
e-Merge-ANT:e-Merge-ANT: Spring 2001Spring 2001
Stephen Fitzpatrick, Cordell Green & Lambert MeertensStephen Fitzpatrick, Cordell Green & Lambert Meertens

Kestrel Institute, Palo AltoKestrel Institute, Palo Alto
ants.kestrel.eduants.kestrel.edu

ANTs PI MeetingANTs PI Meeting
Lake Tahoe, CA, 30 April-2 May 2001Lake Tahoe, CA, 30 April-2 May 2001

• StatusStatus
• ArchitectureArchitecture

– decentralized resource management through graph coloringdecentralized resource management through graph coloring
• Soft graph coloring algorithmsSoft graph coloring algorithms

– decentralized, iterative-repair, anytime, approximate colorersdecentralized, iterative-repair, anytime, approximate colorers
• Experimental resultsExperimental results

– dynamics, problem complexity, scalability, robustnessdynamics, problem complexity, scalability, robustness



2
StatusStatus

Framework for distributed
resource management
as scheduling

Algorithm for
distributed scheduling:

Self-Induced Colorer

Challenge problem
demo on
simulator & hardware

New Results
Framework for assessing performance
Experimental investigation of performance
Faster, cheaper algorithms:

Fixed-Probability Colorer &
Conservative Fixed-Probability Colorer

Initial theoretical analysis of performance
Visualization

Autumn Demo
Integrate new algorithms
with hardware & new simulator

Previous Results



3
ArchitectureArchitecture

Aggregate
Resource Aggregate

Resource
conflict

schedule
schedule

• Three sensors must collaborate to triangulate a target
– define aggregate sensors representing “triangulators”

• Aggregate sensors may share physical radar units
– each physical radar unit contains three heads
– constraint: only one head can be sampled at a time
– each radar unit may service several aggregate sensors

• A sampling conflict may occur
– when two or more aggregate sensors try to use the same

radar unit simultaneously
• Avoid conflicts by scheduling

– assign time slots for aggregate sensors to use samplers



4
Scheduling as Graph ColoringScheduling as Graph Coloring

Resource ManagementChallenge Problem Graph Coloring

resourcesaggregate sensors nodes

mutual exclusion
constraints

sample only
one head per unit edges

reservationstime slots colors

feasible schedulefeasible scan schedule proper coloring

minimum feasible
schedule length

minimum
scan period

chromatic
number

a proper
2-coloring

a conflict



5
Decentralized Graph ColoringDecentralized Graph Coloring

• Each node is to choose its own color
• Iterative algorithms:

– begin with a random coloring
– iteratively improve

- each node chooses a color that minimizes its conflicts with its
neighbors

• Need to coordinate choice of colors
– if two neighbors simultaneously choose colors, they may choose

the same color
– i.e., they may introduce a conflict

• Number of colors fixed in advance
– e.g., by considering latency constraints

- scan range, speed of target, measurement duration



6
Old Algorithm: Self-Induced ColorerOld Algorithm: Self-Induced Colorer

• Previously, we used self-induced coloring to coordinate color
choices (to reduce the introduction of conflicts)

– a node chooses a color for itself only when its current color is
“active”

• Demoed with simulator/hardware
– gave good performance in challenge problem simulator

• Missing: quantitative evaluation for large graphs ...



7

γγγγ

0=best

1=worst

Soft Graph ColoringSoft Graph Coloring

Need to do better
than random!

single color
coloring

= all conflicts

proper
coloring = no conflicts

random
coloring 1/#colors

% tasks scheduled

all tasks
scheduled

few tasks
scheduled

• Generalize the metric on colorings from proper/non-proper to ..
• Degree of conflict γ

– γ = (number of conflicts)/(total number of edges)
- range is [0,1]: 0 is best, 1 is worst

– independent of graph size
– suitable metric for off-line analysis of progress of anytime colorer

- a random coloring with C colors has an expected score of γ=1/C
- this acts as a baseline for assessing algorithms

– applicable even in over-constrained scenarios
- e.g., 3-coloring a 4-colorable graph



8
New Algorithm: Fixed-Probability ColorerNew Algorithm: Fixed-Probability Colorer

• FP is a soft graph colorer
– decentralized, iterative, anytime, local-repair algorithm

• Iterated, synchronized steps, each having three phases:
a. Probabilistic activation:

- at each step, each node activates at random with a fixed, uniform
probability (the activation probability)

- in contrast, in SI, nodes activate color by color
- SI is less likely to introduce conflicts than FP but has lower parallelism

b. Select color using local repair/optimization:
- when a node activates, it chooses a color that minimizes its conflicts

with its neighbors
- based on its current knowledge of its neighbors’ colors

c. Local communication:
- when a node changes color, it informs its neighbors



9
The FP Algorithm At WorkThe FP Algorithm At Work

• 4 colors
• Topology:

– each non-boundary node has
8 neighbors

• Edges:
– bright = a conflict
– faded = not a conflict

• Nodes:
– bright = some incident edges

are conflicts
– faded = no incident edge

is a conflict

Initialization



10

activate color

assess

sendStep 1



11

activate color

assess

sendStep 2



12
Convergence: Typical BehaviorsConvergence: Typical Behaviors

� Normalized degree of conflict Γ = γC
– coloring is easier with more colors
– scale γ by the number of colors C
– simplifies analysis of experimental data
– a random coloring has an expected value

of Γ of 1

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

Change in Conflicts over Time

4 colors, chromatic number=4

FP-10

FP-30

FP-50

FP-80
FP-90

random

step

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

• FP converges rapidly for wide range of activation probabilities
– 30% seems to be a good choice for a wide range of graphs

• If the activation probability is too high, FP does not converge
– neighbors simultaneously update colors (introducing conflicts)
– more complex graphs require lower activation probabilities

• If the probability is too low, FP converges too slowly
– in particular, early reduction of conflicts is slow

• Need to balance speed against convergence



13
Problem Complexity: Constraint TightnessProblem Complexity: Constraint Tightness

• The chromatic number seems to be a critical threshold for
problem complexity

• FP performs “well” when critically or slightly under-constrained
– #colors equal to or slightly greater than chromatic number
– FP usually achieves proper coloring when under-constrained

• FP performs “reasonably” & behaves well when over-
constrained

– #colors<chromatic number
– reduces conflicts significantly below random level
– doesn’t fall down & doesn’t blow up

• FP’s performance when loosely-constrained is counter-intuitive
– performance is not as good as might be expected on easy

problems



14
Performance of FP against Activation Prob. & #ColorsPerformance of FP against Activation Prob. & #Colors

• When loosely constrained, FP partly acts like a random colorer
– most colors are unused in a given neighborhood
– a node chooses randomly from the unused colors
– so at every activation, a node is highly likely to change color

Loosely constrained FP

� Γ does not converge to zero

� simple analysis predicts
Γ → Cσθ/(2−θ)

– C is the number of colors

– θ is the activation threshold

– σ is the probability that two
neighbors will choose the
same color if they activate
simultaneously

� experiments give a good fit for
σ=1/(C-C

0
)

– C
0
is the chromatic number 2 6 10 14 18 22 26 30

0

25

50

75

100

125

150

175

Performance of FP vs Tightness of Constraints

chromatic number=4, after 1000 steps

FP-90

FP-80

FP-70
FP-50

FP-30

FP-10

#colors

no
rm

al
iz

ed
de

g
re

e
of

co
nf

lic
t(

%
)



15
New Algorithm: Conservative Fixed-Probability ColorerNew Algorithm: Conservative Fixed-Probability Colorer

• CFP is a more “conservative” variant of FP
– now an activated node will change color only if it has conflicts

with its neighbors
• CFP has better performance when under/loosely-constrained

– proper coloring rapidly achieved

2 6 10 14 18 22 26 30
0

25

50

75

100

125

150

175

Performance of CFP vs. Tightness of Constraints

chromatic number=4, after 1000 steps

CFP-90

CFP-80

CFP-70
CFP-50

CFP-30

CFP-10

#colors

no
rm

al
iz

ed
de

g
re

e
of

co
nf

lic
t(

%
)



16
Short-Term Response: ConflictsShort-Term Response: Conflicts

• CFP quickly reduces conflicts when critically constrained,
under-constrained or loosely constrained
� adaptation to changing tasks/resources
– CFP is an anytime algorithm

- tracking proceeds simultaneously with coloring
- appropriate metric: the mean of the degree of conflict

• CFP reduces conflicts below random when over-constrained

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Short-Term Response: Mean Conflicts/30 Steps

chromatic number=4

SI

FP-30

CFP-30

#colors

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

2 3 4 5 6 7 8 9 10
20

40

60

80

100

Short-Term Response: Mean Conflicts/10 Steps

chromatic number=4

SI

FP-30

CFP-30

#colors

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

for the challenge problem



17
Short-Term Response: CommunicationShort-Term Response: Communication

• CFP has low communication costs

• For a single step, the transition rate τ is the fraction of nodes that change color
- τ is independent of the interconnection complexity of the graph

- it simplifies comparison of experimental data over multiple graphs

2 3 4 5 6 7 8 9 10
10

20

30

Short-Term Response: Mean Comm./10 Steps

chromatic number=4

SI

FP-30

CFP-30

#colors

tr
an

si
tio

n
ra

te
(%

)

