
Overcoming Ontology Mismatches in

Transactions with Self-Describing Service

Agents
Drew McDermott

Yale University

drew.mcdermott@yale.edu

Mark Burstein

BBN Technologies

burstein@bbn.com

Douglas Smith

Kestrel Institute

smith@kestrel.edu

Abstract.One vision of the “Semantic Web” of the future is that software agents

will interact with each other using formal metadata that reveal their interfaces. We

examine one plausible paradigm, where agents provideservice descriptionsthat tell

how they can be used to accomplish other agents’goals. From the point of view of

these other agents, the problem of deciphering a service description is quite similar

to the standard AI planning problem, with some interesting twists. Two such twists

are the possibility of having to reconcile contradictoryontologies— or conceptual

frameworks — used by the agent, and having to rearrange the data structures of a

message-sending agent so they match the expectations of the recipient. We argue

that the former problem requires human intervention and maintenance, but that the

latter can be fully automated.

1 Introduction

Suppose an agent is given the task of buying the paperback edition of “Robo Sapi-

ens” for less than $25.

The agent must carry out several tasks:

1. Find other agents that might be able to help carry out the given action. (A

broker agentwould perform this part.)

2. For each such agent, get a description of what service it provides. This de-

scription must be expressed in a formal language, such as DAML (DARPA

Agent Markup Language).

3. If the goal description and the service description do not use the same ontol-

ogy, find a common framework to translate them to. Anontologyis a “con-

ceptual scheme,” a way of talking about the world.1

4. Find and execute aplan for satisfying its goal, that is, a series of interactions

with a given bookseller that result in the agent acquiring a copy of the book.

The primitive actions of the plan will be actions that send and receive mes-

sages. Building and decoding these messages may require further translation,

between what one agent wants to receive and what the other knows.

One of the key questions we address in this paper is how agents’ goals and

servers’ service description can be represented, and what is necessary to make the

two mesh. Many treatments of such problems assume that representations can be as

simple as lists of keywords and values

(‘‘Task: buy; Thing-to-buy: book; Price: (< $25);’’)

Such notations work fine as long as all tasks fit within a preimagined framework,

but are unable to express anything novel.

We prefer to use notations that respect the degrees of freedom we’re likely to

require in the future. It seems inescapable that such notations will have the power

of formal logic:

(do-for-some (λ (m - Merchant b - Book)

(and (= (title b) "Robo Sapiens")

(sells m b)

(< (price m b) (* 25 $))))

(λ (m - Merchant b - Book)

(buy-from m 1 b)))

(do-for-some p a) means, “For some object(s)x satisfying predicatep, do

(a x) .” We use Lisp-style notation for logical constructs. Function application

is written (function arg1 ... argn) , even if thefunction is traditionally written

using infix notation. So(* (+ 3 4) 5) is the Lisp way to write(3+4)*5 .2

The notation(λ (params) e) denotes a function whose parameters areparams

and whose value ise. We use the termbody oftheλ-expression to refer toe. Al-

though it’s not our emphasis in this paper, all expressions must betypable,mean-

ing that it must be possible to assign consistent types to all their subexpressions.

When necessary for typability or perspicuity, parameters can have declared types,

indicated using the notation(λ (... param - type...) ...) . λ-expressions

have many purposes. The firstλ-expression in our example is a predicate, because

its body is of typeProposition . The second denotes a function from merchants

and books to actions, so that applying it to a particular merchant and book yields

a particular action, namely, buying one copy of that book from that merchant. The

1Original meaning: the philosophical study of being. As used in AI, the word “ontology” has come to

mean “what is represented as existing.”
2We depart from Lisp notation in two contexts. We represent finite sets using braces and tuples using

angle brackets. Lisp purists may prefer to read{a, b, c } as(set a b c) , and<a b c> as(tuple

a b c) .

combination ofdo-for-some andλ work together to define a “quantifier” for ac-

tions, analogous to the usual existential quantifier∃(x ∈ S)P (x) in mathematical

logic. The action(do-for-some p a) is carried out whenever the agent does

(a x) for somex satisfyingp. There is no presupposition that it achieves this by,

say, finding anx that satisfiesp, then doing(a x) . In the present case, it might

search for a plan for(buy-from m96 1 b97) , wherem96andb97 are place-

holder constants labeled with the constraints thatb97 be Robo Sapiens, and that

m96 be a merchant that sellsb97 for less than $25. Or it might pursue it in some

other way entirely; the logic doesn’t care.

In this paper, we focus on the question how these logic-based representations

can be used, and in particular what happens after brokers have done their work, so

that two or more agents know of each other’s existence and possible usefulness.

At that point the task becomes getting the agents to talk to each other in order to

solve a common problem. For clarity, we will adopt the following terminology: the

planning agentis the one whose point of view we are taking, i.e., the buyer in our

example; thetarget agent(s)are those the planning agent is trying to interact with.

We assume the target agents are not under our control. They share some of the

notational assumptions we make, but we must take their notations as we find them.

