* has minimal 
cost. Q.E.D. 

As a consequence of Proposition 4.1 we can slightly modify a best-bound-first 
implementation of BB so that it terminates as soon as a leaf (representing a feasible 
solution) is found. With this proposition we can derive an expression for the 
expected time and space complexity of BB under a best-bound-first search strategy. 

THEOREM 4.1. Over a class of(P, Q)-random trees the expected ttme and space 
complexities o f  BB under the best-bound-first search strategy is given by 

p 
Ebbf(NT) = 1 + -  1(o) 

P - 1  
Eb¥(Ns) = 2 + P(O----T" 

PROOF. Let x, be a random variable whose value is the number of children of 
n,, the ith explored node. The number of  nodes inserted in the priority queue prior 
to the exploration of the first-found leaf is a random sum of the form 

1 + Xo + x~ + . . .  + Xk-~ (4.1) 
where nk is the first-found leaf. The first term in (4.1) counts the insertion of the 
root into the priority queue. The remaining terms count the children of each 
explored node prior to the first-found leaf. If nk is the first-found leaf, then the 
space complexity is measured by 

max 1 + ( x j -  1) = 1 + Y~ ( x j -  1) (4.2) 
0 "~t<k J=O j~O 

since xj ___ 1. The first term counts the insertion of the root into the priority queue 
and the j th  term, (x~ - 1), in (4.2) counts the children added to the queue by nj 
and the removal of nj itself from the queue. Each sum, (4.1) and (4.2), is a random 
sum of independently and identically distributed random variables whose mean is 
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simply the product of the expected number of terms and the expected value of  a 
term. The probability that the first-found leaf is nk is (1 -- P(0))kp(0) which has 
mean 

c o  

k(l - P(o))kp(o) = 1 - P(O) (4.3) 
k=O P(0) 

The probability that xj has value m given that m > 0 is P(m)/(l - P(0)) which has 
mean 

mP(m) P 
m~=t 1 Z ~--0) = 1 - P(O)" (4.4) 

Taking the product of (4.3) and (4.4) and adding one for the root gives us the 
expected value of (4.1) 

P l -- P(O) P 
1 + 1 - - " ~ 0 )  P(O--~  = 1 + P(O)" (4 .5)  

The expected value of the random variable (xj - 1) in (4.2) is 

Y~7~=I (m - 1)P(m) _ Y.7~=l mP(m) - ]~7,-, P(m) 
1 - P (0 )  1 - P (0 )  

P -  (l -- P(O)) 
= 1 -- P(O) (4.6) 

Adding 1 for the root to the product of (4.3) and (4.6) gives us the expected value 
of(4.2) 

/ 5 _  (1 - P(0)) 1 - P(0) ( /~ -  1) 
1 + 1 - P(0) P(0) = 2 + P(0-------~ Q.E.D. (4.7) 

COROLLARY 4.1. For any search strategy h, the expected time and space com- 
plexities of BB on a random tree have the following bounds: 

P 
Eh(N~) >_ I + -  

P(O) 

( P -  l) 
Eh(Ns) >- 2 + P(O) 

PROOF. Under any search strategy h, BB cannot terminate until at least one 
leaf has been removed from the priority queue. Thus Nr  is bounded below by the 
number of  nodes inserted in the priority queue prior to the exploration of  the first- 
found leaf. This quantity is just (4.1) which has mean (4.5). Similarly Ns is bounded 
below by the number of nodes in the priority queue just prior to the removal of 
the first-found leaf. This quantity is measured by (4.2) and has mean (4.7). Q.E.D. 

Theorem 4.1 and its corollary provide us with several interesting conclusions. 
First, the best-bound-first search strategy is optimal in the sense that its average- 
case performance is no worse than that of any other search strategy. Second, 
Theorem 4.1 indicates that in the construction of an efficient relaxation-guided 
branch and bound procedure we should seek to minimize the expected branching 
factor and maximize the chance that an optimal solution to a relaxed instance is 
also feasible. Third, only the relative ordering of the costs of the nodes in a tree are 



174 DOUGLAS R. SMITH 

important to a best-bound-first search, not the particular costs, thus (4.5) and (4.7) 
are independent of  Q. 

The absence of Q in (4.5) means that the performance change in BB due to 
replacing one lower-bound function with another cannot be modeled by simply 
varying Q. Instead, new P and Q functions are needed which more closely model 
the search trees produced by BB (as opposed to modeling the full trees determined 
by the branching and lower-bound functions). If the search trees produced by BB, 
using a new lower-bound function, are smaller, it is because the first-found leaf is 
found sooner in the search. Thus P(0) is higher, and/or fewer nodes are generated 
by the branching function, thus P is lower. So it is possible to capture the effect of  
different lower-bound functions if one is willing to adopt the more sophisticated 
approach ,of attempting to model the search trees produced by BB. 

5. Depth-First Search Strategies 

5.1 EXPECTED TIME COMPLEXITY. The choice of which node to explore next 
by a depth-first search strategy is made between the sons of the most recently 
explored node (if any), otherwise the sons of the next most recently explored node, 
and so on. Let ET(b)  abbreviate E(Nr(b)) .  E T  will be subscripted with godf and 
odf when necessary to distinguish between generation-order and ordered depth- 
first search strategies. 

