
Deductive Model Refinement

Douglas R. Smith1 and Srinivas Nedunuri2

1 Kestrel Institute, Palo Alto, California 94304 USA
smith@kestrel.edu

2 Sandia National Laboratories, Livermore, California 94550 USA
snedunu@sandia.gov

Abstract. Deductive model refinement (hereafter simply “model refine-
ment”) is a uniform approach to generating correct-by-construction de-
signs for algorithms and systems from formal specifications. Given an
overapproximating modelM of system dynamics and a set Φ of required
properties, model refinement is an iterative process that eliminates be-
haviors of M that do not satisfy the required properties. The result of
model refinement is a refined modelM′ that satisfies by construction the
required properties Φ. The calculations needed to generate refinements of
M typically involve quantifier elimination and extensive formula/term
simplification modulo the underlying domain theories. This paper fo-
cuses on the enforcement of basic safety properties in the form of state,
action, and path invariants. We have run a prototype implementation of
model refinement based on the Z3 SMT solver over a variety of system
and algorithm design problems.
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1 Introduction

Formal specifications characterize the acceptable behaviors of a desired program.
Among the various means for specifying requirements on a desired program are
(1) logical specifications in which predicates expressed in a suitable logic decide
the desired behaviors, and (2) models whose computable behaviors are a superset
or overapproximation of the desired behaviors. We view logical specifications and
models as having complementary strengths and believe that their combination
can lead to simpler and more natural specifications of systems and algorithms.

This paper comes from a complementary line of formal development research
that explores automatic transformations that map a specification or intermediate
design to an equivalent form or to a correct-by-construction refinement. The field
of program synthesis focuses on automatic generation of programs from formal
specifications using such transformations. Obviously, any formal development
process will benefit to the extent that refinement steps can be automatically



generated. Human insight is still needed to choose appropriate transformations
and to specify how to apply them.

In this paper we propose a unifying synthesis framework, called deductive model
refinement (or simply model refinement), that starts with a formal specification
comprised of models and logical properties. From a given model and logical prop-
erties, we define a constraint system that characterizes refinements of the model
that satisfy the logical properties. Solving the constraint system corresponds
to eliminating undesired behaviors from the model. Model refinement serves to
unify and extend previous work on function/algorithm synthesis with reactive
system synthesis.

Given a model M that overapproximates desired behaviors and a set Φ of re-
quired properties, the goal of model refinement is to generate the least refinement
M′ of model M such that M′ satisfies the specified properties Φ (where the re-
finement relation defines a lattice of models). If the set of legal initial states in
M′ differs from the initial states of M, then the difference characterizes the set
of initial states from which the system does not have any acceptable behaviors.

Overapproximating models can arise in a variety of ways. For control system
problems, the model captures the dynamics of a physical asset (aka the “plant”)
to be controlled. In software system design, the model captures the APIs and
possible operations of a component and perhaps a restricted grammar for ex-
pressing programs [1]. In general system design, a model can express a system
design pattern [9, 4, 22]. In algorithm design, a model can reflect the imposition
of a parametric solution pattern, such as an algorithm theory [29] or a sketch
[34].

Model refinement techniques are common in science and engineering. Our ap-
proach is called deductive model refinement due to the use of deductive techniques
to enforce logical requirement properties on a model. Examples of data-driven
or inductive model refinement can be found in (1) statistical model estimation
techniques that fit, say, a Bayesian Network model to given data, and (2) ma-
chine learning techniques for refining an artificial neural network model with
training data. In these examples the model provides the abstract computational
pattern and the data provides the requirements on the refined model.

This paper focuses on enforcement of basic safety properties. In [30], we introduce
a wider fragment of temporal logic that can be reduced to the basic safety
fragment. Most current work on the synthesis of reactive systems focuses on
circuit design and starts with specifications in propositional Linear Temporal
Logic (LTL) [3, 13]. It is therefore limited to finite state models. Our approach to
model refinement allows specifications that are first-order and uses a temporal
logic of action (similar to TLA [15]) that is amenable to refinement, allowing
possibly-infinite state spaces and allowing a broader range of applications to be
tackled.
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Model refinement is intended to support highly automated refinement-generating
tools that produce correct-by-construction designs together with checkable proofs.
One barrier to automation is the computational complexity of formula simplifi-
cation in the application domain theories that support the specification. When
the domain theories are decidable (e.g. by SMT solvers) and admit quantifier
elimination, then model refinement can run fully automatically. We have used
our Z3-based prototype to perform model refinement on a variety of examples,
each solvable in a few seconds or minutes.

Our novel contributions include
1. a uniform framework for specifying algorithms and reactive systems by a

combination of overapproximating behavioral models and logical specifica-
tions of required behavior,

2. a characterization of model refinement via a system of definite constraints
that can be efficiently solved by fixpoint-iteration procedures,

3. a variety of examples to show the breadth of the technique,
4. a prototype implementation based on the Z3 SMT-solver [28].

After introducing basic concepts, the paper first focuses on reactive system syn-
thesis as constraint-solving via iterated constraint propagation, with examples.
Function specifications that arise during reactive system synthesis then provide
a natural segue into a treatment of function/algorithm synthesis as generalized
iterated constraint propagation over paths.