2 Using Self-Describing Agents

One of our notational assumptions is that each target agent will have aservice de-

scription embedded in the interface it presents to the world, which one may visu-

alize as a web page. This description will have an internal and an external form.

The external form is “web-friendly,” in the sense that it looks like XML, and,

when appropriate, can be displayed and browsed through. Such a language is un-

der development under the label “DARPA Agent Markup Language,” or DAML

(http://www.daml.org), which is an extension of RDF, the Resource De-

scription Framework.

(Seehttp://www.w3.org/TR/1999/REC-rdf-syntax-19990222 .)

So what we have been writing as

(book-isbn book21 "0-262-13383-0")

might be encoded on the web more like this:

<rdf:Description about=‘‘#book21’’>

<pub:book isbn>0-262-13383-0</pub:book isbn>

</rdf:Description>

However, these are simply two alternative syntaxes for the same thing, which is

represented internally as an abstract syntactic object.

The first hurdle to overcome is that the two agents must “speak the same lan-

guage.” Two different booksellers (e.g., Amazon.com and Barnes & Noble) must

use the same industry-specific vocabulary in their service descriptions. If they don’t,

then we have anontology translation problem,an issue we’ll address in section 3.2,

making only two remarks here: (1) Within an industry there will be strong moti-

vation to adopt a standard vocabulary, as is indeed already happening with XML;

(2) the main place the translation problem will arise is when satisfying a request

requires interaction of agents from multiple communities.

Assuming for now that the service description is in the same language as our

service request, what we have to do is verify that there is a way of carrying out the

request by talking to the target agent. (In general, we may have a collection of target

agents to talk to, but we’ll ignore that.)

This kind of verification is close to what AI researchers call aplanning problem:

Given a description of a system, an initial state of the system, and a goal, find a se-

quence of actions that achieve the goal in that system. Here the service description

plays the role of system description and initial state. Once the action sequence has

been found, during theplanning phase, it must be executed. During thisplan exe-

cutionphase, the actions are executed in order. It is reasonable (we hope) to assume

that the planning agent will succeed if it executes the plan; but there may well be

situations where the plan exits prematurely with some sort of failure indication. In

that case the agent may give up, orreplan, starting from the situation it finds itself

in halfway through the original plan.

Let’s look at an example of planning and execution, involving a fictional book-

seller we’ll call “Nile.com.” One thing you can do at Nile.com’s web page is find

out if they have a book in stock. Nowadays this is done by using the search facility,

and visually inspecting the output, looking for phrases such as “In stock, usually

ships within 24 hours.” In an agent-oriented world, actions such as filling in a form

and pushing a button will have dual descriptions in terms of agents sending mes-

sages. Similarly, outputs will be defined in terms of formal languages, as well as

being displayable for human consumption.

We will formalize this by havingsend andreceive actions:

• (send agent message) : Send the given message to the given agent; creates

a message id that the sending agent can use to identify replies.

• (receive agent message-id) : Receive a message, sent in reply to the orig-

inal sender’s message.

The message to the bookseller is of the form(search {<key1, val1>, ...,

<keyk, valk>}) .3 The response is a list of “book descriptions,” giving important

information about each book that matches the search keys. These descriptions will

also be in an XML dialect, but as usual we will use a more compact notation.

So the plan we are looking for might begin:

(series (tag s1

(send Nile.com

(test-in-stock

<<author "Philip K. Dick">

<title "Ubik">>)))

(tag r2 (receive Nile.com (value s1))))

(test (= (value r2) empty-set)

3As before, what’s actually sent is a piece of XML. This is an ongoing area of research; W3C’s effort is

described athttp://www.w3.org/MarkUp/Forms/ .

(fail (not-in-stock ...))

...))

In this plan, thetag s allow us to give names to steps in the plan. Thevalue of a

step is the result it returns. The value ofs1 is a message id that laterreceive s can

refer to. The value ofr2 is the set of tuples received in answer to thein-stock

query.

To formalize this in terms a planner can understand, we createaction definitions

such as

(:action (send ?a - agent ?msg - Message)

:vars (?id - Message-id)

:value ?id

:effect (reply-pending ?a ?id ?msg))

(:action (receive ?a - agent ?id - Message-id)

:vars (?msg - Message)

:precondition (reply-pending ?a ?id ?msg)

:effect (forall (?d - (Lst (Tup Attribute String))

?sv - Message)

(when (and (= ?msg (test-in-stock ?d))

(this-step-val ?sv))

(know-val (has-in-stock ?a ?d)

?sv))))

This is an extension of PDDL (Planning Domain Definition Language) notation,

which is in standard use in the AI planning world[8, 9]. The details of the notation

are not important here, but the gist is that sending a message creates a message id,

so that a later reception can know what it’s a response to. In addition, in the case

where the message sent was an “in-stock” inquiry, one result of the action is that the

planning agent knows whether the target agent has the book in stock. In other words,

by executing this action the planning agent will have acquired new information.

