
Scheduling Background - Glossary, 4 May 2000

page 1/8

����������������		

����

����

������		����������������

������
Stephen Fitzpatrick (fitzpatrick@kestrel.edu)

Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304
http://www.kestrel.edu/home/projects/ants/

This document is one of a set that attempt to bring together background information on
scheduling. In writing these documents, we have not attempted to be comprehensive, but
rather have concentrated on information useful for Kestrel’s ANTs project. The contents
of the set of documents are:

1. Glossary
Informal definitions of terms generic to scheduling.

2. Specifications
Formal definitions of sort and operations for scheduling.

3. Algorithms
Informal descriptions of classes of algorithms used in scheduling.

If you do not have any of the other documents in the set, you should be able to find them
at our web site: http://www.kestrel.edu/home/projects/ants/scheduling/

Caveat: this is a work in progress.

���� ������������������

������
Closure time (of a schedule)

Same as "makespan" – the latest completion time of all the reservations in a schedule. If
the schedule starts at time 0, then the closure time is also the schedule's duration.

Compatibility constraints (between resources and tasks)
A relation between tasks and resources defining which tasks can be accomplished by
which resources.

Example: an acoustic sensor may not be able to perform target tracking.

Completion time (of a reservation or corresponding task)
The time at which a reservation/task is scheduled to be completed.

Constraint
A rule that limits the schedules that are considered acceptable.

Example: a sampler can perform only one measurement at a time.

Constraint, hard
A constraint that cannot be violated, typically reflecting a physical limitation of a
resource.

Scheduling Background - Glossary, 4 May 2000

page 2/8

Example: the duration of a communication task must be long enough to allow for the
communication system’s latency and finite bandwidth; any schedule that violates this
constraint cannot be performed.

Constraint, soft
A constraint that can be violated, typically incurring some penalty.

Example: a task may be scheduled to be completed after its due date; a penalty may be
incurred according to the tardiness.

Due date (of a task)
The latest allowed completion time of a task.

Example: a measurement must be completed by time T.

Feasibility (of a schedule)
A feasible schedule is one in which no precedence constraints or hard constraints are
violated.

Gantt chart
A graphical display of a schedule.

Example: a horizontal bar chart showing resources on the vertical axis against
reservations, with time on the horizontal axis.

Makespan (of a schedule)
Same as "closure time" - the latest completion time of all the reservations in a schedule.
If the schedule starts at time 0, then the closure time is also the schedule's duration.

Maximum tardiness (of a schedule)
The largest tardiness of all the reservations in a schedule.

Precedence constraints (between tasks)
A strict partial order constraining the order in which tasks are begun/completed.

Example: a measurement task may have three sub-tasks – send instructions to a remote
node, perform the measurement, communicate the data back to a central processor –
that must be executed in order.

Processing times (properties of resource and task types)
How long it takes to accomplish a given task (or type of task) on a given resource.

Example: to send N bytes over a communication channel takes time (L+N/B), where L
is the latency and B is the bandwidth.

Quality (of a schedule)
Some metric in a partial order defined on schedules.

Example: the total weighted tardiness.

Release date (of a task)
The earliest time at which any resource can start to process a given task.

Example: if a measurement is scheduled to be completed at time T, then the task of
communicating the results has a release date of T.

Scheduling Background - Glossary, 4 May 2000

page 3/8

Reservation
A triplet indicating that some task is scheduled to be executed on some resource over
some time period.

Example: sensor A is to perform measurement task M beginning at time Ts and ending
at time Te.

Resource
An entity capable of accomplishing tasks.

Example: a radar beam.

Setup times (properties of resource and task types)
For a given resource, the time to prepare the resource between tasks.

Example: a radar node is to perform an active scan task after a passive listening task and
requires a time T to warm up the beam.

Schedule
A set of reservations defining the processing of a set of tasks on a set of resources.

Tardiness (of a reservation)
The amount of time (non-negative) by which a task’s completion time follows its due
date.

Task
An element of work to be accomplished.

Example: take a measurement on sensor A, direction (θ,φ), at time T, for duration D.

Total (weighted) tardiness (of a schedule)
The (weighted) sum of the tardinesses of all the reservations in a schedule.

Weight (of a task)
The relative importance of a task, in some total order, typically the natural numbers or
reals.

Example: a tracking task may have weight 9 whereas a background sweep task may
have weight 5, indicating that the tracking task is more important.

���� ���������	�
Scheduling: Theory, Algorithms and Systems, Michael Pinedo,
Prentice Hall 1995, ISBN 0-13-706757-7

Scheduling Background - Glossary, 4 May 2000

page 4/8

������������������		

����

����

������		����������

����������������
This document is one of a set that attempt to bring together background information on
scheduling. In writing these documents, we have not attempted to be comprehensive, but
rather have concentrated on information useful for Kestrel’s ANTs project. The contents
of the set of documents are:

4. Glossary
Informal definitions of terms generic to scheduling.

5. Specifications
Formal definitions of sort and operations for scheduling.

6. Algorithms
Informal descriptions of classes of algorithms used in scheduling.

If you do not have any of the other documents in the set, you should be able to find them
at our web site: http://www.kestrel.edu/home/projects/ants/scheduling/

Caveat: this is a work in progress.