An expression for E T  can be formulated naturally as a recurrence relation. 
Define the effective bound on a node N to be the value of the expression UB - 
LB(N) at the moment that N is explored by BB. The concept of  effective bound 
enables us to treat each node as the root of  a search tree with an initial value of 
UB which is just the effective bound. Suppose that BB is searching a tree with the 
structure shown in Figure 2a where each subtree t,, t2 . . . . .  t~ may be regarded as a 
random tree. Let bo be a finite initial value of UB (the effective bound on the root) 
and let b, denote the effective bound on the root of  t, for 1 _< i < j. Then the 
expected size of the search tree for a random tree with this structure is 

ET(bo) = 1 + ET(b,)  + ET(b2) + . . .  + ET(bj). 

Each of the bounds b, for 1 _ i < j is less than bo, indicating that a recurrence 
relation may be set up. The next problem concerns the probability of a given bound 
occurring at a given node. Consider the tree in Figure 2a. Given an initial 
bound of bo, the bound on the subtree t~ is bo - c~ so BB is expected to search 
ET(bo - cO nodes in t~. lcl(t0 = m with probability O(m) since tt is a ran- 
dom tree. The same holds for the other subtrees. Suppose that lcl(fi) = mr. If 
UB --- bo initially, then after searching the first subtree of the tree of Figure 2a 
UB = min[b0, Cl + m~}. The effective bound on the root of the subtree t2 is 
minlbo, c~ + rnd - c2. Continuing this reasoning, one finds that the effective bound 
on the ith subtree t, is 

b, = min[bo, c~ + m~, c2 + m 2 ,  . . . ,  c , - i  + m,-d -- c, (5.1) 

where m~, m2, . . . ,  m,-i denote the cost of the least-cost leaves of the subtrees fi, 
t2, . . . ,  t,-~, respectively. E T  evaluated with expression (5.1) yields the expected 
number of nodes explored in t,. 

Let the functions Wodf(b, i) and Wgoaf(b, i) denote the expected size of the search 
tree of tt when the root is given an initial bound of  b for an ordered-depth-first 
search and a generation-order-depth-first search, respectively. An expression for 
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Wgodf(b, i) can be found by enumerating all possible combinations of  variables in 
(5.1). 

oo ao oo co  

Wgod~(b, i ) =  Y . . . .  Y. Y~ . . .  Y. Q(cO . . .  Q ( c , ) O ( m , ) . . .  O(mi- t )  
CI~I C~I ml=0 m~_l=0 

• ETsodf(min{b, cl + mi  . . . . .  c,-i + m , - d  - c,). (5.2) 

A tree with a structure as in Figure 2a will have expected size 

J 

l "l" ~ Wgodf (b  , i ) .  

This expression summed over all j (number of sons of the root) gives an expression 
for ETgodf( b): 

ETg~f(b)  = Y~ P ( j )  1 + Wg~f(b, i) 
jm0 i=l 

= 1 + Y~ P(j)  Vggodf(b, i). (5.3) 
3~1 z~l 

As stated, (5.3) is computationally intractable; however, it can be refined to a more 
computable form as given in Appendix A. 

The order of examining the subtrees of Figure 2a by an ordered-depth-first search 
is treated as follows. In an arbitrary tree with this structure the arc costs c~, c2, . . . ,  
G are unordered. By rearranging the tree the arc costs can be brought into sorted 
order. Note, though, that a given ordered sequence c1 --- c2 - • • • -< c, may result 
from the sorting of  many distinct sequences. The appropriate combinatorial 
question is how many unique arrangements R,(ci,  c2 . . . .  , c,) of this sequence there 
are. There are i! nonunique arrangements, but repetitions must be accounted for. 
If k of the i values have the same value cj+~ = cj+2 . . . . .  •j÷k, then there is a 
repetition factor of k! due to this relation. In general 

R , ( C l ,  C2 . . . . .  C,) = 
r~!r2! . . .  rk! 

where 

Cl  "~" " ' "  = Cr I < C r l + l  = • " "  = Cr l +r  2 < " ' "  < Cr l+r2+ +rk_  1 "~" " ' "  "~" C r l ÷ r 2 +  , . ÷ r  k .  

and rl  + r2 + . . .  + rk = t ( i . e . ,  there are r~ variables with the same value, rz 
variables with the same value, and so on). 

Again, by enumerating all possible ordered sequences c~, . . . ,  c, and m~, . . . ,  m,_~ 
of the variables in (5.1), an expression for Woaf(b, i) can be found. 

co co oo 

Wodf(h, i ) =  ]~ Y~ . . .  Y~ Q ( c , ) Q ( c 2 ) . . .  Q(c,) 
CI~I C2mCl CI-I~Cl oo 

R,(c, ,  cz . . . . .  c,) Y~ . . .  ~ O(mi)  . . .  O(m,- l )  
ml=0 m t - l ~ O  

• ETodr(min{b, c~ + mt  . . . .  , c,-t + m,-t] - cj). (5.4) 

A tree with a structure as in Figure 2a will have expected size 

1 
1 + Y. Wodr(b, i). 

t = l  
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This expression summed over all j (number of sons of the root) gives an expression 
for EToof(b): 

EToof(b) = 2 P(J) 1 + Woof(b, i) 
j=0 i=l 

= 1 + • P ( j )  Woof(b, i). (5.5) 
J=l  I=1 

The following theorems assert that over most classes of random trees a best- 
bound-first search has strictly smaller expected time and space complexity than a 
depth-first search. 