This way of representing the effects ofreceive is too clumsy for practical

use, because to be realistics the effect specification would have to list the effects of

all the possiblesend s that thereceive could be in answer to. A better idea is to

have assertions of the form

(message-exchange message-id

sent-message

received-message

effect)

and have the:effect field of :receive consult these assertions:

:effect (when (and (this-step-val ?sv)

(message-exchange ?id ?smsg ?sv ?e))

?e)

Obviously, an AI planner can solve problems involving actions that acquire in-

formation only if it can reason about situations in which it doesn’t already know

everything. As it happens, many planning algorithms, including some of the most

efficient, cannot. They require it to be the case that the initial state of the world, the

set of possible actions, and the effects of every action are all known. The only un-

certainty is which action sequence will bring about a desired result. There has been

much research on relaxing these assumptions, but no approach that is obviously

correct.

Fortunately, the version of the problem we are confronted with is not as bad

as the general case, because our agent knows at planning time exactly what it will

and will not know at plan-execution time. In addition, we can avoid tackling ex-

tremely general formalizations of what it means for an agent to know something.

For automated agents, we can appeal to the difference between computable and

noncomputable terms. A term iscomputable4 if it can be “evaluated,” yielding a

canonical term for an object of its type. For instance, the term(+ 5 4) is com-

putable, because we can hand it to a programming-language processor and get

back 9. We will use the termcomputationalfor a term like9 that is canonical

in the sense alluded to, meaning that it can take part in further computations us-

ing standard algorithms. We write(val (+ 5 4) 9) , whereval is a variant

of equality that applies only to computable terms and their computational values.

By contrast,(number-of-planets sun) , while it may also happen to de-

note nine, is not a computational representation of nine in the way the term9 is.

It is not even computable, because we cannot simply ask a Lisp system to evaluate

(number-of-planets sun) and expect to get back9.5

A plausible principle for agents is

To know something is to have a computable term whose

value is (a computational representation of) that some-

thing.

We formalize this principle by introducing predicates expressing what the plan-

ning agent knows. (We currently do not provide for reasoning about what the target

agents know; we believe that there is little symmetry between the two cases, be-

cause even if the planning agent believes that a target agent has a computable term

denoting something, the planning agent won’t know what that term is or how to

evaluate it.)

One such predicate is(know-val e r) , which means that the agent knows

the value of expressione, and that the value is the value of computable termr. For

example, the agent might record

(know-val (book-isbn book21) (value step14))

meaning that(val (value step14) s) if and only if s is a string giving a

legal ISBN (International Standard Book Number) forbook21 . Here we make use

of the fact that after a plan stepp has been executed,(value p) is a computable

term.

We will also require a predicate(know-val-is e r v) , which is roughly

equivalent to

4We adopt this term with some hesitation, because its usual meaning has somewhat different connotations.

However, we can’t think of a better one.
5Of course, there may be programs, say, a front end to a database of astronomical facts, in which one can

do exactly this; in that context the term(number-of-planets sun) wouldbe computable.

(and (know-val e r) (val r v)))

except that the planner will avoid trying to make such a goal true by changing the

value ofr.

A computational term representing a finite set is the familiar{r1, . . . , rk}, where

ri is a computational term representing thei’th element of the set. Sometimes it is

sufficient for an agent to have a partial listing of a set. To represent that situation,

we have two further predicates

• (known-elements S r) : Meaning thatr is a computable term whose

value is a computational representation of the set of all objects the planning

agents knows to be elements ofS.

• (known-elements-are S r {r1, . . . , rk}) : In which the elements are

spelled out.

2.1 Proposed Planning Algorithm

Most previous work in the area of planning with incomplete knowledge—so-called

contingent planning—has been done in the context of partial-order planning [4, 11,

12]. This fact is mainly a historical accident, because work on planning with incom-

plete knowledge happened to coincide with a period when partial-order planning

was popular.

We are adding a contingent-planning ability to our Unpop planner [7], which

is in the family ofestimated-regression searchplanners [1]. These systems build a

plan by starting with a null series of actions and adding actions to its trailing end.

At each stage, it attempts to add the action that will maximally reduce the estimated

effort required to finish the plan. The effort is estimated by constructing a tree of

subgoals that relates the original goal to the current situation. The branches of the

tree are simplified versions of the actual sequence of actions that will be required

to solve the problem. The tree, called theregression graph, can be computed effi-

ciently, but is only a heuristic estimate of the actual actions required, because many

interactions between actions are ignored.

To handle contingent planning, Unpop must be modified thus:

1. The output of the planner can’t be a simple sequence of actions; it must in-

cludeif -then-else tests that send execution in different directions based

on information gathered.

2. As a consequence, the space searched by the planner cannot be a simple space

of action sequences. One alternative would be to let the space be the set of

“action trees,” each branch of which corresponds to a sequence. However,

this idea has a couple of bugs that we will discuss below.