���� ����������������		

������

����������������
A scheduling algorithm attempts to assign tasks to resources at time periods, such that the
constraints on the tasks and resources are observed, or at least minimally violated.
Typically, some attempt is made to optimize the schedule according to some quality
metric. In general, scheduling is NP-hard, so practical methods for achieving good run
times in particular problem domains are of interest.

��� ����
	�
�������
���	�
Heuristic scheduling algorithms typically attempt to achieve reasonably good, feasible
schedules by assigning tasks to resources according to an order based upon some
criticality measure. For example, tasks may be ordered according to the ratio of their
availability duration (due date less release date) to their processing time; or resources
may be ordered according to their total load (which changes as the algorithm schedules
tasks). Typically, heuristic algorithms do not revise task assignments even if the schedule
turns out to be poor.

�
� ������	�����������
���	�
A local search algorithm computes on a single candidate schedule that is already
complete – in the sense that it contains reservations for all of the tasks that are to be
scheduled – but that may be infeasible or sub-optimal. A local search algorithm typically
performs a transformation on the candidate schedule to produce a better neighboring
schedule, and iterates this process until a satisfactory schedule is produced or a local

Scheduling Background - Glossary, 4 May 2000

page 5/8

optimum is reached. An example of a transformation is shifting a reservation forward in
time to correct a due-date violation. It is not guaranteed that the final schedule is globally
optimal. Local search algorithms are also called iterative repair algorithms.

The primary considerations in designing a local search algorithm are:

• generation of an initial seed schedule;
• generation of the neighbors of a candidate solution;
• selection of the best neighbor;
• avoiding being trapped in unsatisfactory local optima.

�
��� 	�������������������
In standard local search algorithms, the algorithm only progresses from some candidate
schedule to a better neighboring schedule. As a result, the algorithm may become stuck in
a local optima and fail to find a global optima. Simulated annealing is a variant of local
search that tries to escape from local minima by occasionally progressing to neighbors
that are worse than the current candidate schedule. At each iteration of the search, each
worse neighbor of the current candidate schedule has a (low) probability of being
accepted as the next candidate schedule. The probabilities are assigned according to some
function of: (1) the qualities of each neighbor relative to the quality of the current
candidate; (2) the length of time the algorithm has been running. The longer the
algorithm runs, the less likely the worse neighbors are to be accepted. Eventually,
probability of progress to a worse neighbor becomes negligible and the search settles into
a local optimum.

�
�
� �����	��� !�
In tabu search, the search algorithm may progress from a current candidate solution to
any neighboring solution – better or worse – provided only that the transformation to the
neighbor is not contained in the current tabu-list. The tabu-list is a fixed length list of
schedule transformations that are currently forbidden; when a transformation is applied to
the current candidate schedule, that transformation is added to the head of the list and the
tail of the list is removed. The intention is to try to prevent cycling in the search process.

�
�"� ������ ����#���!�$�
Genetic algorithms operate on finite-sized populations of candidate schedules. At each
iteration of the algorithm, relatively poor schedules are removed from the population and
are replaced with new candidate schedules generated by: (1) applying mutations to
individual schedules in the population; (2) applying cross-over operations to pairs of
schedules in the population.

�"� ���%���	�����������
���	�
Global search algorithms find feasible or globally optimal schedules by searching
through schedule spaces. Typically, a search tree is constructed in which each node
represents, say, a task that is to be scheduled and each branch from that node represents a
choice of to which resource the task is assigned. Each partial schedule constructed in this
way is required to be feasible. If a node is reached for which no choice of task and
resource produces a feasible schedule, then back-tacking occurs.

Scheduling Background - Glossary, 4 May 2000

page 6/8

For finding a feasible schedule, the algorithm terminates when it has constructed a
feasible schedule and no tasks remain to be scheduled. For finding an optimal schedule,
each such complete, feasible schedule is compared using some quality metric and the best
one is returned; this is a globally optimal schedule.

The primary considerations in designing a practical global search algorithm are:

• reducing the size of the search space;
• selecting a good order for considering the siblings branches at each level (since this

may affect the ability to reduce the search space).

�"��� &�������
Global search algorithms may use pruning to reduce the size of the search space. For
example, the constraints that a feasible schedule must satisfy may be weakened to
produce necessary constraints on partially constructed schedules. If the weakened
constraints can be quickly computed at each node in the search space, they can be used to
prune off branches that cannot produce feasible schedules.

�"�
� %��� !�'�%#�������#���!�$�
Global search algorithms may also use the schedule quality metric to prune off search
branches. For example, assume that a feasible schedule is required that maximizes some
metric. It may be possible to compute an upper bound on the metric for any given branch
in the search tree, such that no feasible schedule contained in that branch has a metric that
exceeds the upper bound computed for that branch. If a branches upper bound does not
exceed the metric of some schedule that has already been constructed, then the branch
cannot contain an optimal schedule and the branch can be pruned. If a heuristic scheduler
is available that produces reasonable schedule, then it can be used to seed the branch &
bound algorithm.

