Scheduling Background - Specifications, 5 May 2000

Scheduling Background: Specifications

Stephen Fitzpatrick (fitzpatrick@kestrel .edu)
Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304
http://www .kestrel .edu/home/proj ects/ants/

This document is one of a set that attempt to bring together background information on
scheduling. In writing these documents, we have not attempted to be comprehensive, but
rather have concentrated on information useful for Kestrel’s ANTSs project. The contents
of the set of documents are:

1. Glossary
Informal definitions of terms generic to scheduling.

2. Specifications
Formal definitions of sort and operations for scheduling.

3. Algorithms
Informal descriptions of classes of algorithms used in scheduling.

If you do not have any of the other documents in the set, you should be able to find them
at our web site: http://www.kestrel .edu/home/projects/ants/scheduling/

Cavest: thisisawork in progress.

2 Ihe Specifications

The specifications below define sorts and operators (“op”) for scheduling. Most of the
terms in the glossary have formal definitions below. The syntax is fairly standard for
operator signatures and axiomatic definitions. A “def” term defines an operation in a
functional style (i.e., constructively).

2.1 SORTS AND OPERATORS

2.1.1 SorT TIME= REAL
2.1.2 SORT DURATION = REAL
2.1.3 SoRT WEIGHT = REAL

2.1.4 SORT TASK-TYPE
% not defined here — problem specific
2.1.5 SORT TASK

op release-date: Task —» Time
op due-date: Task — Time
op weight: Task — Weight

page 1/9

Scheduling Background - Specifications, 5 May 2000

op type: Task — Task-Type

axiom uniqueness
O(t:Task, u:Task)
t=u = release-date(t)=release-date(u) [J due-date(t)=due-date(u) [
weight(t)=weight(u) O type(t)=type(u)

2.1.6 SORT RESOURCE-TYPE
% not defined here — problem specific

SORT RESOURCE

op type: Resource — Resource-Type

op compatible-task-types: Resource — set(Task-Type)

op processing-times. Resource — (Task-Type — Duration)

op setup-times: Resource — (Task-Type, Task-Types — Duration)

axiom uniqueness
0(r:Resource, s:Resource)

r=s = type(r)=type(s) 0 compatible-task-types(r)=compatible-task-types(s) [

processing-times(r)=processing-times(s) [
setup-times(r)=setup-times(s)

op compatible-task?: Resource, Task — Boolean
def compatible-task?(r,t) = Task.type(t) L] compatible-task-types(r)

op processing-time: Resour ce, Task|compatible-task? — Duration
def processing-time(r,t) = processing-times(r)(Task.type(t))

op two-compatible-tasks?: Resource, Task, Task — Boolean
def two-compatible-tasks?(r,t,u) = compatible-task?(r,t) [1 compatible-task?(r,u)

op setup-time: Resour ce, Task, Task|two-compatible-tasks? — Duration
def setup-time(r,t,u) = setup-times(r)(Task.type(t), Task.type(u))

2.1.7 SORT HARD-CONSTRAINT

% An arbitrary boolean-valued function
op global-constraint: (Schedule, set(Resource), set(Task) — Boolean)

— Hard-Constraint
% This op lifts a single-reservation constraint to a schedule constraint
op pointwise-constraint: (Reservation — Boolean) - Hard-Constraint
% This op lifts a constraint on neighboring reservations to a schedule constraint
op consecutive-constraint: (Reservation, Reservation — Boolean)

— Hard-Constraint

page 2/9

Scheduling Background - Specifications, 5 May 2000

op observes?: Hard-Constraint, Schedule, set(Resource), set(Task) — Boolean
def observes?(global-constraint(f),s,R,T) = f(s,R,T)
def observes?(pointwise-constraint(f),s,R,T) = reduce(all-reservations(s), U, A r - f(r))
def observes?(consecutive-constraint(f),s,R,T) =

O(r O resources(s); p,q [reservations(s,r)) consecutive?(s,p,q) [f(p,q)

2.1.8 SORT PENALTY = REAL

2.1.9 SORT SOFT-CONSTRAINT

% An arbitrary function
op global-constraint: (Schedule - Penalty) - Soft-Constraint
% Apply a penalty pointwise to each reservation that violates a constraint, and sum
op pointwise-constraint:

(Reservation — Boolean), (Reservation — Penalty) — Soft-Constraint
% Apply a penalty pointwise to each reservation that violates a constraint,
% and take the maximum
op max-constraint:

(Reservation — Boolean), (Reservation — Penalty) — Soft-Constraint
% Apply a pair-wise penalty to each pair of consecutive reservations that violates a
% constraint, and sum
op consecutive-constraint: (Reservation, Reservation — Boolean),