3. Given a goal of the form(know-val e ...) , the planner must either ver-

ify that the planning agent already knowse, or find an action whosevalue

can be be used to constructe. For a goal of the form(send a m) , the plan-

ner must verify that it knows, or can come to know, sufficient information to

build m

To deal with this last issue, the planner must index actions by the values they

compute, in much the way that planners traditionally index them by the effects they

can bring about. However, there are some differences. There will seldom be an ex-

act alignment between what the planning agent knows and what it needs to know.

For instance, if the value of an action(ask-name ?c) is <(last-name ?c)

(first-name ?c)> , and the planning agent wants to know the last-name ofD, it

will have a goal(know-val (last-name D) ?r) . The term(last-name

D) can be extracted from the action value by using the function(elt t i) , which

gets thei’th element of a tuplet. So all the planner has to do is propose the action

(ask-name D) , which will have, among other things, the effect(know-val

(last-name D) (elt (value S) 1)) , assumingS is the step with ac-

tion (ask-name D) . A bit of care must be taken here to ensure thatS is a place-

holder for the correct step, which of course doesn’t exist yet. We discuss this issue

at greater length in section 3.1.

Let’s look more closely at the search-space issue. As we said above, the most

straightforward idea is to think of a partially constructed plan as a tree of actions,

with the branch points occurring after information-gathering steps. A plan is com-

pleted successfully when every branch leads to a successful conclusion. One bug

with this idea is that it may be asking too much to require every branch of a plan to

succeed. Often there is a “normal” result of an information-gathering step, such that

it is reasonable to expect the normal result to occur. If it might not occur, the best

thing for the planner to do is tack on a short branch saying “Give up!” The resulting

branching plan has one branch that succeeds and one that fails, which is perfectly

all right. If Nile.com might not have your book, that is no reason to give up on the

attempt to deal with them. Hence rather than require all branches to succeed, we

require just one to succeed, hopefully the most likely one.

Another problem has to do with efficiency. Suppose a plan has a branch point

fairly early, leading to subplansP1 and P2. In general, the planner has to do a

search through different partial versions ofP1 andP2. Suppose it eventually finds

versionsP11, P12, . . . , P1m of P1, and versionsP21, . . .P2n of P2. Using the tree

representation, we must represent these asmn distinct trees. The numbersm and

n might be around 50 in a realistic case, so we have 2500 different plans to think

about. Worse, the computation the planner does for, say,P1,23 is the same regardless

of whether it is paired withP2,13 or P2,32, so the planner will have to do the same

work over and over.

The best search space therefore turns out to be the one we started with: a set of

sequences of steps, each representing a partial plan. The only difference is that each

sequence may be annotated with zero or moreknowledge notesrecording what the

planner will have learned at various points in the sequence. There is also a difference

in what the planner must do when a complete sequence is found. It now may discard

all the competing plans that reflect the same knowledge notes, and keep working on

plans that represent other knowledge states. For instance, the planner may find a

plan for buying a book assuming that there is a paperback edition. Having found it,

it may continue to look for a plan to handle the case where it discovers that there is

no paperback edition.

When the planner runs out of patience, it returns however many branches it can

cobble together. If during execution it diverges from the branches it predicted would

succeed, it must replan. In some such cases, the new information it has will allow it

to find a good plan; but many times the problem will just not have a solution.

2.2 Scripts and Hierarchical Planning

So far, we seem to be assuming that service descriptions contain specifications of

the effects of individual atomic transactions with the server. These are indeed im-

portant, but in practice many servers will also provide “scripts,” that is, standard

sequences of transactions that can be used to accomplish common goals.

For instance, a bookseller might provide a script for the action(buy-from m

n d) , meaning “Buyn copies of something answering to the descriptiond.” (To

keep things simple, we suppress the price argument we used earlier.) That script

might look like:

(:method buy-from

:params (?m - Merchant

?quant - Integer

?d - Item-description)

:vars (?r - (Set ISBN) ?isbn - ISBN)

:precondition

(and (forall (x) (if (?d x) (is Book x)))

(know-val-is (image book-isbn

(set-of-all ?d))

?r {?isbn }))
:expansion

(series (send ?m

(verify-in-stock ?isbn))

...))

The notation(set-of-all ?d) is the set of all objects matching description

?d . In traditional notation that would be written{x|(?d ?x) }. The function

(image f l)

creates a list with elements(f l0) , (f l1) , . . . , (f ln−1) , so

(image book-isbn ...)

changes a list of books into a list of their ISBNs, a computational object.

The idea behind scripts is that if the planning agent just wants to carry out the

action (buy-from ...) , or any action that fits one of the scripts, it can save

searching for a plan by just finding and tuning the appropriate script. (Tuning might

include filling in actions to achieve goals for which the script supplies no action.)

This style of planning is usually calledhierarchical,because the problem is to

instantiate hierarchies of actions using large building blocks rather than assembling

sequences of individual actions. Hierarchical planning is fairly well understood, and

tends to be efficient when it is applicable at all (because the script writer has done

most of the work already). There is an interesting research question here about how

to get a planner to do both hierarchical and sequential planning. Our approach will

be to augment the notion of partial plan to include partially expanded scripts as well

as open goals, but the focus of this paper is on agent-communication issues, so we

won’t go into this any further. However, we do point out that the goal we started

with, (do-for-some ...(λ(...) (buy-from m 1 b))) , is actually an

actionrather than apropositional goal,so we’ve been assuming that actions are part

of problem specifications all along.

