
Science of Computer Programming, 14(2-3), 1990, pp 305-321.

Algorithm Theories and Design Tactics

Douglas R. Smith and Michael R. Lowry
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304-1216 USA

Abstract

Algorithm theories represent the structure common to a class of algorithms, such
as divide-and-conquer or backtrack. An algorithm theory for a class A provides
the basis for design tactics – specialized methods for designing A-algorithms from
formal problem specifications. We illustrate this approach with recent work on
the theory of global search algorithms and briefly mention several others. Several
design tactics have been implemented in the KIDS/CYPRESS system and have
been used to semiautomatically derive many algorithms.

1. Introduction

We describe an approach to the formal derivation of algorithms that is based on the notion
of an algorithm theory which represents the structure common to a class of algorithms,
such as divide-and-conquer or backtrack. Algorithm theories are abstract in several senses,
the most important being problem-independence. They also abstract away implementation
concerns about control strategy, target programming language, and, to some extent, the
target architecture. By factoring out what is common to a class we hope to make it easier
to apply the abstraction to particular problems. We have developed specialized construction
methods, called design tactics, for various algorithm theories. We illustrate this approach
with recent work on the theory of global search algorithms [18] and briefly mention theories
of divide-and-conquer [16], local search [8, 9], and other classes of algorithms. We have
implemented several of these design methods in the KIDS/CYPRESS system [19] and used
them to semiautomatically derive many algorithms.

There are several advantages to representing the structure of a class of algorithms as a theory.
Firstly, it abstracts away concerns about programming language and style (e.g. functional
vs. logical vs. imperative, recursive vs. iterative), control strategy (e.g. top-down vs. bottom-
up, depth-first vs. breadth-first vs. best-first), and, to some extent, target architecture (e.g.
sequential vs. parallel). These concerns can be factored in as later decisions in the design

1

process. Secondly, once and for all we can derive abstract programs (schemes) as theorems in
the abstract theory and then apply them to concrete problems. This allows us to reduce the
problem of constructing a correct concrete algorithm to constructing an algorithm theory for
a given problem. Thirdly, we can develop generic and thus highly-reusable design tactics on
the basis of the abstract theory. Those design steps that are common to all instances of the
class can be done just once in the abstract theory. The tactics that we have developed to
date are sound, well-motivated, and mostly automatic in their implemented form. Fourth,
our approach has much in common with current approaches to abstract data types and
algebraic specifications which provides opportunities for fruitful interactions in the future.
For example, the concept of global search underlies a number of well-known data structures
such as binary search trees, quad-trees, and B-trees. In the expanded setting of data structure
design, the global search concept provides a way to structure and access a dictionary (a set
plus access operation). Finally, algorithmic theories can be combined to allow the inference
of hybrid algorithms.

Several well-known program derivation methodologies, e.g. [3, 10], are based on inference
rules for various programming language constructs - rules for inferring statement sequences,
conditionals, loops, etc. Our complementary approach can be viewed as providing inference
rules for various problem-solving methods or algorithmic paradigms. In a related approach,
Bird [2] advocates a calculus of functional programs which exploits theorems relating problem
structure to program structure.

Problems can be specified by means of a problem theory (Section 2). Designing an algorithm
for a problem is mainly a matter of constructing an algorithm theory (Section 3). There
are two ways to view this construction. From the point of view of the problem theory,
the algorithm theory is an extension that provides just enough structure to support the
construction of a concrete algorithm (Section 4). From the point of view of an abstract
algorithm theory A, the construction is a theory morphism or interpretation [8, 22]. These
two points of views are tied together in the categorical concept of a pushout (Section 5).
Constructing an algorithm theory for a given problem is accomplished by specialized design
tactics (Section 5). Several design tactics have been implemented in the KIDS/CYPRESS
system (Section 6) and used semiautomatically to derive dozens of algorithms. Key concepts
of this paper are illustrated by application to the problem of enumerating cyclic difference
sets [1].

2. Problem Theories and Extensions

We briefly review some concepts based on the abstract data type literature. A theory is
a structure 〈S,Σ, A〉 consisting of sorts S, operations over those sorts Σ, and axioms A to
constrain the meaning of the operations. A theory morphism (theory interpretation) maps
from the sorts and operations of one theory to the sorts and expressions over the operations
of another theory such that the image of each source theory axiom is valid in the target
theory. A parameterized theory has formal parameters that are themselves theories [5].
The binding of actual values to formal parameters is accomplished by a theory morphism.

2

Theory T2 = 〈S2,Σ2, A2〉 extends (or is an extension of) theory T1 = 〈S1,Σ1, A1〉 if S1 ⊆ S2,
Σ1 ⊆ Σ2, and A1 ⊆ A2. An extension can be represented by a special theory morphism
called an inclusion that takes each sort and operation symbol to itself in the target theory.
A category of theories can be formed by taking theories as objects, theory morphisms as
arrows, and map composition as arrow composition.

