
Android Platform Modeling
and Android App Verification
in the ACL2 Theorem Prover

Eric Smith and Alessandro Coglio

Kestrel Institute, Palo Alto, U.S.A.
http://www.kestrel.edu

{eric.smith,coglio}@kestrel.edu

Abstract. We present our work in using the ACL2 theorem prover to
formally model the Android platform and to formally verify Android
apps. Our approach allows the verification of the full functional correct-
ness of apps as well as security properties. It also lets us detect or prove
the absence of “functional malware”, malicious app functionality that
is triggered by complex conditions on state and that causes the app to
calculate the wrong results or otherwise behave incorrectly. Our formal
Android model is an executable simulator of a growing subset of the
Android platform, and app proofs are done by automated symbolic exe-
cution of the app’s event handlers using the formal model. By induction,
we prove that an app satisfies an invariant, including the correctness
properties of interest, for all possible sequences of events.

1 Introduction

Android devices [32] are vulnerable to security compromises carried out by rogue
apps that may abuse the user’s trust by masquerading as benign apps [12,40].
The Android security mechanisms are coarse and complex [11,34] and may be
bypassed via exploitable flaws in the platform [2,24].

A more detailed characterization of an app’s behavior, especially its access
to user data, can enable users to make more informed decisions about trusting
and installing the app. A suitable formal specification of the app can be used for
this purpose, and trust can be established via a formal proof that the app’s code
satisfies the specification. This requires a formal model of the platform that the
app runs on—both language and API.

The work described in this paper contributes to the goal of establishing trust
in apps based on formal specifications and proofs. We used the ACL2 theorem
prover [39] to build a formal model of a subset of the Android platform that
supports non-trivial apps. We developed a proof methodology based on induction
and symbolic execution of the app’s event handlers, showing that each handler
preserves the app’s invariant, which includes all properties of interest, including
functional correctness.

http://www.kestrel.edu

We applied this proof methodology to verify the full functional correctness
of a slightly simplified version of a calculator app written by others. For a ver-
sion of the app that contains malware, the correctness proof fails in a way that
reveals the malware. In the process of verifying the app, we also uncovered a
subtle functional bug that may be representative of malware that is triggered by
complex conditions on an app’s state and whose malicious action is the calcu-
lation of incorrect results. This “functional malware” differs from more explicit,
and potentially more easily detectable, malware that, for example, sends private
user data to a remote server when the device is in a certain location at a certain
time. The latter kind of malware makes API calls to test the trigger conditions
and perform the malicious actions, while functional malware may not make any
suspicious API calls. For example, functional malware in a navigation app could
deliberately lead users off course, perhaps even directing them to dangerous
places.

Our approach is sound, precise, and high-assurance, in contrast to existing
approaches for vetting Android apps. Static analysis is imprecise, leading to
false warnings, sometimes unsound, and cannot check arbitrary functional cor-
rectness properties. Dynamic analysis cannot cover all possible cases. Manual
code inspection is not high-assurance, because hidden malicious functionality
can be overlooked or misunderstood. Our approach can prove virtually any true
property about an app, with high assurance. Its main disadvantage is that it
requires significant user effort, but we are working to improve the automation
of the proof process.

Our work makes the following contributions:
– A formal model of a non-trivial subset of the Android platform.
– A formal proof methodology for Android apps.

2 Background

2.1 Android

Most Android apps are written in Java [31]. Besides using a subset of the stan-
dard Java API, these apps use the Android API, which provides access to hard-
ware devices (camera, GPS, etc.), GUI elements (buttons, text boxes, etc.),
inter-app communication (e.g., to open a given URL in a web browsing app),
and so on. In addition to the Java source files, an app contains other resources,
which often take the form of XML files. An app’s Java source code is compiled
to Java Virtual Machine (JVM) bytecode [23] using a standard Java compiler.
The Android development tools are used to convert the JVM bytecode to Dalvik
bytecode [32], which is assembled with the XML and other resource files (e.g.,
images) into an installable app package.

An Android app is structured in terms of ‘activities’, each of which is a single
“screen” in the app’s GUI. Within an activity are various ‘views’—rectangular
regions of the screen that represent GUI elements, such as text boxes and but-
tons that can be clicked. Events in Android include click events for these views.

An app can register listeners for such events, either statically in its layout XML
or programmatically by calling setOnClickListener(). When these events oc-
cur, the Android GUI thread invokes the appropriate methods of the registered
listeners. An app’s XML ‘manifest’ indicates, among other things, the initial
activity to be created when the app starts.