3 Ontology and Data Structure Translation

It’s time we turned to our principal topic, which is how to cope with ontology and

data-structure mismatch. We begin with the latter.

3.1 Glue Code

Assuming that the planning agent and target agent use the same ontology, there is

still a potential mismatch problem. Suppose that the planning agent is dealing with

a book seller that offers a discount if you order 10 or more books, not counting bulk

orders. Somewhat artificially, let’s suppose that the planning agent is responsible

for sending the total at some point. That is, the planner contemplates executing the

action:

(send G (non-bulk-total

(size (set-of-all

(λ (b)

(intention (buy-from G 1 b)))))))

This looks complex, so let’s break it down into parts.

(set-of-all (λ (b) (intention (buy-from G 1 b))))

is the set of all booksb such that the planning agent intends to buy exactly 1 copy of

b from G. The functionnon-bulk-total is a constructor that builds a message

to send to the target agent — a computational object.

Obviously, the planning agent should know what it plans to buy. Using the prin-

ciple of section 2, that means it must have a computable term for it. Suppose the

following is true in the initial situation:

(know-val (image (λ(b k)

<(name (author b)) (title b) k>)

(set-of-all

(λ (b k)

(intention

(buy-from G k b))))

pending-orders)

This formula states that the computable variablepending-orders contains (by

stipulation) a set of triples<author title quantity> for every book the planning

agent intends to buy some quantity of. Let’s explain that more gradually. Theset -

of-all expression here is similar to the one we need to send, except that it denotes

a set of tuples<b k> for every bookb that the agent plans to buyk copies of.

These tuples are not computational, but we can convert it to something that is by

using image . While a book or an author is an abstract object in a universe of

discourse, the name of the book or author is just a string, and the number of copies

the agent intends to buy is represented as a sequence of binary digits. Furthermore,

the use ofknow-val announces that the variable stored inpending-orders is

computable, and its value will be a purely computational object, namely an ordinary

tuple holding two strings and an integer.

The message the agent needs to send, and the data it has in its possession, are

tantalizingly closely related, but not identical. We need a procedure that translates

from what the agent knows to what it needs to send. We call such a procedureglue

code,because it connects two things together. In [2] we discussed how to generate

glue code automatically; the same approach will work in this context, with some

minor modifications to the assumptions we make about the source side. In the orig-

inal paper we assumed that the things the agent “knows” are strung together in a

tuple; now we posit that these entities are the values of an unordered collection of

computable terms, of which only a subset may be relevant to building a particular

data structure.

Space does not permit us to explain in detail how the algorithm works. We treat

the glue-code-generation problem as finding a computable functionf such that

(f “things agent knows”) = “things agent needs”

The right-hand side is called thetarget, the arguments tof are called thesource.

The algorithm operates by transforming the target until it contains only terms that

appear in the source, in which casef can be produced byλ-abstraction (replacing

terms with variables).

The output of the algorithm in our example should be

(non-bulk-total

(size (filter (λ (b k) (= k 1))

pending-orders)))

The value of

(filter p l)

is a copy of listl containing just the elements satisfying predicatep. In this context,

it means that we discard frompending-orders all the tuples corresponding to

bulk orders.

The planning context adds another dimension to the problem of glue-code gen-

eration. In addition to the computable terms that the planner knows about, it must

also entertain the possibility of generating new computable terms of the form

(value step) , wherestep is a new step added to the plan. The open research

question is how to fit this into the computation of the regression graph.

3.2 Ontology Translation

We now turn to the most difficult problem that web-based agents must cope with,

the problem of reconciling disparate ontologies, or representational frameworks.

The reason it is so difficult is that it often requires subtle judgments about the re-

lationships between the meanings of formulas in one notation and the meanings of

formulas in another. Furthermore, there is no obvious “oracle” that will make these

judgments. For instance, we cannot assume that there is an overarching (possibly

“global”) ontology that serves as a court of appeals for semantic judgments. There

are times when such a strategy will work, but only after someone has provided a

translation from each of the disparate ontologies to the overarching framework, and

there is no reason to expect either of these translation tasks to be any easier than the

one we started with. Indeed, the more the overarching framework encompasses, the

harder it will be to relate local ontologies to it. Hence the work of ontology recon-

ciliation inevitably involves a human being to do the heavy lifting. The most we can

hope for is to provide a formal definition of the problem, and software tools6 to aid

in solving it.

The goal of these tools is to develop and maintainontology transformations. An

ontology transformation is a mechanism for translating a set of facts expressed in

one ontology (O1) into a set of expressions in another ontology (O2), such that the

new set “says the same thing” as the original set.

Ontology translation is partly a matter of syntax and partly a matter of logic.