Problem theories define a problem by specifying a domain of problem instances or inputs
and the notion of what constitutes a solution to a given problem instance. Formally, a
problem theory B has the following structure.

Sorts D ,R
Operations I : D → Boolean

O : D × R → Boolean

The input condition I (x) constrains the input domain D . The output condition O(x , z)
describes the conditions under which output domain value z ∈ R is a feasible solution with
respect to input x ∈ D . Theories of booleans and sets are implicitly imported. Problems of
finding optimal feasible solutions can be treated as extensions of problem theory by adding
a cost domain, cost function, and ordering on the cost domain (see [8, 18] for examples).

As a running example we use the problem of enumerating Cyclic Difference Sets (CDSs)
[1, 14]. They are relatively rare sets that are somewhat analogous to primes in the natural
numbers. The problem can be defined as follows. Given a modulus v, a set size k, and
a constant `, a 〈v, k, `〉–cyclic difference set C is a subset of {0..v − 1} that has size k.
Furthermore, if we consider “rotating” C by adding an arbitrary constant i, where i 6=
0 mod v, to each element yielding a new set D, then C and D have exactly ` elements in
common. For example, the simplest CDS is the 〈7, 3, 1〉-cds {0,1,3}. It has the property that
for any i, i 6= 0 mod 7,

size({0, 1, 3} ∩ {i+ j mod 6 | j ∈ {0, 1, 3}}) = 1,

for example, for i = 4 we have size({0, 1, 3} ∩ {4, 5, 1}) = 1.

Cyclic difference sets have been used for coding satellite communications, creating masks for
X-ray telescopes, and other applications. Baumert [1] list all known CDSs for k ≤ 100. These
known sets were found by mathematical construction. Below we describe the derivation of a
program to enumerate CDSs. We have used this program to discover a previously unknown
CDS: the 〈13, 4, 1〉-CDS: {0,1,4,6}.

The problem of enumerating cyclic difference sets can be specified via a theory morphism
B 7→ BCDS.

D 7→ Nat×Nat×Nat
I 7→ λ〈v, k, `〉. 1 ≤ ` ≤ k < v
R 7→ set(Nat)
O 7→ λ〈v, k, `〉, sub. sub ⊆ {0..v − 1} ∧ size(sub) = k

∧ ∀(i)(i ∈ {1..v − 1} =⇒ self overlap under rotation(i, v, sub) = `).

3

where we define

self overlap under rotation(i, v, S) = size(S ∩ { (a+ i) mod v | a ∈ S }).

Derived laws in BCDS include

self overlap under rotation(i, v, {}) = 0

self overlap under rotation(i, v, {0..v − 1}) = v

S ⊆ T =⇒ self overlap under rotation(i, v, S) ≤ self overlap under rotation(i, v, T).

3. Algorithm Theories

An algorithm theory represents the essential structure of a certain class of algorithms. Algo-
rithm theory A extends problem theory B with any additional sorts, operators, and axioms
needed to support the correct construction of an A algorithm for B. The algorithm theo-
ries that we have studied can be arranged in a refinement hierarchy as in Figure 1. Below
each algorithm theory in this hierarchy are listed various well-known classes of algorithms
or computational paradigms that are based on it. More discussion of this hierarchy may be
found in Section 7. Below we present a theory for the class of global search algorithms.

Global search generalizes the computational paradigms of binary search, backtracking, branch-
and-bound, constraint satisfaction, heuristic search, and others. The basic idea of global
search is to represent and manipulate sets of candidate solutions. The principal operations
are (i) to create an initial space that contains all feasible solutions, (ii) to extract candidate
solutions from a set, and (iii) to split a set into subsets. Derived operations include various
filters which are used to eliminate sets containing no feasible or optimal solutions. Global
search algorithms work as follows: starting from an initial set that contains all solutions to
the given problem instance, the algorithm repeatedly extracts candidates, splits sets, and
eliminates sets via filters until no sets remain to be split. The process is often described as
a tree (or DAG) search in which a node represents a set of candidates and an arc represents
the split relationship between set and subset. The filters serve to prune off branches of the
tree that cannot lead to solutions.

The sets of candidate solutions are often infinite and even when finite they are rarely rep-
resented extensionally. Thus the intuitive notion of global search can be formalized as the
extension of problem theory with an abstract data type of intensional representations called
descriptors. In addition to the extraction and splitting operations mentioned above, the type
also includes a satisfaction predicate that determines when a candidate solution is in the set
denoted by a descriptor. For the sake of simplifying the presentation we will use the term
space (or subspace) to denote both the descriptor and the set that it denotes. It should be
clear from context which meaning is intended.