Android also includes lifecycle events (Create, Start, Resume, Restart, Pause,
Stop, and Destroy) that can be dispatched to the app. The sequencing of these
events must be consistent with the activity lifecycle state machine [31] (a typical
flow is: Create, Start, Resume, Pause, Stop, Destroy) but can otherwise occur
at any time. For example, a Pause event may occur when another app opens in
front of the current app. Apps typically implement handlers to respond to these
events (e.g., to save data when the app is paused) by overriding methods of the
Activity class, such as onPause().

Various entities belonging to the app are identified using numeric resource
IDs. These resource IDs are defined in special classes, namely the R class (‘re-
source’ class) and its inner classes, generated by the Android development tools.
For example, an XML layout entity <Button android:id="@+id/btnSeven"

...> will cause the R$id class to contain a final static field called btnSeven whose
ConstantValue attribute is some large, unpredictable number, e.g., 2131034114.
In Java source code, the button object can be obtained by the method call
findViewById(R.id.btnSeven), but in the bytecode only the numeric ID is
present.

Android includes a permission mechanism to limit apps’ access to hardware
and other resources. For example, an app must possess the INTERNET permission
to open network sockets and the CALL PHONE permission to initiate phone calls.
An app declares, in its XML manifest, the set of permissions that it requests.
When an app is about to be installed, the requested permissions are shown to the
user, who decides whether to proceed with the installation, and thus grant the
app all the requested permissions. This permission mechanism is coarse-grained:
for instance, the INTERNET permission gives an app carte blanche to connect to
any host at any time to send any data.

Malware Several kinds of malware affect Android devices [12,40]. Tools like [16]
can be effective at detecting malware that exfiltrates private user data by (neces-
sarily) making suspicious API calls. The mere presence of certain API calls may
be suspicious, e.g., an app that opens a network connection, when the app’s
purported functionality does not involve the network. The presence of an API
call may be legitimate, but the information that flows to the API calls may be
suspicious, e.g., an app reads a user’s contacts and sends them over the network,
when the app’s purported functionality does not include that.

A more stealthy kind of “functional malware” may not exfiltrate private user
data, and instead intentionally calculate incorrect results. The severity of this
kind of malware depends on how much the user relies on the app calculating
correct results: it may range from an annoyance to loss of life, e.g., if a military
navigation app sends a squad off-course to a dangerous place. Functional malware

may be triggered under complex conditions on an app’s state variables, eluding
detection via code inspection. Functional malware may involve API calls, but
not necessarily suspicious ones; or it may not involve any API calls.

Unlike many other approaches, our work addresses functional malware. Of
course, it also addresses inadvertent errors. The difference between functional
malware and an unintentional bug is one of developer’s intent; but the impact
may be similar. Our app verification approach establishes functional correctness,
ruling out both intentional and unintentional bugs.

2.2 ACL2

The ACL2 theorem prover [39] consists of a first-order specification language
based on side-effect-free Common Lisp and automated proof methods for rea-
soning about programs and models written in the language. Two strengths of
ACL2 are its sophisticated term rewriter and its heuristic application of induc-
tion [4]. ACL2 supports reasoning about programs written in languages other
than its native Common Lisp dialect via embeddings that capture the languages’
semantics in terms of ACL2’s native language. Below we describe how we use
this approach to reason about JVM bytecode representing Android apps.

3 Platform Modeling

Since our motivation for modeling the Android platform is app verification, our
formal model describes not the internal structure and layers of the platform
stack, but the top-level interface that the platform provides to apps. This inter-
face consists of the language that apps are written in and the API calls exchanged
between apps and platform, including callbacks.

3.1 Formal JVM Bytecode Model

To reason about an Android app, we intercept its JVM bytecode during compi-
lation (before Dalvik bytecode is generated). To assign semantics to this byte-
code, we defined in ACL2 a formal model that is an executable interpreter of
the Java Virtual Machine [38]. Our model is similar to the M5 model developed
by J Moore and others [29], but covers more features (e.g., exceptions, string in-
terning, and class initialization). Theorems about JVM bytecode programs are
expressed using this formal model; we prove that when the program of interest
is executed on the model, starting from a state where certain properties hold,
then certain other properties always hold on the resulting state. This follows the
style pioneered in [27].

While we do not consider our JVM model to be a novel contribution of this
paper, we summarize its behavior here for concreteness. The state of the JVM in
our model includes the Java heap, static area (where static fields are stored), and,
for each thread, a call stack that includes invocation frames for each method that

the thread is currently executing. Also included are auxiliary data structures for
synchronization and locking, string interning, etc.