THEOREM 5.1. Let df  be any depth-first search strategy. I f  P(O) + P(1) < 1 then 
Edf(Nr) > 1 + PIP(O). 

PROOF. If t is a random tree on which a df search is performed, let N9 denote 
the corresponding value of the random variable ArT, and let at denote the number 
of nodes inserted in the priority queue just prior to the removal of the first-found 
leaf. By the argument of Corollary 4.1, N~ _> at for all t. We will construct a 
random tree t '  which has nonzero probability, and such that N~ > at, then, using 
Theorem 4.1, 

P 
Edf(NT) = Pr(t ')N~ + ~ Pr(t)N~-> Pr(t')a,, + Y, Pr(t)a, = 1 + -  

,~,, ,~,, P(O)" 

From Xk P(k) -~- 1 and P(0) + P(1) < 1 it follows that P(i) > 0 for some i > 1. 
Assume for simplicity that i = 2. The following construction can be easily 
generalized. Let c be a positive integer such that Q(c) > 0. t '  has nonzero probability 
P(0)4p(2)3Q(c)6, at, = 5, and N$ = 7. 

t' = c / ~ c  Q.E.D. 

, /  ,,. 

THEOREM 5.2. Let df  be any depth-first search strategy. I f  either (1) P(O) + P(i) 
< I for all i > 0, or (2) P(0) + P(I) < 1 and Q(c) < 1 for all c, then 

( P -  1) 
Eaf(Ns) > 2 + 

P(O) 

PROOF. The proof of this theorem is directly analogous to that for Theorem 
5.1. 

5.2 TIME COMPLEXITY AS A FUNCTION OF THE DEPTH OF THE FIRST-FOUND 
LEAF. The depth of the first-found leaf in a depth-first search has a strong effect 
on the performance of the search. Intuitively, if this depth is great, then the 
procedure will spend much of its time exploring nodes deep in the tree before 
returning to shallower levels where the least-cost leaf may lie. It might be conjec- 
tured that the size of a search tree tends to grow exponentially in the depth of the 
first leaf which it finds. To the contrary, in our model the size of a depth-first 
search tree is essentially linear in the depth of the first-found leaf. 
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FIG. 4. The structure of a depth-f i~t search tree. 

Let S(d) be the expected number of nodes searched in a random tree, given that 
the first solution occurs at depth d. 

THEOREM 5.3. For classes of  random trees in which limb._~ET(b), denoted 
ET(oo), exists, S(d) exists and ts bounded above and below by linear functions of  d. 

PROOF. Let X(d) denote the expected number of nodes in the search tree, except 
those in the first explored subtree, given that the first solution is found at depth d. 
X(0) is defined to be 1. (See Figure 4.) From the definitions we have 

d 

S(d) = 1 + E X(k). (5.6) 
k= 1 

Since X(k) >_ 1, we have 
d d 

S ( d ) =  l + E X(k) >- l + E l = l + d. 
k=l  k=l  

It is shown in [36] that there is a constant a such that for all d X(d) <_ a <_ ET(oo). 
It follows that 

d 

S(d) <_ 1 + ~ a = 1 + ad. Q.E.D. 
k=l  

Theorem 5.3 can be interpreted as follows: A depth-first search tree can be 
decomposed along the path from the root to the first-found leaf into groups of 
subtrees whose expected size X(i) is asymptotically constant (the ith group consists 
of the 2nd, 3rd . . . . .  j th  subtrees below the ith node on the path from the root to 
the first-found solution). 

All that is required for the proof of Theorem 5.3 is the existence of an upper 
bound a on the sequence IX(d)}. The formal proof of the existence of a depends 
on the independence assumptions of the model and on the existence of ET(oo). We 
conjecture, however, that such a bound exists even for branch and bound algorithms 
which are not well modeled by our assumptions. Intuitively, ET(~) may provide a 
suitable bound. It would not be difficult to try to observe the linear behavior 
predicted by Theorem 5.3 in branch and bound applications, but we have not 
attempted to do so. 

6. An Application to the Traveling Salesman Problem 

A model of a particular branch and bound algorithm is an appropriate choice of P 
and Q functions parameterized by the problem size. By analysis of  the initial 
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relaxed instance for subtour-elimination algorithms for the traveling salesman 
problem, we can derive limiting expressions for Pn where Pn(k) is the probability 
that a random instance of the n-city TSP is split into k subinstances. As described 
in Section 2 this algorithm makes use of a relaxation of  the requirement that 
feasible objects be cyclic permutations, and the initial relaxed instance corresponds 
to the set Sn of  permutations of n objects. 