2 Preliminaries

2.1 Required Properties

We focus on safety properties formulated in a simple linear temporal logic of
actions, similar to Lamport’s TLA [15]. A state is a (type-consistent) map from
variables to values. State predicates are boolean expressions formed over the vari-
ables of a state and the constants (including functions) relevant to an application
domain. A state predicate p denotes a relation JpK over states, so p(s) denotes
the truth value JpK(s) for state s. Actions are boolean expressions formed over
variables, primed variables, and the constants (including functions) relevant to
an application domain. An action a specifies a state transition and it denotes a
predicate JaK over a pair of states, and a(s, t) denotes the truth value JaK(s, t)
for states s and t. The expression x′ = x+1+y is a typical action where the un-
primed variables refer to the first state and primed variables refer to the second
state.

A basic safety property (or simply a safety property) has the form φ or φ where
φ is a state predicate or an action. The truth of a safety property φ at position
n of a trace σ (an infinite sequence of states), written σ, n ⊨ φ, is defined as
follows:
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– σ, n ⊨ p, for p a state predicate, if p holds at state σ[n], i.e. JpK(σ[n]);
– σ, n ⊨ a, for a an action, if a holds over the states σ[n], σ[n + 1], i.e.JaK(σ[n], σ[n+ 1]);
– σ, n ⊨ φ if σ, i ⊨ φ for all i ≥ n.

2.2 Behavioral Models

Formally, a model is a labeled control flow graph (LCFG) M = 〈V , N,A,L〉
where

– V: a countable set of variables; implicitly each variable has a type with a
finite (typically first-order) specification of the predicates and functions that
provides vocabulary for expressions and constrains their meaning via axioms.
The aggregation of these variable specifications is called the application do-
main theory (or simply domain theory) of the problem at hand.

– N : a finite set of nodes. Associated with each node m ∈ N , we have a finite
subset of observable variables V (m) ⊆ V . N has a distinguished node m0

that is the initial node. An LCFG is arc-like if it also has a designated final
node mf .

– A: a finite set of directed arcs, A ⊆ N × N . Each node m has an identity
self-transition idm = 〈m,m〉, called stutter, that changes the values of no
observable variables.

– L: a set of labels. For each node m ∈ N , we have a label Lm ∈ L that is a state
predicate over V (m) representing a node invariant. For each arc a = 〈m,n〉,
label La ∈ L is an action over V (m), V (n), and auxiliary variables e and u
which are discussed below.

In reactive system design, it is commonly the case that the variables at all nodes
are the same, so V (m) = V (n) for all nodes m,n ∈ N and all variables are
global. In functional algorithm design it is typical that the variables at each
node are disjoint, effectively treating all variables as local to a unique node.
Most programming languages, of course, support models that have both global
and local variables.

To simplify notation, we often write Lm(stm) to denote stm ⊨ Lm(V (m)) (and
similarly for arc labels). A node m denotes the set of states JmK = {st | Lm(st)}.
The label Lm0

is the initial condition of the model and denotes the set of initial
states.

Arc label La generally specifies a nondeterministic action, whose nondeterminism
may be reduced under refinement. In reactive systems, which have a game-like
character, some of the nondeterminism is due to the uncontrollable behavior of
the environment or an adversarial agent. For refinement purposes, it is neces-
sary to specify which parts of the nondeterminism are refinable and which are
unrefinable. Accordingly, the label La of an action has the general form:

La(stm, e, u, stn) ≡ e ∈ Ea(stm) ∧ Ua(stm, u) ∧ stn = fa(stm, u, e)
where
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1. e is treated as an uncontrollable Environment or adversary input that ranges
over the unrefinable set Ea(stm);

2. u is treated as a controllable value that satisfies the refinable constraint
Ua(stm, u);

3. function fa gives the deterministic response of the action.
The variability of the control value specifies the refinable part of La(stm, e, u, stn).
This kind of formulation of actions is common in modeling discrete and contin-
uous control systems [35]. LetJaK = {〈stm, stn〉 | ∃e, u. La(stm, e, u, stn)}.
Note that e and u are independent of each other. Alternative formulations are
easily made in which one depends on the other.

Semantics. A trace is a possibly infinite sequence of states. An LCFG M =
〈V , N,A,L〉 generates a trace tr = st0, st1, . . . if
1. Initially, st0 is a legal state of the initial node m0, i.e. st0 ∈ Jm0K;
2. Inductively, if i ≥ 0 and sti is a legal state of node m, i.e. sti ∈ JmK, then

there exists arc a = 〈m,n〉 where 〈sti, sti+1〉 ∈ JaK and where sti+1 is a legal
state of node n; i.e. sti+1 ∈ JnK.JMK is the set of all traces that can be generated by M.

A node m and a legal state stm is nonblocking if there is an arc a = 〈m,n〉
and control choice u such that Ua(stm, u) and a transitions to a legal state of
n regardless of the environment input. In game-theoretic terms, if all reachable
nodes and states of the model are nonblocking, then the system has a winning
strategy. A key part of model refinement is the elimination of blocking states in
the model.