Each JVM instruction is modeled by specifying the effect on the JVM state
when that instruction is executed. For example, the iadd instruction for integer
addition is modeled as follows:

(defun execute-IADD (th s)
(modify th s

:pc (+ 1 (pc (top-frame th s)))
:stack (push (bvplus 32

(top (pop (stack (top-frame th s))))
(top (stack (top-frame th s))))

(pop (pop (stack (top-frame th s)))))))

The function execute-IADD modifies the data structures of thread th in the
JVM state s. In particular, it pops two operands off of the operand stack in the
top invocation frame of the call stack, adds them, and pushes the sum back onto
the operand stack. It then increments the program counter :pc by 1, which is
the length of the iadd instruction.

To run an entire program, we repeatedly step the machine state by fetch-
ing and dispatching on the next instruction. We use ACL2’s defpun utility to
soundly introduce the JVM interpreter as a partial function [25].

A crucial feature of our JVM model is that, in addition to running bytecode
programs on concrete inputs, it can be used for symbolic execution of bytecode
programs on arbitrary inputs. A typical theorem says, in essence, “When we run
the JVM model on this bytecode program, for any input satisfying this predi-
cate, the resulting state has the following properties.” The symbolic execution
is performed using the ACL2 rewriter to repeatedly step and simplify the state,
symbolically executing one instruction at a time and building up a symbolic rep-
resentation of the current state in terms of the symbolic inputs. This technique is
standard in the ACL2 community. In this way, our formal JVM model captures
the semantics of the JVM bytecode language and allows us to reason about the
code that constitutes Android apps.

3.2 Formal Android Model

We extended the formal JVM model described above to a formal model of the
Android platform, capable of executing and reasoning about simple Android
apps. A state in the Android model contains a JVM state and several additional
Android-specific state components More precisely, our model of the Android
state contains:
– A JVM state, as discussed above. This contains the persistent data used by

the app, including its heap and static fields.
– The app’s activity stack, including the current activity on top of the stack,

and any activities that are currently paused, below the top activity.
– The set of currently allowed events (e.g., button clicks) for which the app

has registered event handlers.

– A parsed representation of the app’s manifest—see Sect. 2.
– The app’s layout information, parsed from the app’s XML layout files and

indexed by the layouts’ numeric IDs. This includes information about the
views (e.g., buttons) in the app’s GUI and their associated event handlers
(e.g., onClick listeners) and is used by our model of the setContentView()

API method when it constructs the GUI for an activity.
– A map from the addresses of View objects to their listeners, used to dispatch

control when handling events. A listener is a pair of a method (often, but
not always, the onClick() method of some class) and an object on which
to invoke the method (often this is an Activity object or an instance of an
anonymous class whose sole purpose is to define the listener). This map is
updated by our model of the setOnClickListener() API method.

– A map from symbolic string names of views, used in the layout XML, to the
corresponding numeric resource IDs. This is used to translate events from
user-meaningful form to internal form. We build this map by inspecting the
names and values of the static fields of the R$Id resource class generated
when the app is built.

– A map from resource IDs to the addresses of their corresponding View ob-
jects. This is used to determine the actual objects on which to dispatch
events (e.g., click events) and by our model of the findViewById() API
method.

– The API call history, a ghost variable that lets us reason about the API calls
that the app has (and, critically, has not) made, including a record of the
event whose handler made each API call.

– The event history, a ghost variable that lets us talk about the sequence of
events given to the app so far. If we are verifying that the app implements
an abstract state machine, we can abstract this event history and feed it
to the abstract state machine. The resulting abstract state should then be
the abstraction of the machine’s current concrete state. Proving that this
property is preserved by all event handlers in the app is the core step of our
app proof methodology described below.

– The event currently being handled, if any, so that we can record in the API
history which event was being handled when the API call was made. API
calls may be allowed for some events but not others. For example, a sound
recorder app may be allowed to start recording only when the user presses
the Record button.

Event Handling Our Android model supports running an app on a sequence
of input events, by executing their event handlers in order. This can be done on a
concrete sequence of events, to test an app. More importantly, it can be used for
proof. We prove that, for any sequence of events, running the app’s handlers for
those events preserves the app’s invariant. At this level, events are represented
in terms that are meaningful to the user. For example, (:resume) represents the
event that resumes the current activity, and (:click "myButton") represents
a click of the button whose name in the layout is myButton. In order to actually

handle these events, our model must determine the objects on which the handler
methods should be invoked, so it first converts the events into an internal form.
For lifecycle events, this adds to the event the heap address of the topmost
activity object on the activity stack, giving something like (:resume 12345).
Click events are internalized by mapping the symbolic name of the button to a
numeric resource ID and then to the actual address of the View object with that
ID, giving something like (:click 6789). Currently our model only handles
lifecycle events and click events, but adding support for other events should be
straightforward.

