e-Merge-ANT: November 2000

Kestrel Institute

Stephen Fitzpatrick, Cordell Green & Lambert Meertens
http://ants.kestrel.edu/

ANTs Pl Meeting, Charleston, SC, 28-30 November 2000

QOutline

. Status

- Anytime scheduler with anytime graph coloring
- Results using simulator

- Comments on challenge problem

% Status

Current Achievements MERES

*Formalize
Informal Formal

Architecture <«<——> Resource & Task
Specifications Specifi_cations

*Synthesis Anytime
Scheduling = » Experiments in Dynamics
Algorithms *Analysis of Dynamics

\4

Communication &
Tracking Skeleton

Track Analyzer & Visualizer
*Scheduler Visualizer

RadSim
(& Hardware)

—% Distributed, Anytime Rescheduling

+ An algorithm for scheduling radar nodes
— meet mission objectives (track targets)
— reduce resource consumption
+ Operational requirements
— scaleable: complexity independent of number of nodes
— distributed: tolerant of communication latency
— real-time: responds quickly enough to track targets effectively

— robust: degrades gracefully as, e.g., communication or
hardware fails

— Incremental: schedules ongoing, dynamic tasks

Distributed, Local Repair Algorithm

+ Define a distributed set of scheduling processes

— each scheduling process is responsible for some set of local
resources

— schedules for two resources are in conflict if they together
cause a constraint violation

+ Define neighborhoods
— two resources are neighbors if they interact
* e.g., there is some constraint that relates the two resources
+ Define local quality metric on schedules

— e.g., number of conflicts at a node
e requires neighbors to inform each other about schedules

Distributed, Local Repair Algorithm (cont.)

+ Each scheduling process follows an iterative procedure:

— It locally optimizes its own schedule with respect to its
neighbors’ schedules

e e.¢g., to accommodate new taks & to reduce its conflicts with its
neighbors

— and then informs its neighbors of its new schedule

Vo G | R e
0E BON Bee

BEE BeE Bhaa
¢ O o

local repair u with |mprovement

L'. S P9 588 BEe
BEE BOE Sal LS

| > Communication Latency/Synchronization

+ Each scheduling process optimizes its schedule wrt its
neighbors’ schedules

— optimization is based on information at hand
— neighbors may have changed schedules

— an optimization wrt neighbors’ old schedules may be a
degradation wrt actual current schedules

— result Is poor convergence
+ Need to synchronize update & exchange of schedules

OC+unscheduled tasks (%)

asynchronous
50 sequential

. . . 20
local repair u without improvement

g g FR g Oamn Oann Oaun O
29% o0

L 2 e Sy 2 L 2 2

Totally Sequential Synchronization?

+ Extreme case: totally sequential operation across system
— ensures every change is made with up-to-date information
— no change produces a worse schedule

+ BUT, sequential operation is not scaleable

— at any given time, only one scheduling process throughout the
entire system may update its schedule

— (and communicate the new schedule to its neighbors)
— Complexity LI number of nodes

Graph Coloring for Synchronization

+ Use graph coloring to achieve sufficient synchronization
— nodes of the (undirected) graph are scheduling processes
— two graph nodes have a connecting edge If they interact

— color the nodes so that no two nodes of the same color have
an edge between them

+ At any given time, only one color is “active”
— all of the scheduling processes of that color may update
— all other scheduling processes must wait

= Interacting processes (neighbors) cannot change schedules
simultaneously

+ Require number of colors << number of nodes
— number of colors = number of nodes = sequential operation
— number of colors = 1 = totally parallel operation

Graph Coloring: Complexity of Scheduling

+ Number of scheduling processes: N

+ Minimum number of colors required: C_,,

+ N/C,,,, scheduling processes can be active simultaneously
— high degree of parallelism

— Complexity independent of size of system

+ C.,, depends on “interaction topology”

— at most C_.. scheduling processes directly interact

— non-local task structures/constraints give high C_.-
e truly global constraints cause C_, to be equal to N
« indicative of (theoretically) non-scaleable deployment platform

| Distributed, Anytime Graph Coloring

+ How to compute a coloring in a distributed environment?