If an approximately optimal solution is sufficient, a more liberal pruning policy can
reduce the search space still further: a branch is pruned off if its upper bound does not
exceed, by some defined tolerance, the highest value of the metric found so far. For
example, if the tolerance is set to 10%, then the schedule returned by the algorithm is
guaranteed to be within approximately 9% of optimal.1

�"�"� %����	��� !�
Beam search is a variant of branch & bound in which, at each node in the search tree, the
branches are ranked according to some metric and all but the best w branches are pruned,
where w is called the beam width. Thus, beam search reduces the search space but
sacrifices optimality. It is important that the ranking function selects branches that
ultimately produce high-quality schedules, but it is also important that the ranking
process not be too computationally expensive. Thus, the ranking process may be
preceded by a filter that quickly discards most of the branches, leaving a relatively small
number of branches to be ranked through a more thorough processes.

1 If the algorithm at tolerance T% finds a schedule with metric M, then the optimal schedule has a metric no
larger than M×(1+T/100).

Scheduling Background - Glossary, 4 May 2000

page 7/8

�"�(� ����)���#��
Relaxation is a technique that can be used to avoid backtracking, at the expense of
producing a schedule that is approximately feasible. At each node in the search space, a
single branch is selected that does not immediately lead to an infeasible schedule. The
search algorithm follows that branch and never leaves it. Eventually, either: (1) a feasible
schedule is created in which all of the tasks have been scheduled, and this schedule is
returned as the result of the algorithm; (2) a node is reached in which some tasks remain
to be scheduled and from which every branch immediately produces an infeasible
schedule. In the latter case, rather than backtracking, the constraints on the unscheduled
tasks are relaxed and scheduling continues. For example, a task may be relaxed by
extending its due date. Typically, there is a pernalty associated with relaxation.

Thus a search algorithm that uses relaxation may produce sub-optimal schedules (where
the hard concept of infeasibility is replaced with the soft concept of penalties) but it
typically runs in time that is approximately linear in the number of tasks.

�(���*�
��������
���	�
A scheduling algorithm is classified as being anytime if: (1) it can be allowed to run for
an arbitrary amount of time, unknown in advance, and return a valid schedule when
interupted; (2) statistically, the longer the algorithm is allowed to run, the higher the
quality of the schedule it produces. An anytime algorithm may be characterized by a
performance profile that maps running times into probability distributions of schedule
quality. The distributions may also depend on some characteristic of the input data, in
which case the profile is called a conditional performance profile.

Typically, an anytime scheduler works by producing some initial schedule, maybe using
a heuristic algorithm, and then iteratively refining the schedule. The iterative process may
actually temporarily degrade schedule quality, in which case the algorithm may also
retain a copy of the best schedule found so far, to be returned as its answer if it is
interupted.

Local search algorithms can generally be converted into anytime algorithms simply by
extracting the iterative search process and using it in a local search schema that provides
for interupt capabilities, etc. It may also be possible, although perhaps not useful, to
convert a global search algorithm into an anytime algorithm: the anytime version simply
records the best partial schedule constructed so far and returns that as its answer if
interupted. A partial schedule produced by a global search algorithm will not satisfy all of
the constraints (e.g., it will not contain assignments for all of the tasks that were to be
scheduled) but it presumeably will nevertheless be of some value.

Furthermore, global algorithms such as branch & bound with tolerance and beam search
are parameterized and it may be possible to construct a useful anytime algorithm by
iterating such an algorithm wth successive values of the parameters such that: (1) for the
initial parameter values, the algorithm runs quickly; (2) for successive parameter values,
the algorithm typically runs more slowly; (3) the schedule found by the algorithm is
likely to increase in quality for successive values of the parameter. During this process,
the best schedule found so far is stored to be returned as the answer if the algorithm is
interupted.

Scheduling Background - Glossary, 4 May 2000

page 8/8

For example, a branch & bound algorithm can be run with an initially high tolerance, say
50%, to quickly produce a sub-optimal schedule. Successive iterations of the algorithm
may reduce the tolerance, perhaps finally to zero. Because the size of the search space
increases as the tolerance is reduced, successive iterations will (likely) take longer to run.
For a beam search algorithm, the beam width may be initially set low and increased on
successive iterations.

�(��� �#���� �����#���!�$�
A contract algorithm is one that is informed on initiation of the time for which it will be
allowed to run. The algorithm must produce a valid result when it is terminated/it
terminates itself at that time. Like an anytime algorithm, a contract algorithm will
produce better schedules the longer it is given to run; unlike an anytime algorithm, it
must be told in advance how long it will have to run, and it may not return a valid result
if it is interupted before that time.

�+� ��	���,��
���
TBD