Formally, gs−theory G consists of the following structure:

4

Figure 1: Refinement Hierarchy of Algorithm Theories

5

Sorts D ,R, R̂
Operations

I : D → boolean
O : D × R → boolean

Î : D × R̂ → boolean

r̂0 : D → R̂

Satisfies : R × R̂ → boolean

Split : D × R̂ × R̂ → boolean

Extract : R × R̂ → boolean
Axioms

GS0. I (x) =⇒ Î (x , r̂0 (x))

GS1. I (x) ∧ Î (x , r̂) ∧ Split(x , r̂ , ŝ) =⇒ Î (x , ŝ)
GS2. I (x) ∧ O(x , z) =⇒ Satisfies(z , r̂0 (x))

GS3. I (x) ∧ Î (x , r̂) =⇒ (Satisfies(z , r̂) = ∃(ŝ) (Split∗(x , r̂ , ŝ) ∧ Extract(z , ŝ)))

where R̂ is the type of space descriptors, Î defines legal space descriptors, r̂ and ŝ vary over
descriptors, r̂0 (x) is the descriptor of the initial set of candidate solutions, Satisfies(z , r̂)
means that z is in the set denoted by descriptor r̂ or that z satisfies the constraints that
r̂ represents, Split(x , r̂ , ŝ) means that ŝ is a subspace of r̂ with respect to input x , and
Extract(z , r̂) means that z is directly extractable from r̂ . Axiom GS0 asserts that the initial
descriptor r̂0 (x) is a legal descriptor. Axiom GS1 asserts that legal descriptors split into
legal descriptors. Axiom GS2 gives the denotation of the initial descriptor — all feasible
solutions are contained in the initial space. Axiom GS3 gives the denotation of an arbitrary
descriptor r̂ — an output object z is in the set denoted by r̂ if and only if z can be extracted
after finitely many applications of Split to r̂ where

Split∗(x , r̂ , ŝ) = ∃(k : Nat) (Splitk(x , r̂ , ŝ))

and
Split0(x , r̂ , t̂) = r̂ = t̂

and for all natural numbers k

Splitk+1(x , r̂ , t̂) = ∃(ŝ : R̂) (Split(x , r̂ , ŝ) ∧ Splitk(x , ŝ , t̂)).

Note that all variables are assumed to be universally quantified unless explicitly specified
otherwise.

Example: Enumerating Subsets

Consider the problem of enumerating subsets of a given finite set S. A space can be described
by a pair 〈U, V 〉 of disjoint sets that denotes the set of all subsets of U] V that extend U .
The descriptor for the initial space is just 〈{ }, S〉. Formally, the descriptor 〈U, V 〉 denotes
the set

{T | U ⊆ T ∧ T ⊆ V] U}.

6

Splitting is accomplished by either adding or not adding an arbitrary element a ∈ V to U . If
V is empty then the subset U can be extracted as a solution. This global search theory for
enumerating subsets Gsubsets can be presented via a theory morphism from abstract gs-theory
G.

D 7→ set(α)
R 7→ set(α)
I 7→ λS. true
O 7→ λS, T. T ⊆ S

R̂ 7→ set(α)× set(α)

Î 7→ λS, 〈U, V 〉. U] V ⊆ S ∧ U ∩ V = {}
Satisfies 7→ λT, 〈U, V 〉. U ⊆ T ∧ T ⊆ V] U

r̂0 7→ λS. 〈emptyset, S〉
Split 7→ λS, 〈U, V 〉, 〈U ′, V ′〉. V 6= { } ∧ a = arb(V)

∧ (〈U ′, V ′〉 = 〈U, V − a〉 ∨ 〈U ′, V ′〉 = 〈U + a, V − a〉)
Extract 7→ λT, 〈U, V 〉. empty(V) ∧ T = U

End of Example.

In addition to the above components of global search theory, there are various derived op-
erations which may play a role in producing an efficient algorithm. Filters, described next,
are crucial to the efficiency of a global search algorithm. Filters correspond to the notion of
pruning branches in backtrack algorithms and to pruning via lower bounds and dominance
relations in branch-and-bound. A feasibility filter ψ : D × R̂ → Boolean is used to eliminate
spaces from further processing. The ideal feasibility filter decides the question “Does there
exist a feasible solution in space r̂?”, or, to be more precise,

∃(z : R)(Satisfies(z , r̂) ∧ O(x , z)). (1)

However, to use (1) directly as a filter would usually be too expensive, so instead we use
various approximations to it. These approximations can be classified as either

1. necessary feasibility filters where (1) =⇒ ψ(x , r̂);

2. sufficient feasibility filters where ψ(x , r̂) =⇒ (1); or

3. heuristic feasibility filters which bear other relationships to (1).

Necessary filters only eliminate spaces that do not contain solutions, so they are generally
useful. Sufficient filters are mainly used when only one solution is desired. Heuristic filters
offer no guarantees, but a fast heuristic approximation to (1) may have the best performance
in practice.

