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Distributed, Anytime ReschedulingDistributed, Anytime Rescheduling

An algorithm for scheduling radar nodes
– meet mission objectives (track targets)
– reduce resource consumption

Operational requirements
– scaleable: complexity independent of number of nodes
– distributed: tolerant of communication latency
– real-time: responds quickly enough to track targets effectively
– robust: degrades gracefully as, e.g., communication or

hardware fails
– incremental: schedules ongoing, dynamic tasks
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Distributed, Local Repair AlgorithmDistributed, Local Repair Algorithm

Define a distributed set of scheduling processes
– each scheduling process is responsible for some set of local

resources
– schedules for two resources are in conflict if they together

cause a constraint violation

Define neighborhoods
– two resources are neighbors if they interact

• e.g., there is some constraint that relates the two resources

Define local quality metric on schedules
– e.g., number of conflicts at a node

• requires neighbors to inform each other about schedules
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local repair with improvement

Distributed, Local Repair Algorithm (cont.)Distributed, Local Repair Algorithm (cont.)

Each scheduling process follows an iterative procedure:
– it locally optimizes its own schedule with respect to its

neighbors’ schedules
• e.g., to accommodate new taks & to reduce its conflicts with its

neighbors

– and then informs its neighbors of its new schedule
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Communication Latency/SynchronizationCommunication Latency/Synchronization

Each scheduling process optimizes its schedule wrt its
neighbors’ schedules
– optimization is based on information at hand
– neighbors may have changed schedules
– an optimization wrt neighbors’ old schedules may be a

degradation wrt actual current schedules
– result is poor convergence

local repair without improvement
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Need to synchronize update & exchange of schedules
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Totally Sequential Synchronization?Totally Sequential Synchronization?

Extreme case: totally sequential operation across system
– ensures every change is made with up-to-date information
� no change produces a worse schedule

BUT, sequential operation is not scaleable
– at any given time, only one scheduling process throughout the

entire system may update its schedule
– (and communicate the new schedule to its neighbors)

– Complexity ∝ number of nodes
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Graph Coloring for SynchronizationGraph Coloring for Synchronization

Use graph coloring to achieve sufficient synchronization
– nodes of the (undirected) graph are scheduling processes
– two graph nodes have a connecting edge if they interact
– color the nodes so that no two nodes of the same color have

an edge between them

At any given time, only one color is “active”
– all of the scheduling processes of that color may update
– all other scheduling processes must wait

� Interacting processes (neighbors) cannot change schedules
simultaneously
Require number of colors << number of nodes
– number of colors = number of nodes � sequential operation
– number of colors = 1 � totally parallel operation
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Graph Coloring: Complexity of SchedulingGraph Coloring: Complexity of Scheduling

Number of scheduling processes: N
Minimum number of colors required: Cmin

N/Cmin scheduling processes can be active simultaneously
– high degree of parallelism

�Complexity independent of size of system

Cmin depends on “interaction topology”
– at most Cmin scheduling processes directly interact
– non-local task structures/constraints give high Cmin

• truly global constraints cause Cmin to be equal to N
• indicative of (theoretically) non-scaleable deployment platform
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Distributed, Anytime Graph ColoringDistributed, Anytime Graph Coloring

How to compute a coloring in a distributed environment?
Apply similar local repair process to graph coloring:
– a color conflict occurs when two neighboring scheduling

processes have the same color
– each process repeatedly selects that color which (currently)

minimizes its conflicts with its neighbors

Need to address convergence of coloring
– at each stage, use whatever coloring is available to

synchronize coloring process
– even an imperfect coloring reduces the probability of

simultaneous changes offsetting each other

Coloring and scheduling proceed simultaneously
– an imperfect coloring may also be beneficial for the scheduling

process
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Requirements Met?Requirements Met?