Once the event has been elaborated to internal form, we dispatch it to the
appropriate handler by executing the code for the handler using the underlying
JVM model. For a lifecycle event, we execute an invokevirtual instruction
for the appropriate handler method (e.g., onResume()) on the given Activity

object, which causes the app’s onResume() handler method to run. Such methods
almost always begin by calling through to the corresponding method of the
parent class, e.g., super.onResume(). This causes code from the Android API
implementation to run, e.g., android.app.Activity.onResume(). Our model
includes special modeling for these lifecycle API calls. For example, the model
for onResume() causes the onClick listeners in the resuming activity to again be
added to the set of allowed events. To handle a click event, assuming it is already
in internal form, we look up the onClick listener for the given View object and
call the indicated method. In our model, handlers execute to completion and
cannot be interrupted. This corresponds to Android’s use of an app’s main ‘UI
thread’ to execute its handlers. Future work would include adding support for
background services, which an app can use to offload expensive computation
from its UI thread.

The sequential processing of events in our model corresponds to the way in
which the Android platform internally enqueues events and delivers them to an
app’s unique UI thread. By proving properties over all possible event sequences,
we ensure that the properties hold no matter how the Android platform enqueues
and delivers the events.

Events that are not currently allowed by the app (according to the set of
allowed events in the Android state) are ignored, e.g., a click on a view that has
no registered onClick listeners, or an illegal lifecycle event, such as stopping
an activity that has not been started. Every event is also recorded in the event
history, so that the invariant can refer to the state that the app should be in,
given the events seen so far.

3.3 Formal API Model

A major challenge in reasoning about Android apps is to properly model calls to
API methods. We are following a “demand-driven” approach in which we add
models of API methods as we encounter calls to them in apps that we want
to verify. Some methods such as sendTextMessage() do not really need to be
modeled because they affect only the external world, not the state of the app
itself: we simply record them in the API history, so that we can express properties

such as “the app has not sent any text messages”, and continue with execution.
When the API call does affect the app’s state, if possible we simply execute
on our model the actual code of the API from the Android implementation.
API calls treated this way include many calls in java.lang (e.g., dealing with
Strings and Enums) and setters and getters such as Activity.setTitle() and
View.isClickable(). There are situations where simply executing the API call
does not work, either because the code is unavailable (e.g., native methods)
or too complicated, or because it affects parts of the Android state that we
model. To model such methods, we define executable ACL2 functions and include
them in our Android model. Methods that are modeled in this way include
setOnClickListener(), findViewById(), setContentView(), and the activity
lifecycle event handlers onStart(), onResume(), etc.

Our model of running an app begins by building an initial Android state for
the app (where many components, such as the API history, are initially empty)
and then calling the app’s onCreate() method. Further events are then handled
in order.

4 App Verification

Our platform model provides a formal semantics for non-trivial Android apps.
This allows us to formally prove that apps satisfy their functional specifications,
which implies the absence of the kind of functional malware discussed in Sect. 1.

Our methodology is based on formulating an invariant for the app: a pred-
icate over states of the Android model that is preserved as the app runs. The
invariant characterizes correct behavior, often using an abstraction to a high-level
state machine, and also makes many Android-specific assertions, such as speci-
fying the set of currently active event listeners. Each event is proved to preserve
the invariant, using the ACL2 rewriter to perform symbolic execution, as de-
scribed below. Failed proofs may require the invariant to be strengthened. Once
an inductively-strong invariant is obtained, an induction over event sequences
establishes that the invariant holds for all possible event sequences. This section
discusses the app verification process in more detail, using the running example
of verifying a calculator app.

4.1 Calculator App

The Red Team of the DARPA APAC Program [9] developed several apps, in-
cluding a calculator that applies the four arithmetic operations to floating-point
numbers. Since our JVM bytecode model does not include floating-point num-
bers yet, we modified the app to operate on integers instead, using Java’s normal
modular arithmetic. We also slightly simplified the GUI of the app to not use
features that are currently not covered by our model. The malware in the app
replaces the running result with a random number under certain conditions de-
scribed later, but we simplified it to return a fixed result of 88888888 instead,
because we do not yet model random numbers. These simplifications do not
fundamentally change the structure of the app.