The logical issues include:

• Vocabulary:What symbols does the ontology use and what do they refer to?

• Expressiveness:What logical constructs are allowed?

The expressiveness issue may not sound ontological, but it can be. For instance, if

the ontology allows us to talk about possible truth, it may commit us to assuming

the existence of possible but nonactual worlds in which propositions false in this

world are true.

In addition to such purely logical issues, computational questions about how

facts are structured and accessed are often mixed into the ontology question. Exam-

ples:

• Implicit content:What facts are represented implicitly in a given formalism?

For instance, if the formalism allows a list of objects at a certain point, does

it imply that the list comprises all the objects with a certain property?

• Indexing:How are facts associated with “keys” so that they can be retrieved

when necessary? Specifically, is every fact associated with a class of object

it is true of?

• Efficiency:Is the language restricted in such a way as to make some class of

inferences more efficient?

Past work in the area of ontology transformation [6, 3] has addressed both logi-

cal and computational issues. We think it is more enlightening to separate them out.

From the point of view of logic, computational issues affect mainly theconcrete

syntaxof an ontology. Therefore it ought to be possible to find an abstract version

Oa of any ontologyO, such that any set of facts expressed inO can be translated

into a set of facts inOa. Furthermore, all abstract ontologies use thesamesyntax,

so that there is no longer any need to mix syntactic and computational issues into

logical ones. In other words, we assume that an ontology transformationO1 → O2

can always be factored into three transformationsO1 → O1a → O2a → O2. This

may not seem like an improvement at first, but it has some advantages. First, it al-

lows us to focus on abstract→abstract transformations, and put syntax on the back

burner. Second, the translationO → Oa should not be very difficult, because it is

essentially a matter of “parsing” a set of facts; going in the other direction,Oa → O

6Such as those described by [10].

is a matter of “generating” the concrete representation of a set of facts. Third, the

transformationO ↔ Oa has to be done just once for each ontology.

One might object that not all the content of a set of facts can be pulled out and

made into explicit formulas, and therefore that our decomposition, however tidy,

will not work in practice. We take this objection seriously, but for now our principal

reply is that for ontologies in which it is valid the transformation problem is not

very well defined no matter what approach you take to it.

Hence we will continue to employ our tactic of focusing on abstract rather than

concrete data structures. We will assume that all facts are expressed in terms of

formal theories,each of which we take to contain the following elements:

1. A set oftypes.

2. A set ofsymbols, each with a type.

3. A set ofaxiomsinvolving the symbols.

In addition we introduce the concept of adataset,that is, a set of facts expressed

using a particular ontology. This concept abstracts away from the actual represen-

tations of, say, Nile.com’s current inventory, and treats it as a set of identifiers and

facts about them, which uses symbols from that ontology.

Once we have cleared away the syntactic underbrush, the ontology-transformation

problem becomes much clearer. One is likely, in fact, to see it as trivial. Sup-

pose one bookseller has a theoryO1 with a predicate(in-stock x - Book

t - Duration) , meaning thatx is in stock and may be shipped in timet . An-

other bookseller expresses the same information in its theoryO2, with two predi-

cates,(in-stock y - Book) and(deliverable d - Duration y -

Book) . We are presented with a datasetD1 that is in terms ofO1, which contains

fragments such as

(:constants ubik blade-runner - Book)

(:axioms (in-stock ubik (* 24 hr))

(in-stock blade-runner (* 4 day))

...)

To translate this into an equivalent dataset that usesO2, we must at least find a

translation for the axioms. The types and constants need to be handled as well, but

we’ll set that aside for a moment. We will use the notationD1 → D2 as a mnemonic

for this sort of transformation problem.

With this narrow focus, it becomes almost obvious how to proceed: Treat the

problem as a deduction from the terms of one theory to the terms of the other. That

is, combine the two theories by “brute force,” tagging every symbol with a subscript

indicating which theory it comes from. Then all we need to do is supply a “bridging

axiom” such as

(forall (b t) (iff (in-stock 1 b t)

(and (in-stock 2 b)

(deliverable 2 t b))))

which we can use to translate every axiom inD1. More precisely, we can use it to

augment the contents ofD2. Any time we need an instance of(in-stock 2 x)

and(deliverable 2 y x) , the bridging axiom will tell us that(in-stock 2

ubik) and(deliverable 2 (* 24 hr) ubik) are true (and maybe other

propositions as well). We then discard the subscripts, and we’re done. Furthermore,

elementary type analysis tells us thatubik is of typeBook 2.

This idea is similar to thelifting axiomsof [5]. The main difference is that they

focused on axioms of the form(if (axiom in one domain) axiom in another),

whereas we useiff . The reason for the difference is that we are interested in infer-

ring facts of the form(not (in-stock 2 x)) ; we could avoid this sort of infer-

ence if we could rely on a closed-world assumption for the predicatein-stock .