7

4. Program Theories

A program theory represents an executable program and its properties such as invariants,
termination, and correctness with respect to a problem theory. Formally, a program theory P
is parameterized with an algorithm theory or, more generally, an extended problem theory.
The sort and operator symbols of the theory parameter can be used in defining programs in
P . Parameter instantiation, which is expressed as a theory morphism from the parameter
theory, results in the replacement of each sort and operator symbol in P by its image under
the theory morphism. The program theory introduces operator symbols for various functions
and defines them and their correctness conditions via axioms. The main function would be
defined as follows in the case where all feasible solutions are desired.

Operations F : D → set(R)
. . .

Axioms ∀(x : D)(I (x) =⇒ F (x) = {z | O(x , z)})
∀(x : D)(I (x) =⇒ F (x) = Body(x))
. . .

where Body is code that can be executed to compute F . In order to express Body it
is generally necessary to import a programming language and extend it with specification
language features. In this paper we assume a straightforward mathematical language that
uses set-theoretic data types and operators and serves both as specification and program
language. Consistency of the program theory entails that the function computed by the
code (Body) must return all feasible solutions. The axioms for other functions would be
similar.

Program theories can be expressed in a somewhat more conventional format and called a
program specification:

function F (x : D) : set(R)
where I (x)
returns {z | O(x , z)}
= Body(x)

Depending on choices of control strategy and programming language, a range of abstract
programs can be inferred in abstract global search theory [18]. We are interested in those
program theories whose consistency can be established for all possible input theories; that
is, those program theories whose consistency can be established solely on the basis of the
parameter theory. One such theory is presented below. Given a global search theory, the
following theorem shows how to infer a correct program for enumerating all feasible solutions.
In this theorem the auxiliary function F gs(x , r̂) computes the set of all feasible solutions z
in space r̂ .

8

Theorem 4..1 Let G be a global search theory. If Φ is a necessary feasibility filter then the
following program specification is consistent

function F (x : D) : set(R)
where I (x)
returns {z | O(x , z)}
= {z | Φ(x , r̂0 (x)) ∧ z ∈ F gs(x , r̂0 (x))}

function F gs(x : D , r̂ : R̂) : set(R)

where I (x) ∧ Î (x , r̂) ∧ Φ(x , r̂)
returns {z | Satisfies(z , r̂) ∧ O(x , z)}
= {z | Extract(z , r̂) ∧ O(x , z)}

∪ reduce(∪, { F gs(x , ŝ) | Split(x , r̂ , ŝ) ∧ Φ(x , ŝ)}).

The proof may be found in [18]. In words, the abstract global search program works as
follows. On input x the program F calls F gs with the initial space r̂0 (x) if the filter holds
(otherwise there are no feasible solutions and the set-former evaluates to the emptyset). The
program F gs(x , r̂) unions together two sets; (1) all solutions that can be directly extracted
from the space r̂ , and (2) the union of all solutions found recursively in spaces ŝ that are
obtained by splitting r̂ and that survive the filter. Note that Φ becomes an input invariant
in F gs.

5. Design Tactics

Theorem 4..1 and its analogues reduce the problem of constructing a program to the problem
of constructing an algorithm theory for a given problem F . The task of constructing an A-
algorithm theory for F is described by the following commutative diagram (a pushout in the
category of theories)

B m→ BF

↓ e ↓ e′

A m′
→ AF

where e and e′ are inclusions (theory extensions) and m and m′ are theory morphisms. That
is, the construction of an A-theory for F can be viewed both as an extension of BF and as
a theory morphism A → AF .

For each of several algorithm theories that we have explored (see Figure 1), we have developed
specialized design tactics. An A-design tactic constructs an A-algorithm theory for a given
problem theory. Our tactic for designing global search algorithms relies on a deductive
inference system and a library of standard gs-theories for common domains. The steps of
the tactic are (1) to select and specialize a standard gs-theory, (2) to infer various filters, (3)
to infer a concrete program, and (4) to perform program optimizations and refinements.

9

We describe first how to specialize a gs-theory to a given problem theory. Let GG be a
gs-theory whose components are denoted DG,RG,OG, SatisfiesG, etc., and let BF be a given
problem theory with components DF ,RF , IF ,OF . The problem theory BG generalizes BF if
for every input x to F there is an input y to G such that the set of feasible solutions G(y)
is a superset of F (x); formally

∀(x : DF) ∃(y : DG) ∀(z : RF)(I (x) =⇒ (RF ⊆ RG ∧ (OF (x , z) ⇒ OG(y , z)))). (2)

Verifying (2) provides a substitution θ for the type parameters of the BG (if any) and for
input variables of BG in terms of the input variables of F . The type and number of input
variables can differ between BG and BF , as in the example below. The gs-theory GF is
obtained by applying substitution θ across GG. To see that the axioms GS0 – GS3 hold for
GF note that we have replaced the input variables of GG with terms which take on a subset
of their previous values. Intuitively, the effect of verifying (2) is to reduce problem BF to
BG, so that a solution to BG can be used to compose a solution to BF .

Example: Cyclic Difference Sets.