4.2 Representation

Our Android model includes a parser, written in ACL2, that turns an app’s JVM
bytecode class files and XML files into an S-expression-based ACL2 representa-
tion usable by our platform model.

A parsed app, with the platform underneath, forms a state machine. The ini-
tial state S0 is defined by our model of app initialization discussed above. Each
transition is triggered by a platform-initiated event (e.g., pause app, resume app)
or a user-initiated event (e.g., click a button). The deterministic transition func-
tion T maps an input event E and a state S to the next state T (E ,S); it is lifted
to sequences of events by defining T ∗((E1, . . . ,En),S) = T (En, . . .T (E1,S) . . .),
and T ∗(ε,S) = S , where ε is the empty sequence. Our platform model currently
supports a single app (state machine) at a time, but can be extended to support
multiple apps.

For the calculator app, the state machine has an input event for each calcula-
tor button (0 1 2 3 4 5 6 7 8 9 + - * / = C) and each app lifecycle event.
The state includes a TextView GUI object whose content is the string shown on
the calculator display. The main correctness theorem for the app says that the
contents of the display are always correct, given the sequence of input events
supplied to the app so far. We defined an output function O that maps a state
S to this display string O(S). Different output functions could be defined for
different apps, each extracting from the state the app-specific observables of
interest.

4.3 Specification

The execution of the parsed app on the platform model corresponds to a low-level
state machine whose states are states of our Android model, as described above,
and whose transitions are expressed in terms of the execution of JVM bytecode
and API calls. Often a functional specification for an app is naturally expressed
as a higher-level state machine, whose states and transitions are defined in user-
oriented terms rather than code-oriented terms. The correctness of the code
with respect to the specification can then be expressed as a simulation [28] of
the high-level machine by the low-level machine.

A state machine specification for the calculator app is sketched in Fig. 1.
Each state has a name (in bold, e.g., value) and one or more state variables (in
italics, e.g., val); the underlined state variable is the one shown on the calcula-
tor display. In each state, val is the latest result, which is 0 when the calculator
starts or when C (clear) is entered. In value-op and value-op-value, op is
the latest operator entered. In value-op-value, entering = or an operator op’

combines val2 with val by applying op, completing the pending operation and
replacing the latest result; if op’ was entered, it becomes the latest operator. Fig-
ure 1 does not show the expressions assigned to state variables when transitions
are taken, e.g., a digit transition from value-op-value to value-op-value

assigns 10 × val2 + digit to val2. Exploiting that 0 is identity for addition,

entering a digit in value sets val to 0, op to +, and val2 to digit, as if there
were a pending 0 + . . . operation.

We formalized this state machine specification in ACL2. The formalization
includes a constant s0 for the initial state, a deterministic transition function t
that maps an input event e and a state s to the next state t(e, s) (and is lifted
to t∗ over sequences of events, analogous to T ∗ above), and an output function
o that maps a state s to the content of the calculator display o(s).

Fig. 1. A state machine specification for the calculator app

4.4 Invariants and Proofs

Often the simulation relation between a low-level and a high-level state machine
is defined as an abstraction function [18] from the low-level inputs and states to
the high-level inputs and states. For the calculator app, the abstraction function
α maps each calculator button press event to the corresponding input in Fig. 1
and each app lifecycle event to no input in Fig. 1; it also maps each app/platform
state to a state in Fig. 1.

In our Android platform model, the app/platform state S includes the his-
tory of input events. Thus, given an abstraction function to a high-level state
machine specification, the correctness of the app with respect to the specifi-
cation can be expressed as a predicate over the low-level app/platform states.
Intuitively, the app’s invariant says that the app is in fact in the state that it
should be in, given the sequence of inputs seen so far. If H (S) is the history of
input events in S , the predicate is Ω(S) ≡ [O(S) = o(t∗(α∗(H (S)), s0))], i.e.,
the observable outputs that result from executing the app’s code on the inputs
H (S), which take the initial state S0 to S , are the same that result from running
the high-level state machine on the corresponding abstract inputs α∗(H (S)),
where α∗ is the homomorphic lifting of α from events to event sequences. If