2.3 Specification and Refinement

Refinement of LCFG model M1 to model M2 is a preorder relation, written
M1 v M2, that holds when there exists a simulation map ξ : M2 → M1

that maps the nodes and arcs of M2 to the nodes and arcs of M1; i.e. where
ξ : NM2 → NM1 and ξ : AM2 → AM1 such that

1. Initial nodes are preserved: ξ(mM2
0 ) = mM1

0 ;
2. Observable variables: V M2(m) ⊇ V M1(ξ(m)) for each node m ∈ NM2 ;
3. Node labels: LM2

m =⇒ LM1

ξ(m) for each node m ∈ NM2 ;
4. Arc labels: LM2

a =⇒ LM1

ξ(a) for each arc a ∈ AM2 .

There are several kinds of transformations of models that generate refinements,
including (1) strengthening the invariant at a node, and (2) strengthening the
action at an arc. These are used in the model refinement procedure in the next
section. A third transformation, arc refinement, replaces an arc by an arc-like
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LCFG. This transformation may be used when imposing a design pattern or
program scheme as a constraint on how to achieve the action of the arc. An
example of this is given in Section 5.1.

A specification S = 〈M, Φ〉 is comprised of a model M and a set of properties Φ
that we require to incorporate or enforce in M. A specification denotes the set
of traces generable by M that also satisfy all properties in Φ:JSK = {tr | tr ∈ JMK ∧ tr ⊨ Φ} = JMK ∩ JΦK.
Refinement of specification S to specification T is a preorder relation, written
S v T , that holds when there is a mapping ξ from traces of T to traces of S
such that

∀σ.σ ∈ JT K =⇒ ξ(σ) ∈ JSK
or more succinctly ξ(JT K) ⊆ JSK.
Theorem 1. If (1) S1 = 〈M1, Φ1〉 and S2 = 〈M2, Φ2〉 are specifications, (2)
ξ : M2 → M1 is a simulation map, and (3) Φ2 =⇒ Φ1, then S1 v S2.

The proof, given in [30], shows how ξ induces a map ξ̂ of traces of S2 such that
ξ̂(JS2K) ⊆ JS1K.
3 Model Refinement as Constraint Solving

Model refinement transforms a model M and required properties Φ into a model
M′ such that M v M′ ∧ M′ ⊨ Φ. We define now a constraint system whose
solutions correspond to refinements of M that satisfy Φ. The intent is to find
the greatest solution of the constraint system, which corresponds to the minimal
refinement of M that satisfies Φ. In later sections we discuss several situations
in which only a near-greatest solution can be found.

In formulating model refinement as a constraint satisfaction problem, we treat
the node labels Lm and arc labels La as variables, whose assigned values are state
and action predicates, respectively. We can view the constraint system as taking
place in the Boolean lattice of formulas with implication as the partial order
(i.e. a Tarski-Lindenbaum algebra). Each constraint provides an upper bound
on feasible values of one variable. A feasible solution to the constraint system
is an assignment of formulas to each variable that satisfies all the constraints of
the system. We discuss below how to assure finite convergence of the constraint
solving process as the lattice is typically of infinite height for nonpropositional
logics.

For arc a = 〈m,n〉, arc label La, and node label Ln, let wcp(La, Ln) be the
weakest controllable predecessor predicate transformer which is defined by

wcp(La, Ln) ≡ ∀e. e ∈ E(stm) =⇒ ∃stn. stn = fa(stm, e, u) ∧ Ln(stn)
or, simply

wcp(La, Ln) ≡ ∀e. e ∈ E(stm) =⇒ Ln(fa(stm, e, u)).
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if φ is a state predicate
then for all m ∈ N : Lm ← Lm ∧ φ
else for all a ∈ A : La ← La ∧ φ

do
for all a ∈ A : Ua ← Ua ∧ wcp(La, Ln)
for all m ∈ N : Lm ← Lm ∧

∨
a=⟨m,n⟩

∃u. Ua

until Lm is unchanged for all nodes m ∈ N .

Fig. 1: Model Refinement Algorithm

wcp(La, Ln) is the weakest formula over V (m)
∪
{u} such that for any envi-

ronment input e the transition a is assured to reach a state stn satisfying the
post-state predicate Ln. Its effect is to define the nonblocking states of node m
– those states from which there is some control value that forces the transition
to a legal state at n regardless of the environment input.

The constraint system is comprised of the following four sets of constraints for
each required temporal property φ:

1. Node Localization: Lm =⇒ φ for each node m ∈ N if φ is a state
predicate expressed over the variables at m;

2. Arc Localization: La =⇒ φ for each arc a = 〈m,n〉 ∈ A if φ is an
action predicate expressed over the variables at m and n;

3. Control Constraint: Ua =⇒ wcp(La, Ln) for each arc a = 〈m,n〉
4. Node Invariant: Lm =⇒

∨
a=⟨m,n⟩

∃u. Ua for each node m ∈ N .