+ Apply similar local repair process to graph coloring:

— a color conflict occurs when two neighboring scheduling
processes have the same color

— each process repeatedly selects that color which (currently)
minimizes its conflicts with its neighbors

+ Need to address convergence of coloring

— at each stage, use whatever coloring is available to
synchronize coloring process

— even an imperfect coloring reduces the probability of
simultaneous changes offsetting each other

+ Coloring and scheduling proceed simultaneously

— an imperfect coloring may also be beneficial for the scheduling
process

% Requirements Met?

Scaleable? Constant complexity

— complexity Is independent of number of nodes
Distributed? Convergence is achieved via coloring
— a high latency will still slow down the processes

— It dictates the cycle time

Real-time? A schedule is always available

— provides real-time framework

— time bounds affect the quality of schedules

Robust? Each scheduling process operates on information
available

— missing information will degrade schedules due to unresolved
resource conflicts

— but some results will still be available
Incremental? Continually reschedules

W Analysis

+ To date, analysis is of tracking results
— outstanding objective: analysis of scheduling
Example track

Ground truth: times, position vectors, velocity vectors
G=[txg xU,i=1..]

Tracker output: times, position vectors, velocity vectors
R=[t Xp,xV,k=1..n;]

Error vectors (in position)
€, = p, — interpolate(G, t,), k=1..ng

Display color ~ |e,|
green good - red bad

+ High-error points due to target being “lost”
— time required to reacquire

Track Display

Kestrel

> Analysis: Overall Performance

+ Representative results using simulator
R.M.S. = V(2 [€.]°/ng), k=1..ng
= 3.09 feet
Average beam usage
= total beam seconds/(3 x number of nodes x simulation duration)
=27%
Communication usage
= 0.9 messages per second per node

Analysis: Track Animation

+ Shows ground truth path

+ Shows track positions

— sliding/fading window over actual track positions

— linear interpolation between positions (with velocity)

— color coded to show error (linear interpolation)
+ Shows tracker’s a priori prediction of target path segment
+ Shows radar beam usage

+ Implemented in VRML 2.0 for convenience
— allows control of animation speed, direction
— pre-defined and user-controlled viewpoints
— maybe move to Java3D or X3D

"‘*’5 Track Animation: Movie
~+ 90 second pre-rendered movie shown here

+ Approximately 5x normal speed

Analysis: Tracker Grid

+ Larger sample size
— 6000 track points

+ Grid artifact

— Track positions show
correlation with 1 foot x 1 foot
grid used by tracker to
compute target locations that
best match radar
measurements

Comments on Challenge Problem Error Metric

+ Error metric discussed on mailing list

— shortest distance to ground-truth path
V(2 distance(G, p,)?/ng), k=1..ng

+ Error metric we used

— Interpolate ground-truth path using track point’s time
coordinate
vV |B,. - interpolate(G, t.)|2/ny), k=1..n

+ Neither metric takes into account the number of track points
— atrack having just one measurement may score highly

+ Proposal: interpolate both ground and track positions to n,
points evenly spaced over duration of simulation
— approximated path integral
V(2 |interpolate(R, t) - interpolate(G, t)|*/ n), j=1..n,
t, =] x (simulation duration)/n,

—% Summary

+ Have produced a slice from specification to code
— need to refine the specifications
— and tie them to code using synthesis
+ Performance of tracker & scheduler seems reasonable
— need to try larger systems with multiple targets
+ Need further experiments to analyze scheduler performance
— synthesize family of implementations for experimentation

http://ants.kestrel.edu/

% References

+ VRML 2.0 (a.k.a. VRML 97) http://www.vrml.org/
— open, standardized, plain text format for 3D scene description

— animation described using key frame techniques
e e.g., time-position coordinates

« CPU/system speed determines quality of animation (frame rate)

VRML scene can be viewed using any compliant viewer
e e.g., plugins for Netscape and Internet Explorer

good 3D graphics card needed for reasonable frame rate (>8 fps)

never quite reached critical mass, but some stalwarts remain (e.g.,
Parallel Graphics, Blaxxun)

X3D http://www.web3d.org/x3d.html

— open format being developed as replacement for VRML 2.0
Java3D http://www.|3d.org/

— open API for 3D scene construction & viewing in Java

— VRML scene can be viewed using stand-alone applications or
objects/applets embedded in web pages