Ω includes all the states S reachable from S0, i.e., if Ω(T ∗((E1, . . . ,En),S0))
holds for every event sequence E1, . . . ,En, then the app’s code is observation-
ally equivalent to the specification, i.e., it yields the same outputs for the same
inputs. For the calculator app, the code is observationally equivalent to Fig. 1.
Ω(T ∗((E1, . . . ,En),S0)) is provable by induction if Ω is an invariant, i.e., if Ω
holds on the initial state (base case: Ω(S0)) and is preserved by each transition
(induction step: Ω(S) =⇒ Ω(T (E ,S))). Since Ω alone does not provide a suf-
ficiently strong induction hypothesis, the following invariants are defined, and
proved together:

1. A stronger correctness predicate that involves not only outputs (the calcu-
lator display) but also states: Σ(S) ≡ [α(S) = t∗(α∗(H (S)), s0) ∧ O(S) =
o(α(S))], from which the weaker Ω(S) is easily proved. While α, t , and S0
are specific to the app under verification, Σ has the same form for every app
whose specification is a state machine with an abstraction function, e.g., the
calculator app.

2. Code-level predicates on the app’s state, e.g., that a Java int field is never
negative or is always within a certain range. Formulating these predicates
requires an understanding of the app’s code, but failed proof attempts in
ACL2 often suggest them.

3. Platform-level structural predicates about the Java heap containing the ob-
jects that form the app under verification, the Android GUI objects being
consistent with the XML files, Java fields having values of the right types,
and so on. These constraints are largely boilerplate and we believe that they
could be automatically generated at the same time as the app is parsed into
its ACL2 representation. For the calculator, we manually defined several
predicates of this kind, because their automatic generation is not imple-
mented yet.

Once a sufficiently strong invariant has been defined, proving its establish-
ment in the initial state and preservation by each transition can be carried out
by symbolic execution using the ACL2 rewriter. To prove preservation, we start
with an arbitrary Android state assumed to satisfy the invariant. We then show
that the execution of an arbitrary event results in a state that still satisfies the
invariant. The proof naturally splits into cases for each possible allowed event
(disallowed events have no effect on the state), and we usually prove each event
separately. Some application-specific rewrite rules are often needed (e.g., rules
about bit-vector math for the calculator app), and the proofs also use our grow-
ing library of rewrite rules about the Android model itself. Otherwise, proofs
for simple apps are largely automatic; for the calculator app, the proof corre-
sponding to each button click event is a single line of ACL2 code that invokes
our tactic called def-event-proof. This tactic unfolds the application of the
invariant to the initial state (to expose necessary assumptions for symbolic ex-
ecution), performs the symbolic execution, often resulting in several cases, and
finally, in each case, unfolds the invariant applied to the final state and simplifies
the result. In successful proofs, everything simplifies to ‘true’.

A key intermediate formula that arises in the proof of the preservation of
the invariant is α(T (E ,S)) = t(α(E), α(S)), i.e., each low-level transition has a
corresponding high-level transition—a typical commuting diagram in simulation.
If an app’s code has no loops (as is the case for the calculator app), ACL2 can
automatically prove the invariant’s establishment and preservation, provided
that an appropriate set of rewrite rules is enabled. The absence of loops is not
so uncommon in simple Android apps, where the platform already provides a
GUI loop that reads inputs and invokes app code to process them. Verifying
apps whose event handlers contain loops is future work and will likely involve
formulating and proving appropriate loop invariants; Σ and the other invariants
discussed above apply to the platform GUI loop.

We found it convenient to verify the calculator app in two stages. We defined
an intermediate state machine whose structure closely resembles the Java code,
but without involving any Java or Android concepts. Its states are records whose
components correspond to the app’s Java fields, and its transitions are defined
in terms of record component updates that correspond to the Java code. This in-
termediate state machine is an abstraction of the code in the ACL2 logic, which
in particular does not involve the platform-level structural invariants discussed
above. It may be possible to obtain this intermediate machine automatically,
using the techniques in [38]. We prove that the app’s code simulates the in-
termediate machine and that the intermediate machine simulates the high-level
machine. The two theorems are composed to obtain a proof of correctness of the
calculator app with respect to Fig. 1.

4.5 Malware Discovery

The calculator app keeps a count of the operations performed since the last
= was entered (or since the app started), e.g., after entering ... = 1 + 2 *

3 the count is 2. The malware (in our simplified version of) the app replaces
the running result with 88888888 when the count reaches 3. This is functional
malware, which does not involve API calls.

We attempted to prove that the calculator app with malware satisfies the
specification in Fig. 1. As it should, the verification fails. The output from the
failed ACL2 proof exposes the malware: a proof subgoal that cannot proved is
that when the operation count is 3, the correct running result is 88888888. In
general, failed proof subgoals can expose the conditions that trigger an app’s
malware and the malicious computations that violate the functional specifica-
tion.