(Reservation, Reservation — Penalty) — Soft-Constraint

op penalty: Soft-Constraint, set(Resource), set(Task), Schedule — Penalty
def penalty(global-congtraint(f),s,R,T)) = f(s,R,T)
def penalty(pointwise-constraint(p,f),s,R,T)

= reduce(all-reservation(s), +, A r—if p(r) then 0.0 else f(r))
def penalty(max-constraint (p,f),s,R,T)

= reduce(all-reservation(s), max, A r - if p(r) then 0.0 else f(r))
def penalty(consecutive-constraint (p,f),s,R,T)

= reduce({ (r,t) | r, t O adl-reservations(s) [consecutive?(s,r,t)}, +,

A rt - if p(r,t) then 0.0 else f(r,t))

2.1.10 SORT PRECEDENCE-CONSTRAINT

op relation: Precedence-Constraint — set((Task, Task))
axiom uniqueness
U(c:Precedence-Constraint, d:Precedence-Constraint)
c=d < relation(c)=relation(d)

% A precedence relation must be a strict partial order
% (i.e., apartia order with anti-reflexivity instead of reflexivity)
axiom anti-reflexive

[(c:Precedence-Constraint, X: Task)

page 3/9

Scheduling Background - Specifications, 5 May 2000

= (x,x)Urelation(c)
axiomtransitive
0(c: Precedence-Constraint, x:Task, y:Task, z:Task)
(x,y)Orelation(c) U (y,z)Urelation(c) O (x,z)Urelation(c)
axiom anti-symmetric
[(c: Precedence-Constraint, x:Task, y:Task)
(x,y)Orelation(c) 0 = (y,x)Urelation(c)

op observes?: Precedence-Constraint, Schedule - Boolean
def observes?(c,s) = [(p:Reservation, g:Reservation [J reservations(s))
relation(c)(p,q) O completion-time(p)<start-time(q)

2.1.11 SORT RESERVATION

op task: Reservation - Task

op resource: Reservation — Resource

op start-time: Reservation — Time

op completion-time: Reservation - Time

axiom uniqueness
O(p:Reservation, g:Reservation)
p=q < task(p)=task(q) [resource(p)=resource(q) [l
start-time(p)=start-time(q) U completion-time(p)=compl etion-time(q)

op duration: Reservation — Duration
def duration(r) = completion-time(r) — start-time(r)

op precedes?: Reservation, Reservation — Boolean
def precedes?(r,t) = completion-time(r)<start-time(t)

op lateness: Reservation — Duration
def lateness(r) = completion-time(r) - due-date(task(r))

op tardiness. Reservation — Duration
def tardiness(r) = max(0.0, lateness(r))

op release-date-observed?: Reservation — Boolean
def release-date-observed?(r) = start-time(r)=>rel ease-date(task(r))

op due-date-observed?: Reservation — Boolean
def due-date-observed?(r) = completion-time(r)<due-date(task(r))

op compatible-resource-and-task?: Reservation — Boolean
def compatible-resource-and-task?(r) = compatible-task?(resource(r), task(r))

page 4/9

Scheduling Background - Specifications, 5 May 2000

op matching-processing-time?: Reservation — Boolean
def matching-processing-time?(r) = duration(r)=processi ng-time(resource(r), task(r))

op same-resour ce?: Reservation, Reservation — Boolean
def same-resource?(r,t) = resource(r)=resource(t)

op sufficient-setup-time?: Reservation, Reser vation|same-resource? — Boolean
def sufficient-setup-time?(r,t) =
start-time(t) - completion-time(r) = setup-time(resource(r), task(r), task(t))

2.1.12 SORT SCHEDULE
op all-reservations: Schedule - set(Reservation)

axiom uniqueness
0(s:Schedule, t:Schedul€)
Ss=t < al-reservations(s)=all-reservations(t)

op reservations. Schedule, Resource - set(Reservation)
def reservation(s,r) = {m | m O al-reservations(s) U resource(m)=r}

op consecutive?: Schedule, Reservation, Reservation — Boolean
def consecutive?(s,p,q) =
same-resource?(p,q) [
precedes?(p,q) [
= [r O reservations(s, resource(p)) precedes?(p,r) [precedes?(r,q)

op closure-time: Schedule - Time
def closure-time(s) = max{ completion-time(r) | r (I all-reservations(s)}

op makespan: Schedule — Time
def makespan(s) = closure-time(s)