We assume that our set of input instances D is a class of cost matrices whose 
entries are independently and identically distributed random variables. The prob- 
lem is to find the least-cost permutation with respect to a given cost matrix. The 
set Sn is a symmetric set in the sense that for any given pair ~rl, ,/i-2 ~ Sn there is a 
relabeling (automorphism) of the permutations of Sn such that ~rt is mapped into 
~r2. From this property it follows that all permutations are equally likely to be the 
least-cost permutation initially. There are n! permutations in S. and (n - l)! cyclic 
permutations (we can fix any of  the n elements of an n-cycle as a starting point. 
Thereafter there are (n - l)! ways to arrange the remaining n - l elements to close 
the cycle). We find then that the probability that the least-cost permutation is cyclic 
is 

( n -  1)! 1 
P,(0) = n ! n" (6.1) 

The following theorem helps us obtain asymptotic values for P,(k) when k ~ 1. 

THEOREM 6.1. Let S(n, k) denote the probability that a randomly picked 
n-permutation is composed of  cycles each of  order greater than k assuming that all 
permutations are equally likely. Then ~ 

lim S(n, k) = exp(--Hk) for k >_ O. 

PROOF. We proceed by induction on k. First note that by definition the number 
of n-permutations whose cycles all have order greater than k is n!S(n, k). For the 
basis of  the induction we note that all n-permutations are composed of cycles of 
order greater than O. So for all n, S(n, O) = 1 = exp(-H0) and lim,~_~S(n, O) = 1 = 
exp(-Ho). 

Assume now that lim,~_~S(n, k - 1) = exp(-Hk-0  for some k > 0. The probability 
S(n, k) can be formulated as (l/n!) x (number of permutations whose subcycles all 
have order greater than k). The essential idea here is to subtract the number of 
permutations which contain some cycles of order k from the n!S(n, k - 1) 
permutations which have cycles all of order >k  - 1. First of  all there are n!S(n, k 
- 1) permutations whose cycles have order greater than or equal to k. Suppose 
now that we select k nodes (regarding them as material for a cycle of order k). 
There are (~,) ways to select k nodes, k - 1! ways to arrange them in a cycle, and 
there are (n - k)!S(n - k, k - 1) ways to form permutations on the remaining n - 
k nodes such that all cycles have order greater than or equal to k. Suppose next 
that we select two sets of  k nodes. There are (~,)(,~k) ways to select them, (k - l)!(k 
- 1)!/2! unique ways to arrange the two sets into two cycles of  order k (the divisor 
2! is the number of  ways of  picking the same set of  two cycles), and there are (n - 
2k)!S(n - 2k, k - 1) permutations of  the remaining n - 2k nodes such that all 
cycles have order greater than or equal to k. In general sup, pose we select m disjoint 
sets of k nodes and arrange each set into a cycle of order k. There are (~,)(,2k)... 
("-~k k÷k) ways to pick m such sets, (k - l)W/m! ways to arrange these sets into 

i The numbers H.  = Y,~.I l / k  are called harmonic numbers and occur frequently in the analysis of 
algorithms. 



R a n d o m  Trees a n d  Branch a n d  B o u n d  Procedures  179 

cycles of order k (there is a repetition factor of  m! because each particular 
arrangement of the m cycles can be permuted in m! ways), and finally there are 
(n - mk) !S (n  - m k ,  k - 1) ways to arrange the remaining n - m k  nodes into 
permutations composed of cycles of order greater than or equal to k. 

Applying the principle of inclusion-exclusion [29], we find 

S(n, k ) =  Y. (-1)  m ~. . . .  
ra~0  

• (n - mk) !S (n  - m k ,  k - 1) 

tn/kJ (--1) m (k - 1)!" n! (n - k)! (n - m k  + k)! 

m=0 n! m!  k!(n - k)! k!(n  - 2k)! k!(n - mk) !  

• (n - mk) !S (n  - m k ,  k - 1) 
tn/kJ ( _  1/k)  m 

= Y~ m-----~. S ( n  - m k ,  k - 1). 
m~O 

Taking the limit of this function, we obtain 
tn/k] 

lim S(n,  k) = lim Y, (-1/k)-------~ S(n  - m k ,  k - 1) 

® ( _ i l k )  m 
= Y~ m! lim S(n  - m k ,  k - 1) 

m ~ 0  ? l ~  

oo 

--- ~ (-1/k)m exp(--Hk-i) (by induction hypothesis) 
m-o m! 

= e x p ( - H k _ i ) e x p ( - 1 / k )  

= exp(--Hk). Q.E.D. 

An immediate corollary of Theorem 6.1 is the well-known result that the number 
of n-permutations which do not have any l-cycles is n!S(n,  1) which is asymptotic 
to n!exp(-H0 = n ! / e  (this is known as the problem of derangements [29]). Our 
intended application of Theorem 6.1 is the probability that the least-cost permu- 
tation has k sons (its smallest subcycle is of order k). 

THEOREM 6.2• The  asympto t ic  probabi l i ty  that the smal les t  order cycle o f  a 
random permuta t ton  has order k is 

l im en(k)  -- e x p ( - H k - i )  - -  exp(--Hk).  (6.2) 
n ~  

PROOF. The probability that a random permutation ~r has a smallest subcycle 
of order k is the probability that the cycles of ~r have order greater than k - l, 
minus the probability that the subcycles of ~r have order greater than k. The 
theorem then follows directly from Theorem 6.1. Q.E.D. 