2 3 4 5 6 7 8 9 10
0

10

20

30

Short-Term Response: Mean Comm./30 Steps

chromatic number=4

SI

FP-30

CFP-30

#colors

tr
an

si
tio

n
ra

te
(%

)



18
ScalabilityScalability

• CFP is scalable
– per-node costs are independent of the number of nodes
– per-node communication, storage & computation costs

proportional to number of neighbors, not number of nodes
• Rate of conflict reduction for CFP is independent of graph size

– for large graphs of similar structure, degree of conflict does not
vary much with graph size

For each color, plot shows
results for 6 graphs
averaged over 3 runs per graph

– 625 nodes
– 900 nodes
– 1000 nodes
– 1520 nodes
– 3600 nodes
– 4970 nodes

0 200 400 600 800 1000
0

20

40

60

80

100

Scalability of CFP (30%)
normalized degree of conflict for 6 graph sizes, chromatic number=4

2 colors

3 colors

4 colors
5 colors

step

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)



19
Fault Tolerance – Dynamic TopologyFault Tolerance – Dynamic Topology

• CFP gracefully adapts to faulty nodes
– low rates of node turnover, applied continuously, slightly reduce

the quality of colorings
– CFP recovers robustly from moderate rates of node turnover

applied intermittently
- number of conflicts jumps, but quickly falls

• Tested using a simple scheme to simulate a dynamic hardware
configuration (e.g., nodes dying and reviving)

– varies the topology without drastically altering the complexity (i.e.,
the chromatic number)

– simplifies analysis
• Construct a graph

• Remove R randomly-chosen nodes (and incident edges)

• Every P steps
– remove a further R randomly-chosen nodes (and incident edges)
– from the pool of 2R removed nodes, reinsert R randomly choosen nodes
– reinsert all previously removed edges whose end nodes are now present in

the graph



20
Dynamic Topology – EffectDynamic Topology – Effect

0 200 400 600 800 1000
0

20

40

Effect of Dynamic Node Set on CFP (30%)

chromatic number=4, #colors=4; turnover=20%/30 steps

step

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

Intermittent:
turnover rate R=20%
applied every 30 steps

0 200 400 600 800 1000
0

20

40

60

80

100

Effect of Dynamic Node Set on CFP (30%)

chromatic number=4; #colors=4; continuous turnover

tor=10%
tor=08%

tor=06%
tor=04%

tor=02%

tor=00%

step

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

Continuous:
turnover applied
every step



21
Communication Noise and LossCommunication Noise and Loss

• CFP is tolerant of (low-level) communication noise and loss
– low-level noise or lossiness increases the degree of conflict

incrementally
• Model communication noise as follows:

– each color-change message is subjected to a random process:
- with probability d, the message is dropped
- with probability r, the color is randomized
- with probability 1-d-r, the message is passed through unaltered

3 4 5 6
0

20

40

60

80

100

Effect of Communication Loss on CFP (30%)

conflicts after 1000 steps, chromatic number=4

d=50%
d=30%

d=15%
d=04%

d=02%
d=00%

#colors

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)

3 4 5 6
0

10

20

30

40

50

60

70

80

Effect of Random Noise on CFP (30%)

conflicts after 1000 steps, chromatic number=4

r=50%

r=30%
r=15%

r=08%

r=04%

r=02%
r=00%

#colors

no
rm

al
iz

ed
de

gr
ee

of
co

nf
lic

t(
%

)



22
Summary of Results for CFP (Summary of Results for CFP (et al.et al.))

• Theoretical models
– convergence when under-constrained
– convergence when critically constrained
– loose upper-bound on communication costs
– scalability (constant parallel complexity)

• Experimental results
– reasonable activation probability for wide range of graphs
– convergence
– rapid short-term reduction in conflicts when under-constrained
– rapid short-term reduction in conflicts when critically constrained
– good behavior when over-constrained
– low communication costs
– scalability
– robustness against node/communication failure

• Simple algorithm for decentralized, anytime graph coloring
– promises fast, cheap, robust resource management



23
Future WorkFuture Work

• Does “fast” translate into “fast enough”?
– need to test algorithm on challenge problem
– other resource types may give more complex search spaces and

may need more complex interaction between schedulers
• Application-specific models of performance

– explicit relationship between γ and “quality of solution”
• Different classes of local, iterative-repair algorithm

– e.g., activation based on local measures of degree of conflict
- measures maintained by diffusion scheme

– dynamic determination of chromatic number & #colors
- we already have prototype algorithm

• Open problems (for dynamics/complexity groups?):
– reliable performance predictors from simple graph metrics

- e.g., chromatic number, degree of interconnection
- metrics need to be locally & cheaply computable for use at run-time

– convergence models for over-constrained coloring
– improved analysis → improved algorithms