Of course, the deductive approach does not solve all problems. Here is a list of

some of the remaining issues:

1. It is potentially reckless to reduce ontology transformation to theorem prov-

ing. In the example, the required deduction was easy, but in general it could

be undecidable, after finding zero, one, or two axioms, whether there are any

more. However, we are inclined to think that most of the theorem-proving

problems that arise during ontology translation are straightforward.

2. We attached subscripts to predicates and types, but not to other identifiers.

That implies that we can just take a symbol likeubik over to the target

theory. But suppose the target dataset must be compatible with some existing

O2 dataset, and the symbolubik is already in use. In principle the deductive

framework can accommodate this situation, by including a test for whether

ubik 1 andubik 2 refer to the same object, i.e., whether we can prove(=

ubik 1 ubik 2) . It is often easy to show that they are not equal, by showing

that they are of different types. But suppose we can’t prove either that the two

identifiers are equal or that they are unequal. What do we do then? Also, do

we have to test all pairs of symbols for equality? (Two symbols could easily

be provably equal even though they are spelled differently.)

We glossed over similar problems with variables and types, when we wrote

(forall (x y) ...) , implying thatx andy could live in both ontolo-

gies. We may want to allow that as a special case, but in the general case

it is necessary to provide transformations for the values of variables. To

modify our example somewhat, suppose that the types of the arguments of

deliverable are actuallyInteger andBook , so that(deliverable

24 b) means thatb ships within 24 hours. But let’s also suppose that the

symbolBook happens to denote exactly the same sort of thing in both do-

mains. Then our bridging axiom might become:

(forall (b - Book

t 1 - Duration 1 t 2 - Integer)

(if (= t 1 (* t 2 hr)))

(iff (in-stock 1 b1 t 1)

(and (in-stock 2 b2)

(deliverable 2 t 2 b2)))))

Note that equality and Integer are not domain-specific. (Put another way,

there is a standard ontology where such general-purpose things live, and all

other ontologies inherit from it.)

3. As has been observed before, two ontologies often carve the world up differ-

ently. They may have different “granularity,” meaning that one makes finer

distinctions than the other; of course,O1 might make finer distinctions than

O2 in one respect, coarser distinctions in another.

The last issue is likely to be the most troublesome. Here’s an example: Sup-

poseO1 is the ontology we have been drawing examples from, a standard for the

mainstream book industry. Now supposeO2 is an ontology used by therare book

industry. The main difference is that the rare-book people deal in individual books,

each with its own provenance and special features (e.g., an autograph by the au-

thor). Hence the word “book” means different things to these two groups. For the

mainstream group, a book is an abstract object, of which there are assumed to be

many copies. If a customer buys a book, it is assumed that he or she doesn’t care

which copy is sent, provided it’s in good condition. For the rare-book industry, a

book is a particular object. It may be an “instance” of an abstract book, but this is

not a defining fact about it.

For example, if you buy Walt Whitman’sLeaves of Grassfrom Amazon.com,

you can probably choose from different publishers, different durabilities (hardcover

vs. paperback, page weight), different prices, and various other features (scholarly

annotations, large print, spiral binding, etc.). However, you certainly can’t choose

exactly which copy you will receive of the book you ordered; and you probably

can’t choose which poems are included, even though Whitman revised the book

throughout his life. The versions in print today include the last version of each

poem included in any edition.

If you buy the book from RareBooks.com, then there is no such thing as an

abstract book of which you wish to purchase a copy. Instead, every concrete instance

of Leaves of Grassmust be judged on its own merits. Indeed, making this purchase

is hardly a job for an automated agent, although it could be useful to set up an agent

to tell you when a possibly interesting copy comes into the shop.

Let’s look at all this more formally. Suppose that the planning agent uses the

industry-standard ontology (O2), and the broker puts it in touch with RareBooks.com,

with a note that although it bills itself as selling books, its service description uses a

different ontology (O1). If after trying more accessible sources the planning agent’s

goal can’t be achieved, then the broker may search for an existing ontology trans-

formation that can be used to translate RareBooks’s service description fromO1 to

O2.7

Let us sketch what some of the bridging axioms betweenO1 andO2 might look

like. In particular, we need to infer instances of(is Book 2 x) given various

objects of typeBook 1 with various properties. Objects of typeBook 2 we will call

commodity books; an example is the Pocket Books edition ofMein Kampf. Objects

of typeBook 1 we will call collectable books; an example is a copy ofMein Kampf

once owned by Josef Stalin. It is roughly true that many, but not all, rare books

can be thought of as instances of particular commodity books. Two rare books are

instances of the same commodity book if they have the same publisher, the same

title, the “same” contents, and the same characteristics (e.g., hardcover, large print,

7If it can’t find one, all it can do is notify the maintainers of the ontologies of the problem; there is no way

for the broker, the planning agent, or the end user to find a transformation on the fly.

and such).8 We can produce the following bridge axioms:

(:functions (book-type x - Book 1) - Book 2)

(:axioms (forall (b1 1 b21 - Book 1)

(iff (and (= (publisher 1 b11)

(publisher 1 b21))

(= (title 1 b11) (title 1 b21))

(= (phys-charac 1 b11)

(phys-charac 1 b21))

(< (revision-dif 1 b11 b21) 1.5))

(= (book-type b1 1) (book-type b2 1))))

(forall (b 1 - Book 1)

(= (buy 1 b1)

(buy 2 (book-type b 1)))))

This should all be self-explanatory, except for the predicaterevision-dif , which

we suppose is in use in the rare book business to express how many revisions are

found between an earlier and later copy of an author’s work. We have introduced a

new functionbook-type , which maps individual collectable books to their types,

which are commodity books.