The growth of 
tn/2]  

P,---  Y, kP , ( k )  
k~l  

has been shown in [35] to be asymptotic to exp(--/)ln(n), where ~, = 0.577 ... is 
Euler's constant, which can also be seen by considering the asymptotic growth of 

tn/23 

Y, k [ e x p ( - H k - O  - exp(--Hk)l. (6.3) 
k ~ l  



180 DOUGLAS R. SMITH 

The formulas (6.1) and (6.2) describe the behavior of a subtour-elimination 
algorithm on a random instance of the TSP, since any permutation is equally likely 
to be the least-cost permutation. Assuming that it can be shown that for random 
subinstances the expected branching factor is O(ln(n)), and the probability that the 
relaxed solution is cyclic grows no slower than 1/n, then by Theorem 4.1 the 
expected search tree size for a random TSP instance is O(n In(n)). The running 
time of BB on a random instance is dominated by two factors. First, the time spent 
solving the assignment problem is O(n 3) for the initial instance and O(n 2) for all 
other subinstances in the tree. The net contribution of these terms is 

O(n 3) + O(n In(n)) • O(n ~) = O(n31n(n)). 

Second, when there are m objects in the priority queue, O(ln(m)) time is sufficient 
for both insertion and deletion. It is shown in Appendix B that the mean queue 
maintenance time for a random TSP is O(n21n2(n)). Thus the expected running 
time of a subtour-dimination algorithm is 

O(n31n(n)) + O(n21n2(n)) = O(n31n(n)). (6.4) 

(6.4) is consistent with empirically obtained estimates of the expected running time 
of  subtour-elimination algorithms. Bellmore and Malone [4] report O(n TM) ex- 
pected running time over the range 10 _< n - 80, and O(n 32) is given in [37] for 
the range 30 _ n _ 200. It has been pointed out in [28] that establishing O(n-C), 
for some constant c, as a lower bound on the probability that a random subinstance 
yields a feasible relaxed solution is sufficient to establish polynomial expected 
running time for these algorithms. Note that the average branching factor must be 
O(n). While the evidence suggests such a result, it remains an open theoretical 
problem. 

The probability that the least-cost n-permutation has a 1-cycle for large n is 
roughly exp(-Ho) - exp(-Hl) = 1 - l / e  = 0.63. Since a traveling salesman tour 
cannot have any l-cycles, if we insert infinites along the diagonal of our random 
cost matrices we do not lose any cyclic permutations, yet we reduce the size of the 
relaxed space by about 63 percent. Unfortunately, there is no readily apparent 
analogous method for precluding permutations with 2-cycles (or higher order 
cycles). We can estimate the probability that a cyclic permutation is optimal with 
respect to the altered matrix as 

P;(0) = (n - 1).____.~ v. = e.  (6.5) 
(n!/e) n 

It cannot be shown that (6.5) is asymptotically correct as easily as (6.1) can be 
shown correct because the set of permutations without l-cycles is not symmetric 
in the sense given above. Nonetheless, observations of randomly generated traveling 
salesman problems given in Table I supports (6.5). With respect to the modified 
matrix, the probability P'(k) that the optimal solution to a random instance has a 
smallest order cycle of order k is estimated by P,,(k)/(1 - P,(1)) which converges 
to the value 

(exp(--Hk-l) -- exp(--Hk)) 
= e(exp(-Hk-O - exp(--Hk)). (6.6) 

((1 - )  (1 - 1))/e 

A simple estimate of Pf is 

exp(l - ~r)ln(ln/2J - 1) (6.7) 
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TABLE I. BEST-BOUND-FIRST SEARCH 
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Sample Mean 
Number of mean search Estimate Sample 

Size of problems search tree size by Sample P of Pby  P(0) 
problem solved tree size (6.8) at root (6.7) at root 

P(0) by eq. 
6.5 (= e/n) 

l0 1000 6.48 8.78 2.03 2.12 0.261 0.262 
15 1000 12.28 16.11 2.58 2.74 0.186 0.181 
20 1000 19.63 25.66 3.09 3.35 0.153 0.136 
25 790 31.19 34.58 3 50 3.66 0.106 0.109 

TABLE I1. DEPTH-FIRST SEARCH a 

Sample values of P at depth m in the search tree 

/(0) 
/9(2) 
/(3) 
/°(4) 
/(5) 
/9(6) 
/(7) 
t(8) 
/9(9) 
/(10) 

P 

0 1 2 3 4 5 6 7 8 

0.135 0.230 0298 0.322 0331 0.349 0.354 0.356 0.364 
0.386 0.195 0.141 0.122 0.115 0.101 0090 0.099 0.084 
0.180 0.159 0.133 0.123 0.115 0.106 0.105 0.098 0.099 
0.105 0.108 0.109 0.102 0.097 0.096 0.090 0.089 0.087 
0.066 0.085 0.086 0.082 0.081 0.084 0.087 0.091 0.098 
0.037 0.055 0.065 0.068 0.071 0.072 0074 0.066 0.067 
0032 0.049 0049 0.056 0.056 0.060 0.061 0.054 0.065 
0.030 0.050 0.050 0.052 0.053 0.055 0.057 0.062 0.055 
0020 0.042 0.046 0.049 0.053 0.052 0.054 0.060 0.055 
0.009 0.026 0.023 0.023 0.028 0.026 0.027 0.024 0.025 