op maximume-tardiness: Schedule — Time
def maximum-tardiness(s) = max{tardiness(r) | r [all-reservations(s)}

op total-weighted-tardiness: Schedule — Real
def total-wei ghted-tardiness(s)
= reduce(all-reservations(s), +, A r - tardiness(r)* weight(task(r)))

op all-tasks-scheduled?: Schedule, set(Task) — Boolean
def all-tasks-scheduled?(s,T) = LI(t O T) size{r | r O all-reservations(s) U task(r)=t} =1

page 5/9

Scheduling Background - Specifications, 5 May 2000

% Function for checking hard and precedence constraints
% Run a schedule through a set of constraints to check if it observes each constraint.
op check-feasibity: Schedule, set(Resour ce), set(Task),
set(Precedence-Constraint), set(Hard-Constraint)
- Boolean

def check-feasibility(s,R,T,P,H) = L(pUP) observes?(p, s) U U(hIH) observes?(h,s,R,T)
% Function for checking soft constraints

% Compute the total penalty on a schedule as the weighted sum of penalties arising

% from soft constraints

op total-penalty: Schedule, set(Resource), set(Task), set(Soft-Constraint) — Penalty
def total-penalty(s, R, T, P) = reduce(P, +, A p— pendty(p, s, R, T))

page 6/9

Scheduling Background - Specifications, 5 May 2000

2.2 EXAMPLES

2.2.1 Typical Constraints

%
% Hard constraints

const release-dates-constraint: Hard-Constraint

= pointwise-constraint(rel ease-date-observed?)
const due-dates-constraint: Hard-Constraint

= pointwise-constrai nt(due-date-observed?)
const compatibility-constraint: Hard-Constraint

= poi ntwi se-constrai nt(compatible-resource-and-task?)
const processing-times-constraint: Hard-Constraint

= poi ntwi se-constrai nt(matching-processing-time?)
const setup-times-constraint: Hard-Constraint

= consecutive-constraint(sufficient-setup-time?)
const complete-schedule-constraint: Hard-Constraint

= global-constraint(A s,R,T - all-tasks-scheduled?(s,T))

%
% Soft constraints

% Define a penalty factor that starts at 0 and increases to 1 with the lateness,

% relative to a scale defined by the expected processing time of the task.

op lateness-penalty-factor: Reservation — Real

def lateness-penalty-factor(r) = 1-exp(-lateness(r)/processing-time(resource(r), task(r)))

% Constraint: completion times come before due dates
% Penalty for violation increases with lateness and is weighted by task priority
const weighted-tardiness-constraint: Soft-Constraint
= pointwise-constraint(
A r - completion-time(r)<due-date(task(r)),
A r - lateness-penalty-factor(r)* priority(task(r)))

page 7/9

Scheduling Background - Specifications, 5 May 2000

2.2.2 Find a Feasible Schedule

% Collect the constraints that are to apply
const Hard-Constraints: set(Hard-Constraint)
={ rel ease-dates-constraint,

due-dates-constraint,
compatibility-constraint,
processi ng-times-constraint,
setup-times-constraint,
complete-schedul e-constraint}

const Precedence-Constraints: set(Precedence-Constraint)
% not defined

% Define the function that finds a feasible schedule
op find-feasible-schedule: set(Resource), set(Task) —» Schedule

axiom feasible and complete
O(R,T) check-feasibility(find-feasible-schedule(R,T), R, T,
Precedence-Constraints, Hard-Constraints)

page 8/9

Scheduling Background - Specifications, 5 May 2000

2.2.3 Find an Optimal Schedule

% Collect the constraints that are to apply
const Hard-Constraints: set(Hard-Constraint)
={ rel ease-dates-constraint,
compatibility-constraint,
processing-times-constraint,
setup-times-constraint,
compl ete-schedul e-constraint}

const Precedence-Constraints:. set(Precedence-Constraint)
% not defined

const Soft-Constraints: set(Soft-Constraint)
= { weighted-tardiness-constraint}

% Define the function that finds an optimal schedule,
% i.e., one with aminimal penalty
op find-optimal-schedule: set(Resource), set(Task) - Schedule

axiom feasible and complete
O(R,T) check-feasibility(find-optimal-schedule(R,T), R, T,
Precedence-Constraints, Hard-Constraints)

% No other feasible schedule has alower penalty
axiom optimality
O(R,T) O(s:schedule)

s#s [check-feasibility(s, R, T, Precedence-Constraints, Hard-Constraints)
O total-penaty(s, R, T, Soft-Constraints)>total-penalty(s, R, T, Soft-Constraints)

page 9/9