The gs-theory Gsubsets generalizes the CDS specification. To see this, first instantiate (2)

∀(〈v, k, `〉 : Nat×Nat×Nat)
∃(S : set(Nat))
∀(Sub : set(Nat))

(1 ≤ ` ≤ k < v
∧ Sub ⊆ {0..v − 1} ∧ size(sub) = k
∧ ∀(i)(i ∈ {1..v − 1} =⇒ self overlap under rotation(i, v, sub) = `)
=⇒ (set(Nat) ⊆ set(α) ∧ Sub ⊆ S)).

The proof is trivial and yields the substitution

θ = {S 7→ {0..v − 1}, α 7→ Nat}.

This substitution is a critical translation between the problem theory Bsubsets, which takes a
single set-valued argument S, and BCDS, which takes three arguments v, k, `. After applying
these substitutions to Gsubsets, we obtain the following specialized gs-theory GCDS for cyclic
difference sets.

10

D 7→ Nat×Nat×Nat
I 7→ λ〈v, k, `〉. 1 ≤ ` ≤ k < v
R 7→ set(Nat)
O 7→ λ〈v, k, `〉, sub. Sub ⊆ {0..v − 1}

∧ size(Sub) = k
∧ ∀(i)(i ∈ {1..v − 1} =⇒ self overlap under rotation(i, v, sub) = `)}

R̂ 7→ set(α)× set(α)

Î 7→ λ〈v, k, `〉, 〈U, V 〉. U] V ⊆ {0..v − 1} ∧ U ∩ V = {}
Satisfies 7→ λSub, 〈U, V 〉. U ⊆ Sub ∧ Sub ⊆ V] U

r̂0 7→ λ〈v, k, `〉. 〈emptyset, {0..v − 1}〉
Split 7→ λ〈v, k, `〉, 〈U, V 〉, 〈U ′, V ′〉. V 6= { } ∧ a = arb(V)

∧ (〈U ′, V ′〉 = 〈U, V − a〉 ∨ 〈U ′, V ′〉 = 〈U + a, V − a〉)
Extract 7→ λSub, 〈U, V 〉. empty(V) ∧ Sub = U

The next step in constructing a global search theory is to derive filters. For this step we
need an inference system capable of deriving necessary or sufficient conditions.

Example: Cyclic Difference Sets.
We can obtain a feasibility filter for CDS by deriving a necessary condition of the expression

U ⊆ Sub ⊆ V] U
∧ Sub ⊆ {0..v − 1} ∧ size(Sub) = k
∧ ∀(i)(i ∈ {1..v − 1} =⇒ self overlap under rotation(i, v, sub) = `)

which is obtained by instantiating (1). Furthermore we are only interested in necessary
conditions expressed over the variables {v, k, `, U, V }. The inference process may exploit the
assumptions 1 ≤ ` ≤ k < v and U] V ⊆ {0..v − 1} (the input conditions I and the data
type invariants Î of R̂).

The derivation of the filters exploits two monotonicity laws. One,

S ⊆ T =⇒ size(S) ≤ size(T)

is from the domain of set theory, and the other

S ⊆ T =⇒ self overlap under rotation(i, v, S) ≤ self overlap under rotation(i, v, T)

is from the domain theory of the CDS problem. Inference proceeds as follows.

U ⊆ Sub ⊆ V] U

=⇒ (by monotonicity of size)

size(U) ≤ size(Sub) ≤ size(V] U)

⇐⇒ (using k = size(Sub))

size(U) ≤ k ≤ size(V) + size(U).

11

Thus we obtain size(U) ≤ k ≤ size(V)+size(U) as one necessary feasibility filter. In words,
the partial set being incrementally constructed (U) must have at most k elements, but there
must be at least k elements between U and the pool of remaining elements V . Another filter
can be derived as follows.

U ⊆ Sub ⊆ V] U

=⇒ (by monotonicity of self overlap under rotation)

∀(i)(i ∈ {1..v − 1} =⇒
self overlap under rotation(i, v, U)
≤ self overlap under rotation(i, v, Sub)
≤ self overlap under rotation(i, v, V] U))

⇐⇒ (using self overlap under rotation(i, v, Sub) = `)

∀(i)(i ∈ {1..v − 1} =⇒
self overlap under rotation(i, v, U)
≤ ` ≤ self overlap under rotation(i, v, V] U))

Thus we obtain

∀(i)(i ∈ {1..v − 1} =⇒
self overlap under rotation(i, v, U)
≤ ` ≤ self overlap under rotation(i, v, V] U))

as another necessary feasibility filter. In words, the partial solution U must have a self-
overlap of at most ` and the combined set U] V must have a self-overlap of at least `.

The result of applying Theorem 4..1 is the consistent program specification in Figure 2.
Note that this program specification includes not only the input and output conditions of
the function, but also invariants that characterize the meaning of all data structures. These
invariants are crucial to later optimizations.
End of example.

The filter Φ will often dramatically reduce the amount of work needed to enumerate the
feasible space. One feature of necessary filters is that one, true, is immediately available;
stronger filters are obtained with more investment of computational resource at design-time.