3.018 3435 3.324 3.338 3.367 3344 3.373 3.353 3.345 

9 

0.373 
0.090 
0.101 
0.081 
0.096 
0.067 
0.051 
0.055 
0.054 
0.033 

3.302 

10+ 

0 368 
0.097 
0.088 
0.089 
0.096 
0.070 
0.047 
0.056 
0.060 
0.031 

3.341 

a Data from the soluUon of 790 randomly generated asymmetric traveling salesman problems with 20 
nodes by a subtour-elimlnat~on algorithm using a depth-first search strategy and given an initial bound 
of 1000 plus the lower bound on the root. Sample values of the probabdity function P a t  various depths 
m the search tree are gwen. At the bottom of each column is the sample mean of P for nodes found at 
that depth. The last column summarizes data on nodes of depth 10 or more. 

which is the asymptotic value of 
n/2 

= ~ ke(exp(-Hk_t) - exp(-Hk)). 
k=2 

Plugging our estimates (6.5) and (6.7) into the expression I + P/P(O) from Theorem 
4.1 we obtain 

E(NT) ~ 1 + exp(-q,)n ln(/n/2J - 1). (6.8) 

In Table I the estimate (6.8) is computed for several values of n. Compared with 
these values are empirical values of E(Nr) found by averaging Nr  over randomly 
generated traveling salesman instances for each value of n solved by the subtour- 
elimination algorithm under a best-bound-first search strategy. Random cost 
matrices were generated by putting independently and uniformly distributed ran- 
dom integers between 1 and 1000 in each entry. The diagonal entries were set to a 
very large number. 

Table II presents data on the probablities of the various branching factors of 
nodes at different depths in the search tree. Notice that P,(0) appears to increase 
monotonically with depth. This provides evidence that e/n is indeed a lower bound 
on Pn(0). The most dramatic changes take place between depth 0 and depth 1. In 
particular, Pn(0) almost doubles and Pn(2) roughly halves. Below depth l there is 
relative stability of the sample probabilities and sample mean. The fact that the 
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TABLE III. DATA FROM DEPTH-FIRST SEARCH USING AN INITIAL 
BOUND OF 1000 + THE VALUE OF THE LOWER BOUND 

ON THE ROOT 

Sample 
Number of mean 

SJze of problems search tree ET bound ET'  bound 
problem solved size = 1000 = 1000 

10 1000 10.36 11.06 13.45 
15 1000 35.82 30.03 38.61 
20 790 81.85 64.40 88.72 

TABLE IV. DEPTH-FIRST SEARCH USING AN INITIAL BOUND OF o o  

Num- 
ber of 
prob- Mean search tree s~ze when the leftmost branch has length d 

Size of lems 
problem solved 0 1 2 3 4 5 6 7 8 9 10 

10 1000 1 5 12 20 27 36 43 51 m 
15 1000 1 14 35 48 72 89 99 111 125 145 
20 790 1 17 35 85 94 128 160 182 207 299 

estimate (6.8) provides an upper bound on the sample data seems to be due to the 
increase in Pn(0) with depth. 

In order to predict some of the properties of a depth-first search on traveling 
salesman instances, we need a way of estimating the probability function for the 
arc cost Q,. We have found empirically that Q, is estimated by the geometric 
function 

Q~(k) = (0.000054n) \ (1 
1 

k 

+ 0.00054n] " (6.9) 

Table III compares some sample mean time complexity statistics for randomly 
generated traveling salesman problems solved using a depth-first search with 
estimates generated by the function ET introduced in Section 5. The randomly 
generated problems were given an initial bound of 1000 (actually 1000 + lower 
bound on the initial feasible set) and the recurrence relation for ET was computed 
out to ET(1000). We used (6.9) for Qn and our formulas (6.5) and (6.6) for P,~ in 
computing ET, in the column marked ET(1000). Note that ET(IO00) using this 
P;, function underestimates the sample mean. We obtain a better estimate by 
amending P', as follows: Halve P'(2) and distribute the difference over P;,(3), 
P'(4) . . . . .  P'(tn/21). We retain P'(0) = e/n. In this way the mean of/5,~ has been 
increased and the lower bound on P'(0) remains (cf. Theorem 4.1). The bounds 
obtained using this P;, function in ET are given in the column labeled ET'(1000) 
in Table III. 

Theorem 5.3 predicts that the expected size of the search tree in a depth-first- 
search grows essentially linearly as a function of  the length of the left-most path in 
the search tree. Empirical data gathered from random TSP instances are presented 
in Table IV and Figure 5. The data in Figure 5 clearly show the linear growth of 
the mean search tree size for as far as the sample means are meaningful. 

7. Concluding Remarks 

A random process for generating arc-labeled trees has been defined and some of 
its properties have been developed. This process has served as a model of the kind 
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FIG 5. The data from Table IV piottedmshowlng the growth of the sample 
mean search tree size as a function of the length of the leftmost branch in the 
search tree The orcles, pluses, and x's represent data points from the traveling 
salesman problems of size 10, 15, and 20, respectwely. 

of trees generated by a branch and bound procedure and has enabled the derivation 
of a number of formulas for the expected space and time complexities of  a branch 
and bound procedure under several search strategies. In particular, it has been 
shown that the best-bound-first search strategy is optimal in both time and space 
complexity. These results, together with the simplicity of the basic branch and 
bound procedure in Section 2, and the existence of effÉcient techniques for 
implementing priority queues [ 1 ], strongly suggest the use of the best-bound-first 
search strategy in applications. 