The Localization constraints (1) and (2) provide upper bounds on the node la-
bels. The Control constraints (3) are the essentially synthetic aspect of model
refinement as they serve to eliminate any state transitions in which the environ-
ment can force the system to a state not satisfying the safety properties. The
Node Invariant constraints (4) serve to eliminate blocking states of a node with
respect to all of its outgoing arcs. Given a specification S = 〈M,Φ〉, the model
refinement transformation refines the specification by solving the constraint sys-
tem. In other words, a solution to the constraints is a model that refines the
input model and the solution process generates a refinement.

A straightforward algorithm for solving the constraint system over the labels
on a model is presented in Figure 1. The iteration converges to a fixpoint when
the labels do not change in an iteration. Upon convergence to a refined model
M′, we have JM′K ⊆ JMK ∩ JΦK, and in the case that the algorithm converges
to a greatest fixpoint we have JM′K = JMK ∩ JΦK. The algorithm in [21] pro-
vides a more efficient control strategy that exploits dependencies between the
constraints.
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The derived initial condition is the final refined invariant Lm0
which characterizes

the set of nonblocking initial states from which the system can ensure that all
behaviors satisfy the specified safety properties. In a model-checking scenario
where the model doesn’t check, the derived initial condition may provide a useful
characterization of the model’s failure.

The correctness of this algorithm is a consequence of Tarski’s theorem. Each
constraint has definite form v ≤ g(v) where g is monotone, so we can express
solutions as fixpoints of v = g(v). As we are looking for the most general (i.e.
least refinement of the initial model), the algorithm aims to converge on the
greatest fixpoint using a Kleene iteration. If the state space is finite, then the
fixpoint iteration process will be finite too. In fact, the number of iterations is
linear in the height of the lattice [21]. Techniques to improve the complexity of
the algorithm and to guarantee convergence to a fixpoint are further discussed
in [30].

Example: Packet Flow Control

In this example, based on [23], a buffer is used to control and smooth the flow
of packets in a communication system. We model this problem as in discrete
control theory with a plant (a buffer of length buf), environment input e, and
control value u. The environment supplies a stream of packets that varies up to
4 packets per time unit. The plant is modeled by a single linear transition that
updates the state of the plant. The goal is to assure that the system keeps no
more than 20 packets in the buffer buf and keeps the outflow rate out at no more
than 4 packets per time unit.

This is a classical discrete control problem with a single node and a single linear
transition. It can be specified by the following TLA-like notation for an LCFG,
which lists (1) the global state variables, (2) their initial invariants, (3) the one
node, (4) the one arc and its initial action (dependent on environment input
e and control value u), (5) the required safety properties, and (6) currently
known theorems, which are empty here but are extended by the model refinement
process.

Specification FC0
Vars: buf, out : Integer
Invariant: 0 ≤ buf ∧ 0 ≤ out
Node: m0

Arc: a = 〈m0,m0〉 : −1≤u≤1 ∧ 0≤e≤4
∧ buf ′=buf + e− out ∧ out′=out+ u

Required Properties
buf = 0
out = 0
 0≤buf ∧ buf≤20 ∧ 0≤out ∧ out≤4

Theorems
End Specification
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The first two required properties determine the initial state values. For the last
required property, the algorithm in Figure 1 instantiates wcp to generate the
following formula as an upper bound on the control condition

U(buf, out, u) ≡ −1≤u≤1 ∧ 0≤out+ u≤4
∧ ∀e. 0≤e≤4 =⇒ 0≤buf + e− out≤20.

This formula is in the language of integer linear arithmetic which admits quan-
tifier elimination and our Z3-based prototype simplifies it to the equivalent of

1 ≤ buf − out ≤ 16 ∧ 0 ≤ out+ u ≤ 4.
According to the algorithm in Figure 1, the control condition U(buf, out, u)
strengthens to

−1≤u≤1 ∧ 1 ≤ buf − out ≤ 16 ∧ 0 ≤ out+ u ≤ 4
and the state invariant strengthens to

0 ≤ buf ∧ 0 ≤ out ∧ 1 ≤ out− buf ≤ 16.
Next, our prototype simplifies the control condition with respect to the strength-
ened state invariant, and the control condition becomes

−1≤u≤1 ∧ 0 ≤ out+ u ≤ 4.
Since the control condition for the sole transition has changed, the iteration con-
tinues. For this problem convergence happens after four iterations and generates
the following refined model, in which the required properties are enforced by
construction and so they become theorems of the model, as can be verified by a
model checker.

Specification FC1
Vars: buf, out : Integer = 0
Invariant: 0≤out≤4 ∧ 0≤buf−out≤16

∧ − 3≤buf−3 ∗ out≤11 ∧ −6≤buf−4 ∗ out≤10
Node: m0

Arc: a = 〈m0,m0〉 : −1≤u≤1 ∧ 0≤out+ u≤4 ∧ 0≤e≤4
∧ − 6≤buf − 4 ∗ u− 5 ∗ out≤6
∧ − 1≤buf − 2 ∗ u− 3 ∗ out≤9
∧ buf ′ = buf+e−out ∧ out′ = out+u

Theorems: buf = 0 ∧ out = 0 ∧ (0≤buf≤20 ∧ 0≤out≤4)
End Specification

Again, note how the Required Properties of the initial model have been trans-
formed into Theorems of the refined model, by construction. The strengthened
state invariant on node m0 is also the derived initial condition and specifies the
set of initial states from which we have assurance that the system will keep
within the required bounds regardless of environment inputs.