Following the production of a concrete global search program, there are typically many
opportunities for program optimization. These tend to follow a stereotypic order: simplifying
the body of programs with respect to their input assumptions/data structure invariants,

12

function CDS(v, k, `)
where 1 ≤ ` ≤ k < v
returns {sub | sub ⊆ {0..v − 1} ∧ size(sub) = k

∧ ∀(i)(i ∈ {1..v − 1} =⇒ self overlap under rotation(i, v, sub) = `)}
= {sub | size({ }) ≤ k ≤ size({ }) + size({0..v − 1})

∧ ∀(i)(i ∈ {1..v − 1} =⇒ self overlap under rotation(i, v, { }) ≤ `
∧ ` ≤ self overlap under rotation(i, v, { }] {0..v − 1}))

∧ sub ∈ CDS gs(v, k, `, { }, {0..v − 1})}

function CDS gs(v, k, `, U, V)
where 1 ≤ ` ≤ k < v ∧ V] U ⊆ {0..v − 1}

∧ size(U) ≤ k ≤ size(U) + size(V)
∧ ∀(i)(i ∈ {1..v − 1} =⇒ self overlap under rotation(i, v, U) ≤ `

∧ ` ≤ self overlap under rotation(i, v, U] V))
returns { sub | U ⊆ sub ⊆ V] U ∧ size(sub) = k

∧ ∀(i)(i ∈ {1..v − 1} =⇒ self overlap under rotation(i, v, sub) = `)}
= {sub | empty(V) ∧ sub = U

∧ sub ⊆ {0..v − 1}
∧ size(sub) = k
∧ ∀(i)(i ∈ {1..v − 1} =⇒ self overlap under rotation(i, v, sub) = `)}

∪ reduce(∪, {CDS gs(v, k, `, U ′, V ′) |
V 6= { } ∧ a = arb(V)

∧ (〈U ′, V ′〉 = 〈U, V − a〉 ∨ 〈U ′, V ′〉 = 〈U + a, V − a〉)
∧ size(U ′) ≤ k ≤ size(U ′) + size(V ′)

∧ ∀(i)(i ∈ {1..v − 1} =⇒ self overlap under rotation(i, v, U ′) ≤ `
∧ ` ≤ self overlap under rotation(i, v, U ′] V ′))}).

Figure 2: Cyclic Difference Set Algorithm

13

applying partial evaluation, finite differencing, data structure refinement, and compilation.
For example, in CDS the expression

self overlap under rotation(i, v, { }) ≤ ` ≤ self overlap under rotation(i, v, {0..v − 1})

simplifies to true using the laws

self overlap under rotation(i, v, { }) = 0

and
self overlap under rotation(i, v, {0..v − 1}) = v

and the input condition 1 ≤ ` ≤ v. For another example, in CDS gs the expressions

self overlap under rotation(i, v, U ′)

and
self overlap under rotation(i, v, U ′] V ′)

can be maintained incrementally using the technique of finite differencing [13]. The effect
is to introduce map data structures that represent lower and upper bounds on the value of
self overlap under rotation on the current partial solution.

6. KIDS

We have implemented the global search design tactic and various optimization techniques in
the KIDS/CYPRESS system [18, 19]. Implementation serves to check on the effectiveness
of our derivations and to uncover issues that might be overlooked when doing derivations
on paper. We have been able to derive a wide variety of algorithms without having to rely
on the programmer supplying invariants, generalizations, or other such “eureka” steps. All
interaction with the system during design and optimization involves the use of a mouse to se-
lect program expressions or items from a machine-generated menu. We hope to demonstrate
that interaction at this level can be natural enough to pose successful explanations of the
derivation process and that the tactics can be made both efficient enough and comprehensive
enough to be useful for routine programming.

The user goes through the following steps in using KIDS for algorithm design.

1. Define terms – The user builds up a domain theory by defining appropriate terms. In
this paper we defined the term self overlap under rotation.

2. Provide laws – The user currently must provide derived laws that allow reasoning
about the derived terms at a high level. Our experience has been that distributive
and monotonicity laws provide most of the laws that are needed to support design and
optimization.

3. Create a specification – The user enters a specification in a general but stylized format
that is easily converted to a problem theory.

14

4. Apply a design tactic – The user selects a design tactic from a menu and applies it to
a specification S by pointing to S with a mouse. Subsequent steps describe the global
search design tactic.

(a) Specialize a known gs-theory – The system presents a menu of gs-theories that are
currently in its library and the user selects one. It is automatically matched (by
instantiating and verifying (2)) and specialized to the given problem.

(b) Derive filters – The tactic then automatically derives filters by exhaustively search-
ing to a fixed inference depth all necessary conditions of (1). The user is then
presented with a menu of candidate filters and must select a subset (any subset
will yield a correct algorithm). The user also has the option of having the search
for necessary conditions continue to greater depths. Generally the stronger the
filter the better, although one has to trade off filtering power with the cost of
executing the filter. Currently this step takes the bulk of the design time – about
10 minutes for the CDS problem. Mechanisms for automating the selection of
strongest filters are known and would make use of dependency-tracking in the
inference system.