This is a very simple example of functional malware, which is also fairly easy
to detect by the user. However, it is suggestive of more serious, and hard to
detect, kinds of functional malware. An example is a military navigation app
whose intentional miscalculations send a squad off-course to a dangerous place.

4.6 Functional Bugs

After manually removing the malware from the calculator app, we found two
functional bugs in the app that prevented a successful proof. The bugs are also
present in the original, unsimplified version.

The operation count is stored in a Java int, which wraps around and becomes
negative if 231 operations are entered without entering =. Since the condition
under which the display is updated includes that the count is larger than 1, the
display stops updating as the count becomes negative (until it wraps around
again to become positive). Since it is impractical to enter 231 operations, this
bug has arguably only theoretical significance (some may argue that it is in fact
not a bug). Nonetheless, we fixed this bug in the app code.

The other bug may occur in practice: under certain easily achievable condi-
tions, the display is not updated to show the running result. For example, start-
ing the calculator and entering - 1 2 3 4 5 + shows 12345 instead of −12345
on the display (the + should show the partial result 0 − 12345, where 0 is the
initial display). The details of this bug are unimportant, but are caused by what
we regard as an unnecessarily complicated implementation of the calculator: this
bug eluded our manual code inspection. While this bug was not malware planted
by the Red Team, and is not earth-shattering in its significance, it may be rep-
resentative of functional malware where a cleverly crafted, non-straightforward
implementation may sometimes produce an incorrect result under conditions
that cannot be easily detected by manual inspection. After fixing this last bug,
we proved the correctness of the app with respect to Fig. 1.

5 Related Work

In [26], JML [20] is used to specify contracts for API and application methods,
and the KeY theorem prover [21], which is based on dynamic logic [17], is used
to verify that the Java code of those methods satisfies the contracts. Our formal
model of the Android API is more comprehensive, e.g., we model callbacks,
which are not modeled in [26]. The app specifications in [26] consist of contracts
for various app methods, which are implicitly informally “composed” into an
overarching correctness argument for the apps. In contrast, our app verification
is carried out with respect to an explicit overarching app specification expressed
in user-oriented terms (not code-oriented terms like contracts). The translator
from Java/JML to KeY in [26] embodies the dynamic logic semantics of Java
and JML and is thus a critical component of that approach; in our approach, all
the semantics is explicated in ACL2.

In [19], a pencil-and-paper concrete and symbolic operational semantics for
Dalvik and for a few Android API methods is defined, and used as the founda-
tion to implement a symbolic executor of Android apps. The symbolic executor
is connected to an SMT solver. The tool is shown to infer the conditions un-
der which an example app performs certain privileged actions. Our approach
also uses symbolic execution, but our semantics is mechanized inside a theo-
rem prover, and we use ACL2’s rewriter for symbolic execution. It is not clear

whether their approach can verify the full functional correctness of apps, due to
the use of an SMT solver rather than a more general (but likely less automatic)
theorem prover such as ACL2.

In [33], a pencil-and-paper operational semantics for a few Dalvik instruc-
tions and a few Android API methods is defined, and a progress property is
proved. The paper mentions work in progress on a symbolic executor, but no
app verification results are reported. Our Android model is mechanized inside a
theorem prover and covers more features of the Android platform.

Other formal models of the Android platform [1,5,13,36] are more abstract
than ours, focused on security aspects and properties. These formal models are
in a sense complementary to ours: it should be possible to formalize abstraction
mappings from our model to those models, ensuring that the security properties
of the more abstract models apply to the more concrete model.

Static analysis of app code to help detect malware (e.g., [7,14,16]) is comple-
mentary to our approach. It is more automated (e.g., no functional specification
is needed) but less precise; it cannot prove deep properties like functional cor-
rectness.

In [6], post-conditions of API method calls are calculated from pre-conditions
via an algorithm that processes propositional formulas. It may be possible to use
our API model and the ACL2 theorem prover for that purpose, which may lead
to higher precision in the malware detection tool described in that paper.

Proposals to improve the Android security mechanisms (e.g., [10,30,37]) or to
add on-device virtualization (e.g., [22]) require extensions to the platform, which
the developers of all the fragmented versions of Android would have to agree on.
If implemented, these extensions may prevent certain classes of malware, but
not the kind of functional malware that our approach addresses.

Collecting data at run time and analyzing it to detect malware patterns
(e.g., [35]) is likely to be more automatic than our approach but may allow
malware to execute before it is detected. It also may raise privacy concerns if
the analysis is performed off-device.