The refined transition now defines a somewhat complex polyhedron around the
control values. If there are no more required properties to enforce, then the next
step will be to synthesize a control function that selects a specific control value
u in each given state. For game-like problems, this is also known as extracting a
winning strategy for the system game modulo the derived initial conditions.
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Our prototype model refinement system converges on the model above in a few
seconds. The version of this problem in which the variables are Reals or Ratio-
nals, with an infinite state space, is also solved in a small number of iterations in
a few seconds, with a different invariant polytope and derived initial condition
defining the safe operating space.

Other Examples

The Cinderella-Stepmother game has been posed as a challenge problem for
synthesis systems (cf. [2]). It is a turn-based game between Cinderella and her
wicked stepmother. The game centers on a ring of five buckets that can each
hold up to c units of water, where initially the buckets are empty. In each round
of the game the stepmother adds one unit of water distributed over the buckets,
and then Cinderella empties two adjacent buckets. If any of the buckets ever
overflow, then the stepmother wins, otherwise Cinderella wins.

Specification Cinderella-Stepmother
Vars: b0, b1, b2, b3, b4, c : NonNegativeReal

e0, e1, e2, e3, e4 : NonNegativeReal
Invariant:

∧
i=0,4 bi = 0

Nodes: mC , mS

Arc: Add = 〈mS ,mC〉 :
∑

i=0,4 b
′
i = 1 +

∑
i=0,4 bi

∧
∧

i=0,4 b
′
i = bi + ei

Arc: Empty = 〈mC ,mS〉 : b′u = 0 ∧ b′(u+1)%5 = 0

Required Properties: 
∧

i=0,4 bi ≤ c

End Specification

Our specification for this game-like problem has two nodes, one for the turn
or each player. The game is parametric on a real value c > 0 used to define
the Stepmother’s (antagonist’s) task. In [2], a controller for the game is found
using sketches as hints to the solver. It is conjectured that automatic solutions
(i.e. without human-provided hints) are “unrealistic” for values of c in range
[1.5,3] (the problem is relatively easy outside that range). Our model refinement
prototype automatically generates winning strategies in that range using roughly
a minute of CPU time.

Other problems for which we have synthesized code include the classic readers-
writers problem, elevator control, model-repair [2], and a reactive controller for
a secure enclave. The latter problem has time-bounded responsive requirements
and in [30] we introduce transformations that reduce a collection of time-bounded
temporal operators to basic safety properties. After that reduction then the
model refinement algorithm can be applied.
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4 Function Synthesis

Model refinement naturally gives rise to the specification of several functions. For
example, in the final model of the Flow Control example, the action constrains
the control choice u to satisfy

−1≤u≤1 ∧ 0≤out+u≤4 ∧ −6≤buf−4∗u−5∗out≤6 ∧ −1≤buf−2∗u−3∗out≤9.
(1)

To make that choice, we must synthesize a control function

FlowControl(〈buf, out〉) = u such that (1).

Generally, for each arc a = 〈m,n〉 in the final model, model refinement generates
a specification for a control function for a that outputs a satisfying control value.
The desired control function may be specified as

Controla(st | Lm(st)) = u such that Ua(st, u)

where Lm(st) is the precondition and Ua(st, u) is the postcondition. Algorithm
or function synthesis is appropriate for this specification, since the behaviors
are specified by a simple input-output relation which we treat as a safety prop-
erty over traces of length 2 (input state followed by output state). A variety
of techniques for function synthesis have been developed, many of which stem
from the original work on deductive synthesis [12, 6, 17]. Later approaches to
synthesis of functions exploit algorithm design patterns [29], sketches [34], and
transformations from high-level function definitions [19].

Here, since the control variable u only takes on three values, a simple transfor-
mation to form a conditional function can be applied resulting in the following
(see [30] for details).

controlFun(〈buf, out〉 | 0≤out≤4 ∧ 0≤buf−out≤16
∧ − 3≤buf−3 ∗ out≤11 ∧ −6≤buf−4 ∗ out≤1)) =

if 4∗out−buf > −5 ∧ 2∗out−buf > −12
∧ out≥1 ∧ 5∗out−buf > −3 then −1

else if buf−2∗out>0 ∧ out≤3 then 0
else 1

5 Path Properties

In the previous section we discussed how function specification naturally arises
during model refinement. In this section we present a general approach to func-
tion synthesis that generalizes the model refinement approach. Reactive syn-
thesis tends to generate control systems with relatively flat structure whereas
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algorithm/function design generates smaller programs with deeper structure (via
a hierarchy of subfunctions). Our intent is to have model refinement as the uni-
fying framework for synthesizing both reactive systems and functions.