A similar random process has been used by Lapin [23] to model branch and 
bound procedures which seek the least-cost node at a fixed depth. The class of  
search strategies investigated are realized by the heuristic function 

h(N) -- LB(N) - adepth(N) 

where a is a parameter. Solutions are guaranteed to be optimal iff a is zero. 
Generating functions are derived for the number of instances to which the branch- 
ing function is applied and for the distribution of solution costs found by the 
algorithm. In principle, one could derive an expression for the expected value of 
the time complexity from the former generating function, but it appears to be 
difficult to do so, and Lapin does not carry out this exercise. 

Variations of our model can provide models for other procedures whose essential 
nature is tree searching. In many branch and bound procedures a solution is found 
at some fixed depth k. Several types of models for this situation were mentioned 
in Section 2. Game trees can be modeled by (P, Q)-trees in which the domain of 
Q is I-c,  c] for some positive constant c. A negative arc cost corresponds to a move 
in which the resulting board is evaluated as being less good than the starting 
position. An advantage to this model, in comparison to other models of  game trees 
which have been explored [21 ], is that dependencies between moves are propagated 
in the tree, that is, all moves following a bad move (corresponding to a negative 
arc cost) would tend to have lower evaluations than the moves following a good 
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move (corresponding to a positive arc cost). Another advantage is that randomness 
in the number of legal (or plausible) moves is part of  the model. 

Our model is particularly suited for modeling relaxation-guided procedures, 
where there is some chance that any node in the search tree of a random instance 
of a problem may produce a feasible solution. The success of the assignment 
problem relaxation for solving asymmetric traveling salesman problems and Held 
and Karp's l-tree relaxation for solving symmetric traveling salesman problems 
suggests that the search for polynomial expected time algorithms for solving NP- 
hard problems might begin by looking for suitable relaxations and fast algorithms 
for solving them. The search for fast approximate algorithms for NP-hard problems 
can also benefit from the use of relaxations of a problem. A relaxed solution to an 
instance may have many of the components of an optimal feasible solution, thus 
a heuristic restructuring of the relaxed solution might produce a feasible solution 
of near optimal cost [ 19]. 

Appendix A 

Several of the results of this paper have been formulated as somewhat complex 
recurrence relations. We show how two of these recurrence relations can be broken 
down into simpler relations which aid in the computation of their sequences. In 
Section 3 the function 0 was introduced in the form 

Q(c)O(s - c)]: [ 1 - O ( k ) - -  Y, P ( j )  1 - 
k = O  j = l  S=--I C'=I 

with boundary condition 0(0) = P(O). 
Let 

E(s) = 2 Q(c)O(s- c), 
c=-I 

G( i )=  1 -  ~ ~ Q ( c ) O ( s - e ) ,  
s'=l c"~l 

= 1 -  ~ E ( s ) - - G ( i -  l ) - E ( i ) ,  
S=I 

oo 

B(i) = Y, P(j)G(i):, 
J=l  

O(i) = B(i - 1) - O(l). 

Note that B(i) = 1 - YJ,=00(k); therefore B(i - 1) - B(i) = O(i). The sequence 
{O(i)},=o: may be computed as follows (assuming a suitable bounding of the 
computation of B(i)). 

begin 
G(0) := 1; 
a(o) := I -e(O); 
o(o) := t'(o); 
for i := 1 until n; 

begin 
EO) := Y.:=, Q(c)O(l - c); 
G(i) := G(i - 1) - E(i); 
B(i) := Y~7=, P(j)G(i)'; 
O(i) := B(t - I) - B(i); 

end 
end 
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The recurrence relation for ET(b) introduced in Section 6 can be simplified in a 
similar manner. ET(b) has the form 

ET(b) = 1 + Y. P(j)  W(b, i) (A1) 
J~l  l~l 

where 

W(b, i) = Y~ . . .  Y~ Y~ . . .  Y~ Q ( c , ) . . .  Q ( c , ) O ( m O . . .  O(m,-O 
Cl=l q = l  mira0 mt_l=O 

• ET(minlb ,  c~ + m~, c2 + m2, . . . ,  c,_~ + m,_~} - c,). 

Essentially, W(b, i) has the form 
oo 

W(b, i) = Y~ R(b, i, k) ~ Q ( c , ) E T ( k -  c,) (A2) 
k = l  ci=l 

where R(b, i, k) = probability that k = min{b, c~ + ml, . . . ,  c,-t + m,-lt. (The term 
cj + mj is the cost of  the least-cost leaf in the j t h  subtree below the root; c.f. Figure 
2a.) In other words, k is the value of  the bound immediately after the i - 1st 
subtree has been explored. R(b, l, k) may be formulated easily as follows: We have 
two cases, either k = b or k < b. The probability that k = b is 

R(b, i, b) = Pr(cl + mt -> b)Pr(c2 + m2 -> b) . . .Pr(c , - t  + m~-l >- b). 