Scaleable? Constant complexity
– complexity is independent of number of nodes

Distributed? Convergence is achieved via coloring
– a high latency will still slow down the processes
– it dictates the cycle time

Real-time? A schedule is always available
– provides real-time framework
– time bounds affect the quality of schedules

Robust? Each scheduling process operates on information
available
– missing information will degrade schedules due to unresolved

resource conflicts
– but some results will still be available

Incremental? Continually reschedules
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AnalysisAnalysis

To date, analysis is of tracking results
– outstanding objective: analysis of scheduling

Example track
Ground truth: times, position vectors, velocity vectors

G = [ ti × gi × ui, i=1.. ]
Tracker output: times, position vectors, velocity vectors

R = [ tk × pk × vk, k=1..nR ]
Error vectors (in position)

ek = pk − interpolate(G, tk), k=1..nR

Display color ~ |ek|
green good - red bad

High-error points due to target being “lost”
– time required to reacquire
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Track DisplayTrack Display

RadSim
Example

Kestrel
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Analysis: Overall PerformanceAnalysis: Overall Performance

Representative results using simulator
R.M.S. = √(�|ek|

2/nR), k=1..nR
= 3.09 feet

Average beam usage
= total beam seconds/(3 × number of nodes × simulation duration)
= 27%

Communication usage
= 0.9 messages per second per node



15

Analysis: Track AnimationAnalysis: Track Animation

Shows ground truth path
Shows track positions
– sliding/fading window over actual track positions
– linear interpolation between positions (with velocity)
– color coded to show error (linear interpolation)

Shows tracker’s a priori prediction of target path segment
Shows radar beam usage

Implemented in VRML 2.0 for convenience
– allows control of animation speed, direction
– pre-defined and user-controlled viewpoints
– maybe move to Java3D or X3D
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Track Animation: MovieTrack Animation: Movie
90 second pre-rendered movie shown here
Approximately 5x normal speed



17

Analysis: Tracker GridAnalysis: Tracker Grid

Larger sample size
– 6000 track points

Grid artifact
– Track positions show

correlation with 1 foot × 1 foot
grid used by tracker to
compute target locations that
best match radar
measurements
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Comments on Challenge Problem Error MetricComments on Challenge Problem Error Metric

Error metric discussed on mailing list
– shortest distance to ground-truth path

√(� distance(G, pk)
2/nR), k=1..nR

Error metric we used
– interpolate ground-truth path using track point’s time

coordinate
√(� |pk - interpolate(G, tk)|

2/nR), k=1..nR

Neither metric takes into account the number of track points
– a track having just one measurement may score highly

Proposal: interpolate both ground and track positions to nI

points evenly spaced over duration of simulation
– approximated path integral

√(� |interpolate(R, tj) - interpolate(G, tj)|
2/ nI), j=1..nI

tj = j × (simulation duration)/nI
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SummarySummary

Have produced a slice from specification to code
– need to refine the specifications
– and tie them to code using synthesis

Performance of tracker & scheduler seems reasonable
– need to try larger systems with multiple targets

Need further experiments to analyze scheduler performance
– synthesize family of implementations for experimentation

http://ants.kestrel.edu/
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ReferencesReferences

VRML 2.0 (a.k.a. VRML 97) http://www.vrml.org/
– open, standardized, plain text format for 3D scene description
– animation described using key frame techniques

• e.g., time-position coordinates

• CPU/system speed determines quality of animation (frame rate)
– VRML scene can be viewed using any compliant viewer

• e.g., plugins for Netscape and Internet Explorer

– good 3D graphics card needed for reasonable frame rate (>8 fps)
– never quite reached critical mass, but some stalwarts remain (e.g.,

Parallel Graphics, Blaxxun)
X3D http://www.web3d.org/x3d.html
– open format being developed as replacement for VRML 2.0

Java3D http://www.j3d.org/
– open API for 3D scene construction & viewing in Java
– VRML scene can be viewed using stand-alone applications or

objects/applets embedded in web pages