For axioms such as these to do the planning agent any good, it must be possible

for the planning agent to use them to translate a rare-book dealer’s service descrip-

tion. Suppose the agent is trying to buy a copy ofLady Chatterly’s Other Lover,a

little-known9 sequel to D.H. Lawrence’s famous work. Having exhausted the usual

sources, it attempts to deal with RareBooks.com. The planning agent first translates

the service description, so that all actions are in terms of(book-type b) instead

of b. Assuming it can find a way to carry out its plan, at the last stage it must trans-

late its messages back into talking about collectable books. This requires producing

glue-code in the combined axiom set. Similarly, the first step in deciphering a mes-

sage from the target agent is to apply glue code to rearrange the data structures into

something the planning agent can decode.

4 Conclusions

Here are the main points we have tried to make:

1. Interagent communication requires a sophisticated level of representation of

knowledge states, action definitions, and plans.

2. This representation can only be logic-based; no other notation has the ex-

pressive power. Embedding this logic in some form of XML/RDF/DAML

notation is a good idea for web-based agents, but puts nontrivial demands on

the representational power of those notations.

3. In spite of the expressivity, there are algorithms for manipulating logic-based

expressions that might overcome computational-complexity problems.

8An easy way to tell if they are the same would be to check if they have the same ISBN, but the ISBN

system has been in effect for only thirty years, so it won’t apply to many rare books.
9in fact, fictitious

4. In particular, planning algorithms are a natural fit to the idea of aservice de-

scription. The service description specifies the possible interactions with an

agent; a plan is a sequence of interactions to achieve a specific goal. Finding

such plans is more or less what planning algorithms do.

5. Planning algorithms will, however, have to be extended in various ways, in

order to cope with disparities between what it knows and what the target

agent wants to receive.

6. There are two key disparities that must be dealt with: ontology mismatches

and data-structure mismatches. The former requires human management of

a formal inter-theory inference process. The latter requires automatic gener-

ation of “glue code” to translate data structures.

This is obviously work in progress. We are in the process of adapting our Un-

pop planner to handle hierarchical and contingency planning, and connecting it to

the glue-code generator. We are building the architecture for managing ontology

transformations.

Acknowledgements:This work was supported by DARPA, the Defense Ad-

vanced Research Projects Agency. Thanks to Dejing Dou for input.

References

[1] B. Bonet, G. Loerincs, and H. Geffner. A fast and robust action selection

mechanism for planning. InProc. AAAI-97, 1997.

[2] M. Burstein, D. McDermott, D. Smith, and S. Westfold. Derivation of glue

code for agent interoperation. InProc. 4th Int’l. Conf. on Autonomous Agents,

pages 277–284, 2000.

[3] H. Chalupsky. Ontomorph: A translation system for symbolic logic. InProc.

Int’l. Con. on Principles of Knowledge Representation and Reasoning, pages

471–482, 2000. San Francisco: Morgan Kaufmann.

[4] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An

approach to planning with incomplete information. InProc. Third Interna-

tional Conf. on Knowledge Representation and Reasoning, pages 115–125,

1992. Morgan Kaufmann.

[5] G. Frank, A. Farquhar, and R. Fikes. Building a large knowledge base from a

structured source.IEEE Intelligent Systems, 14(1), 1999.

[6] T. Gruber. Ontolingua: A Translation Approach to Providing Portable Ontol-

ogy Specifications.Knowledge Acquisition, 5(2):199–200, 1993.

[7] D. McDermott. A Heuristic Estimator for Means-ends Analysis in Planning.

In Proc. International Conference on AI Planning Systems, pages 142–149,

1996.

[8] D. McDermott. The Planning Domain Definition Language Manual. Techni-

cal Report 1165, Yale Computer Science, 1998. (CVC Report 98-003).

[9] D. McDermott. The 1998 Ai Planning Systems Competition.AI Magazine,

21(2):35–55, 2000.

[10] P. Mitra, G. Wiederhold, and M. Kersten. A graph-oriented model for articula-

tion of ontology interdependencies. InProc. of Conf. on Extending Database

Technology (EDBT 2000), 2000.

[11] M. Peot and D. Smith. Conditional nonlinear planning. In J. Hendler, editor,

Proceedings of the First International Conf. on AI Planning Systems, pages

189–197. 1992.

[12] L. Pryor and G. Collins. Planning for contingencies: A decision-based ap-

proach.J. of Artificial Intelligence Research, 4:287–339, 1996.