(c) Instantiate a program theory – The user is presented with a menu of program
theories (schemes) that embody different control strategies and possibly different
languages. Having selected one, the resulting programs and their problem theories
and invariants are displayed.

5. Apply program optimizations and data type refinements - The KIDS system allows the
application of optimization techniques such as simplification, partial evaluation, finite
differencing, loop fusion, and others. The user selects an optimization method from
a menu and applies it by pointing at a program expression. Each of the optimiza-
tion methods are fully automatic and, with the exception of simplification (which is
arbitrarily hard), take only a few seconds. Analogously, the user can select different
implementations for the abstract types in the program specification (e.g. sets can be
implemented via linked lists, bit vectors, or others).

6. Compile – Finally, the resulting code is treated by a conventional compiler.

Examples of derivations that present the above steps in more detail may be found in [18, 21,
19].

We have run the partially optimized CDS program on a number of inputs, and were sur-
prised to discover a cyclic difference set that was previously unknown (according to [1]): the
〈13, 4, 1〉-CDS: {0,1,4,6}. Other problems treated by specializing the subset theory Gsubsets

include set covers, binary knapsack, k-clique, vertex covers, and k-subset problems. As of
early 1989 over two dozen global search algorithms have been designed and optimized using
the KIDS system.

15

7. Other Algorithm Theories

We have studied a number of algorithm theories and their design tactics, as shown in Figure
1. Given a problem theory, it is possible to create a generate-and-test algorithm which
simply enumerates the output domain checking for feasible solutions. Because generate-and-
test requires no additional structure than problem theory it can be viewed as a most general
algorithm paradigm.

Local structure results from the imposition of a discrete neighborhood structure (graph)
on the output domain. Local search algorithms start with a candidate solution and then
iteratively traverse from candidate to neighboring candidate until a feasible (or optimal)
solution is found. Examples of local search algorithms include steepest ascent algorithms,
simulated annealing, closure algorithms, and many network flow algorithms. A theory of
local search and a design tactic based on it are presented in [8, 9]. The implemented tactic
has been used to derive a variant of the classic simplex algorithm for linear programming.

Problem reduction involves the reduction of a problem to a structure of subproblems. Solu-
tions to the subproblems are composed to form a solution to the initial problem. A simple
example is the reduction of a given problem to the problem solved by a library subroutine.
For example, in Section 5 we reduced the problem of enumerating cyclic difference sets to
the problem of enumerating subsets of a given set.

Complementation structure is useful when it is easier to enumerate infeasible solutions than
feasible solutions. The initial problem is reduced to two subproblems: (1) enumerate a su-
perset of feasible solutions and (2) enumerate infeasible solutions. The feasible solutions can
then be found by set subtraction. Sieve algorithms are based on complementation structure.
Typically the superset of feasible solutions is explicitly represented and set subtraction is
interleaved with the enumeration of infeasible solutions.

And-reduction (divide-and-conquer) involves the reduction of a problem to a structure of
subproblems all of whose solutions are required in order to compose a solution to the initial
problem. The subproblems typically include an instance of the initial problem so that the
reduction is recursive.

A divide-and-conquer algorithm can be treated as a homomorphism from a decomposition
algebra on the input domain of a problem to a composition algebra on its output domain
[15]. One tactic for designing a divide-and-conquer algorithm involves selecting a simple or
standard decomposition algebra from a library and then using the homomorphism condition
to derive a specification for the corresponding composition algebra on the output domain.
Another useful tactic is to select a simple composition algebra and derive a specification
for a decomposition algebra on the input domain. We have implemented these tactics and
used them to derive dozens of algorithms [16], including recently one that was previously
unknown and asymptotically faster than previously known algorithms [17].

Or-reduction (global search) involves the reduction of a problem to a structure of subproblems
at least one of whose solutions are required in order to obtain a solution to the initial problem.
Solutions to the initial problem are obtained by selecting solutions to subproblems [18].

16

And/or-reduction involves a combination of And- and Or-reductions resulting in alternative
ways to decompose an initial problem [20]. This theory supports the design of dynamic
programming, general branch-and-bound, game tree search, and greedy algorithms.

Other examples of theories that relate problem structure to algorithm structure can be found
in the literature, although only recently has there been much interest in using these theories
as a basis for the formal derivation of algorithms as opposed to analysis or verification.
Bellman’s principle of optimality, if suitably formalized, is a sufficient condition for solution
by dynamic programming [7]. Various theories of branch-and-bound algorithms have been
presented [6, 11, 12]. Matroids [4] provide sufficient structure for an optimization problem
to be solved by a greedy algorithm. Bird [2] presents algorithm theories for special cases of
greedy and dynamic programming algorithms and applies them to a coding problem.