Some required properties are naturally expressed over the nodes of a path in
the model, rather than being localized to a node (state invarient) or arc (action
invariants). They express required properties that hold between values that are
not near in time or space. We define path properties to be predicates over the
variables of nodes along some path in the model. An action property is a special
case of a path property since it is expressed over a path of length one. When
necessary we prefix a variable with the node at which the value is referenced. If
a variable is only accessible at one node or arc (i.e. it is local), the prefix can be
omitted.

We define next some refinement rules that can be used to reduce path prop-
erties to action properties. The refinement rules work by propagating the path
property through the structure of the path, resulting in the strengthening of the
labels on particular arcs. The resulting refined path implies the path property
by construction. At that point, the constraint system of Section 3 can be defined
and solved.

Path properties may arise by the imposition of model substructure via arc refine-
ment, where an arc is replaced by an arc-like LCFG (i.e. a submodel). This may
happen when an action specifies a complex state change that requires, say, an
iterative or recursive computation to complete. Suppose that we have a required
property φm,p(stm, stp) that relates the state at node m to the state at node
p, where there exists a path from m to p in the model M. Our strategy is to
propagate φ through the structure of M until we have inferred properties that
can be localized to the nodes and arcs of M. For purposes of reasoning about
path properties we proceed as if we have path labels in M for all pairs of nodes;
e.g. Lm,p is treated as the label expressing properties of the paths from node m
to node p.

There are two propagation rules that reduce the scope of a path property, with
the goal of reducing the property to action properties in the path: either propa-
gate forward from node m toward p, or propagate backward from node p toward
m. Rules for both are defined next. Each rule reduces the span of a path pred-
icate by one, so we iterate their application until we generate a path predicate
than spans a single arc, whereupon we can enforce it locally.

Forward Propagation: Let S = 〈M, Φ〉 be a specification and let φm,p ∈ Φ
be a path property from node m to node p. We can refine S to reduce the
path property φm,p as follows: (1) Delete φm,p from Φ, and (2) for each arc
a = 〈m,n〉 ∈ Arc, add the path formula wcPostSpec(La, φm,p) to Φ where
wcPostSpec(La, θ) is the Weakest Controllable PostSpecification of action La
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with respect to path formula θ over V (m) ∪ V (p) and is defined by

∀stm, u, e. Lm(stm) ∧ U(stm, u) ∧ e ∈ E(stm) =⇒ θ(fa(stm, u, e)).

wcPostSpec is the weakest path formula over V (n) ∪ V (p) such that for any
transition instance of a from some state stm to state stn, there is some stp such
that θ(stm, stp). We repeat Forward Propagation until all path properties have
been reduced to actions (and thus can be enforced by model refinement).

Backward Propagation: Let S = 〈M, Φ〉 be a system specification and let
φm,p ∈ Φ be a path formula from node m to node p. We can refine S to reduce
the path property occurrences as follows: (1) Delete φm,p from Φ, and (2) for each
arc a = 〈n, p〉 ∈ Arc where there exists a path from m to n, add the path formula
wcPreSpec(La, φm,p) to Φ where wcPreSpec(La, θ) is the Weakest Controllable
PreSpecification of action La with respect to path formula θ over V (m) ∪ V (p)
and is defined by

∀u, e. Ln(stn) ∧ U(stn, u) ∧ e ∈ E(stn) =⇒ θ(stm, fa(stn, u, e)).

wcPreSpec is the weakest path formula over V (m) ∪ V (n) such that for any
transition instance of a from some state stn to state stp, there is some stm such
that θ(stm, stp). We repeat Backward Propagation until all path properties have
been reduced to actions (and thus can be enforced by model refinement).

Both of these propagation rules work by propagating the path property φ through
the transition a, whether forward or backwards. To get useful results, La must
express a nontrivial constraint. These rules are often applied after one has cho-
sen a candidate function/operation for transition a and then desires to infer
the consequences. This process is analogous to SAT algorithms in which one
chooses a variable and a value heuristically and then explores the consequences
via boolean propagation and conflict-driven learning in the failure case. The
choice of a simple operation that is natural in context, as an arc refinement,
enables the propagation to go through. This is a choice and alternative choices
lead to different designs, as illustrated in the next section.

5.1 Algorithm Design Example: Sorting

One feature of model refinement is that it subsumes a major part of the au-
tomated algorithm design work performed in earlier function synthesis systems
such as KIDS [25]. In retrospect, the success of KIDS in algorithm design is partly
due to its automated inference system which was designed to propagate output
conditions through the structure of a chosen program scheme (i.e. an overap-
proximating model representing an algorithm class). To illustrate, consider the
design of a sorting algorithm using a binary divide-and-conquer program scheme
as a model. In a functional notation, the model can be expressed as
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F (x:D) : (z:R) = if primitive(x) then direct(x)
else compose ◦ (F × F ) ◦ decompose(x)

and the required property is bag(x)=bag(z) ∧ ordered(z), where x and z are
lists of numbers, bag(x) returns the bag or multiset of elements in list x, and
ordered(z) holds when list z is in sorted order. The property is simply an in-
put/output predicate since the only observable behavior of an algorithm is its
(uncontrollable) input and (controllable) output value. In a functional setting,
there are no global variables and hence no global state. The input to each func-
tional component is the environment input and the control value is the output
of the action.