Again let 

E(s) = E Q(c)O(s- c) 
c=-I 

k - I  

G(k )=  1 - Y, ~. O ( c ) O ( s - c )  
S=I c'=l 

k--I  

= 1 - Y, E ( s ) = G ( k -  1 ) - E ( k -  1). 

Here G(k) = Pr(c + 1 _ k) and E(k) = Pr(c + 1 = k), so R(b, i, b) = G(b)'-'. (A3) 

The other case we need to consider occurs when one of  the subtrees contains a 
least-cost leaf which improves the initial bound b. The probability that the bound 
has the value m is the probability that one of  the subtrees has a least-cost leaf of  
cost m and the rest have least-cost leaves of  cost _m;  thus, no/icing that each of  
the i - 1 subtrees may contain the least-cost leaf, we have, 

R(b, i, m) = (i - l)E(m)G(m) '-2. (A4) 

Substituting (A3) and (A4) into (A2) we get 
b - I  

W(b, i) = Y, (i - l)E(k)G(k)'-ZD(k) + G(b)'-tD(b) 
k= 1 

where 

Further, letting 

H(b, i) = 

k 

D(k) = ~,, Q ( c ) E T ( k -  c). 
c=--I 

b - I  

Y. ( i -  l)E(k)G(k)'-2D(k) 
k=l 

= H ( b -  1, l ) +  ( i -  1 ) E ( b -  1 ) G ( b -  1) ' -2D(b-  1), 
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we have 

W(b, i) = H(b, i) + G(b)'-tD(b). 

Looking again at (A l), we see that we need partial sums o f  W(b, i), so let 

V(b, i) = ~ W(b, i) = V(b, i - 1) + W(b, i) 
)~1 

= V(b, i - 1) + H(b, i) + G(b),_~O(b). 

Putting all these pieces together, we can compute  [ET(b)}b-O.n as follows. 

begin 
ET(0) := l; 
for all b, V(b, O) := O; 
for all b, H(b, O) := O; 
G(0) := l; 
E(0) :-- 0; 
for b := 1 until n do 

begin 
f o r / : =  1 . . . .  , 

H(b, i) := H(b, t - 1) + (i - l)E(b - l)G(b - l)'-ZD(b - 1); 
G(b) := G(b - 1) - E(b - 1); 
E(b) := Y~k, Q(c)O(b - c); 
D(b) := Y ,~  Q(c)ET(b - c); 
for t := 1 until ~; 

V(b, t) := V(b, t - 1) + H(b, i) + G(b)'-~D(b); 
ET(b) := 1 + Y.7-, P(j)V(b,j); 

end 
end 

The infinities which appear in the algorithms of  Figures A 1 and A2 only come into 
play when P has an infinite range, that is, arbitrarily large branching factors are 
possible. In most  practical classes of  problems the branching factor is in fact 
bounded.  When modeling such cases the infinities are replaced by whatever bound  
exists on the branching factor. In an implementation of  this algorithm, the arrays 
E, G, and D can be replaced by single variables, since only the most  recently 
computed value of  the corresponding array is ever used. Similarly the two- 
dimensional arrays V and H can be reduced to one-dimensional arrays. 

Appendix  B 

In this section we derive a bound on the expected queue maintenance time for a 
best-bound-first search. The generating function for the random sum (4.1) is 1 + 
gn(pn(Z)) where gn is the generating function for the number  of  terms k in (4.1), 

gn(Z) = Y, (1 -P~(O))'e~(O)z i 
t~O 

and p,(z)  is the generating function for P~, 

p,,(z) = ~ P,,(i)z'. 

Letting R,( i )  denote the probability that N r  -- i + 1, we have 
c o  

g . ( p . ( z ) )  = R . ( O z  1. 
t~O 
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When the search tree size is Nr  = i + 1, we have at most 2(i + 1) insertions and 
deletions from the priority queue which takes O(2(i + l)ln(2(i + 1))) = O(i In(i)) 
t ime [ 1 ]. To within a constant factor the expected queue maintenance t ime then is 

i ln(i)Rn(i). (BI) 
l=l 

A bound on (B 1) can be obtained from the generating function 

d 2 ® 
h,(z) = zZ--~z gn(p,,)= ~ i ( i -  l)R,(i)z'. 

l=O 

Note that (B l) is bounded by h,(l). Performing the differentiation we find 

h.(1) = g'(l)p'(1)p'(1) + p~(1)g'(1) 

where f ' (z)  denotes (d/dz)f(z) and f"(z) denotes (d2/dz)f(z). Using the estimates 
P.(O) = e/n, and P.(k) = (exp(-Hk-O - exp(-Hk)), we find 

g;;O) = ;g~ (1 )  ~ = O(n2), 
p ' ( l )  -- P .  = O( ln(n) ) ,  

n/2 n/2 

p~(1) = Y~ k ( k -  l )Pn(k)= ~ k ( k -  l ) e ( e x p ( - H k _ 0 -  exp(--Hk)) 
k~l k=l 

n/2 n/2 

= 2e Y~ k exp(-Hk) -< 2e ~ k exp(--r - In(k)) 
k~l k'~-I 

e x 0 , , - , >  

Thus 

hn(1) = O(n21n2(n)) + O(n 2) = O(n21n2(n)). 
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