8. Concluding Remarks

Algorithm design can be treated as the construction of an algorithm theory that extends a
problem theory with the structure of a certain class of algorithms. We presented one special
design tactic for constructing global search theories and used it to derive an algorithm for
enumerating cyclic difference sets. Theorem 4..1 and its analogues mediate the transition
from an algorithm theory to a concrete program by factoring in commitments to control
strategy and target language.

Our specialized design tactics should be useful in many formal approaches to programming.
For those algorithms that can be derived via tactics the resulting derivations are shorter,
simpler, and more motivated than they would be if derived from first principles or in a more
general-purpose calculus of programs. We cannot now claim that all algorithms are naturally
derivable as instances of various well-known classes of algorithms. Therefore one might want
to embed the tactics in a more general derivation methodology.

Acknowledgements

This paper benefited from helpful comments by Richard Bird on an earlier draft and from
discussions with Joseph Goguen. This research was supported in part by the Office of Naval
Research under Contract N00014-87-K-0550 and in part by the Air Force Office of Scientific
Research under Contract F49620-88-C-0033.

References

[1] Baumert, L. D. Cyclic Difference Sets. Springer-Verlag, Berlin, 1971. Lecture Notes
in Mathematics, Vol. 182.

17

[2] Bird, R. A calculus of functions for program derivation. Tech. Rep. PRG-64, Oxford
University, Programming Research Group, December 1987.

[3] Dijkstra, E. W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ,
1976.

[4] Edmonds, J. Matroids and the greedy algorithm. Mathematical Programming 1 (1971),
127–136.

[5] Goguen, J. A., and Winkler, T. Introducing OBJ3. Tech. Rep. SRI-CSL-88-09,
SRI International, Menlo Park, California, 1988.

[6] Ibaraki, T. Branch-and-bound procedures and state space representation of combi-
natorial optimization problems. Information and Control 36 (1978), 1–36.

[7] Karp, R., and Held, M. Finite state processes and dynamic programming. SIAM
Journal of Applied Mathematics 15, 3 (May 1967), 693–718.

[8] Lowry, M. R. Algorithm synthesis through problem reformulation. In Proceedings of
the 1987 National Conference on Artificial Intelligence (Seattle, WA, July 13–17, 1987).

[9] Lowry, M. R. Algorithm Synthesis Through Problem Reformulation. PhD thesis,
Computer Science Department, Stanford University, 1989.

[10] Manna, Z., and Waldinger, R. A deductive approach to program synthesis. ACM
Transactions on Programming Languages and Systems 2, 1 (January 1980), 90–121.

[11] Mitten, L. G., and Warburton, A. R. Implicit enumeration procedures. Tech.
Rep. Working Paper 251, University of British Columbia, 1973.

[12] Nau, D., Kumar, V., and Kanal, L. General branch and bound and its relation
to A* and AO*. Artificial Intelligence 23, 1 (May 1984), 29–58.

[13] Paige, R., and Koenig, S. Finite differencing of computable expressions. ACM
Transactions on Programming Languages and Systems 4, 3 (July 1982), 402–454.

[14] Skinner, G. K. X-ray imaging with coded masks. Scientific American 259, 2 (August
1988), 84–89.

[15] Smith, D. R. The structure of divide-and-conquer algorithms. Tech. Rep. NPS52-83-
002, Naval Postgraduate School, Monterey, CA, March 1983.

[16] Smith, D. R. Top-down synthesis of divide-and-conquer algorithms. Artificial Intelli-
gence 27, 1 (September 1985), 43–96. (Reprinted in Readings in Artificial Intelligence
and Software Engineering, C. Rich and R. Waters, Eds., Los Altos, CA, Morgan Kauf-
mann, 1986.).

[17] Smith, D. R. Applications of a strategy for designing divide-and-conquer algorithms.
Science of Computer Programming 8, 3 (June 1987), 213–229.

[18] Smith, D. R. Structure and design of global search algorithms. Tech. Rep.
KES.U.87.12, Kestrel Institute, November 1987.

18

[19] Smith, D. R. KIDS – a semi-automatic program development system. IEEE Transac-
tions on Software Engineering Special Issue on Formal Methods in Software Engineering
16, 9 (1990), 1024–1043.

[20] Smith, D. R. Structure and design of problem reduction generators. In Constructing
Programs from Specifications, B. Möller, Ed. North-Holland, Amsterdam, 1991, pp. 91–
124.

[21] Smith, D. R., and Pressburger, T. T. Knowledge-based software development
tools. In Software Engineering Environments, P. Brereton, Ed. Ellis Horwood Ltd.,
Chichester, 1988, pp. 79–103. (also Technical Report KES.U.87.6, Kestrel Institute,
May 1987).

[22] Veloso, P. A. Problem solving by interpretation of theories. In Contemporary
Mathematics, vol. 69. American Mathematical Society, Providence, Rhode Island, 1988,
pp. 241–250.

19