There are several common tactics for designing divide-and-conquer algorithms.
One is to select a simple decompose operation on the input type, and then to
calculate a compose operator that achieves the correct output. A dual tactic is
to select a simple compose operation on the output type, and then calculate a
decompose operator that achieves a decomposition of the input into parts that
can be solved and composed to yield a correct solution.

We might represent the key recursive part of the scheme as a dataflow path:

〈x0〉

decompose(x0,x1,x2)

��

F (x0,z0) // 〈z0〉

〈x1, x2〉
F (x1,z1)×F (x2,z2) // 〈z1, z2〉

compose(z0,z1,z2)

OO

where a node represents a state by the variables that exist in it (and their prop-
erties), and each arc specifies an action by a predicate over input and output
variables. This particular model derives from a functional program, so the ab-
stract “states” actually do not represent stored values, but the value flow at
intermediate points in a computation. For simplicity and clarity, we use this
graphical representation rather than perform the straightforward translation to
the TLA-like notation used in previous examples.

In terms of the dataflow path, the goal constraint is a predicate over x0 and
z0: φ(x0, z0) ≡ bag(x0) = bag(z0) ∧ ordered(z0). Suppose that we follow the
second tactic and refine the model by choosing list concatenation as our compose
operator: compose 7→ z0 = z1++z2. The ultimate effect of this choice is to
derive a variant of a quicksort algorithm. Note that in this case the environment
input is the pair 〈z1, z2〉 and the control value is the output z0. The Backward
Propagation Rule applies here since the goal property is not expressed over the
input and output variables of compose, so we calculate:

wcPreSpec(compose, φ(x0, z0))
≡ ∀z0. z0 = z1++z2 =⇒ bag(x0) = bag(z0) ∧ ordered(z0)
≡ { quantifier elimination on z0 }
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bag(x0) = bag(z1++z2) ∧ ordered(z1++z2)
≡ { distributivity laws and simplification}

bag(x0) = bag(z1) ∪ bag(z2) ∧ ordered(z1) ∧ ordered(z2) ∧ bag(z1) ≤ bag(z2).

where we have used domain-specific laws for distributing bag and ordered over
list concatenation, and b1 ≤ b2 holds when each element of bag b1 is less than or
equal to each element of bag b2. As this remains a path predicate φ(x0, z1, z2)
(i.e. not localizable to an arc), we continue by propagating this derived goal
backward through the recursive calls:

wcPreSpec(F × F, φ(x0, z1, z2))
≡ { unfold }

∀z1, z2. bag(x1) = bag(z1) ∧ ordered(z1) ∧ bag(x2) = bag(z2) ∧ ordered(z2)
=⇒ bag(x0) = bag(z1) ∪ bag(z2)

∧ ordered(z1) ∧ ordered(z1) ∧ bag(z1) ≤ bag(z2)
≡ { simplification and quantifier elimination}

bag(x0) = bag(x1) ∪ bag(x2) ∧ bag(x1) ≤ bag(x2).

This last predicate is expressed over the input/output variables of the decompose
operator, so it can be localized and enforced by strengthening the decompose
action to

bag(x0) = bag(x1) ∪ bag(x2) ∧ bag(x1) ≤ bag(x2).
Note that this is a specification for (a version of) the well-known partition sub-
algorithm of Quicksort. It asserts that if we decompose the input list x0 into
two lists x1 and x2 whose collective elements are the same as the elements in
x0, and such that each element of x1 is less-than-or-equal-to each element of x2,
then when we recursively sort x1 and x2, and then concatenate them, the result
will be a sorted version of x0. If we had included a well-founded order in the
decompose operator, we would infer a derived initial condition of length(x0) > 1
on decompose. This serves as a guard on the recursive path in the algorithm.

In summary, we have used propagation rules to infer a specification on the
decompose action that, if realized by further refinement, is sufficient to establish
the correctness of the whole algorithm.

6 Related Work

Our previous work on functional algorithm design used algorithm theories as
over-approximating models for various classes of algorithms. Algorithm theories
and design tactics [29] were implemented in KIDS [25] and Specware [14]. These
synthesis systems used a form of model refinement to instantiate algorithm mod-
els for divide-and-conquer [24], global search, dynamic programming [26], and
other classes. Synthesized applications include schedulers [31], SAT-solvers [33],
and garbage collectors [32].
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Sketching [34] is a currently popular program synthesis approach that can be
seen as a special case of model refinement. The model is supplied in the form
of a program template with holes for missing code. In the case of SyGuS [1], a
grammar is given as an over-approximation to the missing code. The property
to be enforced may be expressed using the language of an SMT-solver, so that
guesses as to how to fill the hole can be verified. While the problem setup is
similar to model refinement, the synthesis process is based on generate-and-test
rather than predicate transformer-based calculation.

Model refinement is most obviously derived from the extensive literature on con-
troller synthesis [20, 8] and reactive system design [18]. Most current work on
the synthesis of reactive systems focuses on circuit design and starts with speci-
fications in propositional Linear Temporal Logic (LTL) or GR(1) [3, 13]. Model
refinement allows specifications that are first-order and uses a temporal logic of
action that is amenable to refinement, allowing a broader range of applications
to be tackled.

The algorithm derivation in Section 5 highlights a novel aspect of model refine-
ment: the imposition of a design template rather than a plant or game model
as it typical in reactive system design. Design templates in the systems world
are often discussed as Design Patterns. The refinement mechanism is arc refine-
ment (see Section 2.3) which refines a model arc by an arc-like LCFG, in effect,
replacing the arc with a design pattern. The arc specification becomes a path
property and the refinement rules in Section 5 are used to localize the property
by strengthening arc labels along the path. It is typical of algorithm derivation
that structure refinements are needed to implement arc/action specifications,
resulting in the top-down synthesis of subalgorithms. Algorithms often have a
deeper hierarchy of subcomputations than system control codes.

The model refinement constraints are a kind of Constrained Horn Clause (CHC)
and specialized algorithms have been explored for these as a generalization of
SMT solving [7, 10, 11]. The main application is finding inductive invariants for
program verification. Our approach aims to find a maximal solution whereas
CHC tools typically aim to find any solution, since any inductive invariant is
sufficient to establish the specified verification condition.

Model checking [5] can be viewed as a special case of model refinement in which
refinement of the model is not an option. Counter-example-driven model refine-
ment is performed in CEGAR with the goal to prove a specific property on a
model of a fixed underlying program. The goal of CEGAR is not to synthesize
a correct program from properties but to verify properties of a given program.
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7 Concluding Remarks

The starting point of this work is the observation that logical properties and
computational models have complementary strengths for purposes of formally
stating requirements on desired computer behavior. The key questions then are
(1) how to combine these strengths into a coherent formalism for specifying
requirements, and (2) how to calculate programs that are consistent with speci-
fications stated in the formalism.

In this paper we have presented an instance of these general ideas, using (1) a
first-order temporal logic of actions to specify logical properties and (2) labelled
transition systems to express concrete and abstract computational models and
their refinement order. For illustration purposes we have further focused on basic
safety properties.

Physical plants (as in the Flow Control problem) and game-like problems (as in
the Cinderella-Stepmother problem) provide concrete models upon which model
refinement can propagate logical properties over actions. The imposition of ab-
stract designs as abstract models (as in the Sorting example and more gener-
ally in the form of design patterns, algorithm schemas, sketches, etc.) naturally
transforms property specifications into path predicates over abstract models.
This paper has presented model refinement as a unified treatment of reactive
and functional design using iterated constraint propagation of (1) path predi-
cates over abstract models and (2) state/action predicates over concrete model
steps/arcs.

While this paper provides a fairly general and mechanizable framework for user-
guided, yet highly automated design, it also admits the possibility of high compu-
tational complexity or undecidability due to the expressiveness of the first-order
formulas. By suitably restricting the domain of discourse to decidable theories,
we can define a more automated design process. Our prototype implementa-
tion restricts constraints to the decidable theories in Z3, which is sufficient for
a range of applications including the examples presented above. Extension to
handle liveness properties (φ) and reactivity properties (φ) can also be
handled as definite constraint systems whose fixpoints can be found by Kleene
iteration combined with widening. However, for practical purposes, reactive sys-
tems typically want guarantees of bounded-time responsiveness, which is a safety
property (and therefore amenable to the techniques in this paper).

Model refinement is intended to be part of a library of refinement-generating
transformations that are used to develop complex algorithms and systems. In
our view, a practical synthesis environment generates a refinement chain from
an initial specification down to compilable code. Each step of the refinement
chain is generated by a transformation that is also capable of emitting proofs of
the refinement relation between the pre- and post-specification [27, 32]. Model
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refinement would tend to be used earlier in the refinement chain since it trans-
lates logical requirements into operational designs, by enforcing properties in
the model. Other refinement-generating transformations are necessary to im-
prove the performance of the evolving model including expression simplification,
finite-differencing or incrementalization, and datatype refinements [16, 25].

Treating a specification as a model plus required properties is a key aspect
of model refinement. Models are essentially programs annotated with invariant
properties. While temporal logics can be translated into automata (and vice-
versa), for complex designs, the models can be much more compact than logic,
especially when the nodes have rich properties and the control structure is com-
plex. Initially, models serve to succinctly capture fixed behavioral structure in
the problem domain, such as physical plant dynamics and information system
APIs. During refinement, the model serves as the accumulation of the design
decisions made so far. Another intended use of models is via the imposition
of design patterns for algorithms and systems. Patterns from a library capture
best-practice designs that might be difficult to find by search; e.g. when there
is a delicate tradeoff between “ilities”, such as between precision of output and
runtime.

We are currently working on the design of a processor (model) that asyn-
chronously receives and processes tasks for which we want to enforce capacity
and timeliness properties. To enforce fairness and timeliness the design composes
in an abstract scheduler (design pattern). We hope to report on this work in a
future paper.
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