Dynamic analysis in off-device sandboxes prior to deployment (e.g., [3]) has
similar coverage limitations as conventional testing. In addition, some malware
may detect when it is being run in an emulator and behave differently than when
it is run on a device.

Automatically transforming app code to enforce security policies (e.g., [41])
may affect performance and potentially functionality and may not be agreeable
to app developers. This approach may thwart certain classes of malware, but
not the kind of functional malware that our approach addresses.

6 Takeaways

App Verification Methodology Many aspects of the app verification work
described in Sect. 4 are not specific to the calculator app. We expect that the
same proof methodology can apply to a large class of apps:

– Automatically parse the app’s code and XML files into a deeply embedded
representation inside the theorem prover, obtaining a low-level state machine
based on the formal semantics of the JVM and of the Android platform, as
in Sect. 4.2.

– Formalize the app’s specification as a high-level state machine, expressed in
user-oriented terms (not in internal Android-oriented terms), as in Sect. 4.3.

– Define an abstraction function from the low-level state machine to the high-
level state machine, as in Sect. 4.4.

– Formulate a sufficiently strong state invariant on the low-level state machine
(like Σ in Sect. 4.4) that implies the desired relation between the high-
level state machine and the low-level state machine (like Ω in Sect. 4.4).
The invariant includes not only simulation conditions, but also code-level
invariants and platform-level invariants, as explained in Sect. 4.4.

– Use symbolic execution to prove that the low-level state machine’s invariant
is established by initialization and preserved by each event.

– If convenient, formalize intermediate state machines (between the low-level
one and the high-level one), staging the abstraction functions accordingly.
Prove simulations of each machine by the one immediately below it, and
finally compose the simulation theorems into one overarching simulation of
the high-level state machine by the low-level state machine. As mentioned
in Sect. 4.4, for the calculator app we used an intermediate state machine.

State Invariants vs. Trace Invariants By keeping suitable history (e.g.,
the sequence of events processed so far) in our model of the Android state, we
are able to express properties of interest (such as Σ and Ω in Sect. 4.4) as
state invariants instead of more complex trace invariants, which involve multiple
successive states of execution.

Iterative Invariant Strengthening It may be difficult to formulate a suffi-
ciently strong invariant in one attempt. The first attempt typically results in an
invariant that is too weak. However, the failed proof output from ACL2 often
readily suggests how to strengthen the invariant. The failed proof output consists
of one or more proof subgoals, each consisting of a number of hypotheses and a
conclusion. When these hypotheses express some impossible condition (e.g., that
an integer variable is outside it possible range of values), the invariant must be
strengthened to exclude that impossible condition (e.g., the range of the variable
must be part of the invariant). Several iterations may be needed before reaching
a sufficiently strong invariant.

Bugs Uncovered by Failed Proof Attempts Bugs in the app (i.e., the fact
that the app does not satisfy the specification) are often exposed by failed proof
attempts. In some cases, the hypotheses of a failed proof subgoal, when they do
not correspond to an impossible situation (i.e., the failed proof is not due to the
invariant being too weak), reveal corner cases in which the invariant is broken.

This may indicate either a bug in the app or perhaps a need to reformulate the
invariant.

An ACL2 Trick There are cases in which failed ACL2 proof subgoals do not
explicitly expose the problem, because the ACL2 rewriter rewrites an untrue
conclusion to ‘false’ and replaces it with the negation of one hypothesis—the
untrue conclusion has disappeared from the proof subgoal. This happens, for
instance, when attempting to prove that some term x equals a certain constant c,
when instead the term equals some other constant c′: The goal x = c is rewritten
to ‘false’ and it disappears. To debug this, we can introduce an uninterpreted
nullary function f and attempt to prove x = f(). The new proof attempt will of
course fail, but the rewriter will rewrite x to the correct constant c′, displaying
the failed proof subgoal c′ = f(). Then we can revise our original proof attempt
to prove x = c′ instead.

Android Platform Modeling The Android documentation informally de-
scribes the interaction of apps with the Android platform, without explicitly
describing most of the internal state of the platform, aside from app lifecycle
states and similar aspects. Formalizing the Android platform involves creating
an explicit model of the internal Android state. In order to do that, we tried
to imagine how the implementation could support the behaviors described in
the documentation (e.g., maintain a mapping from resource IDs to references to
View objects), and defined our state (and transition) model accordingly.

Android API Modeling The large size of the Android API makes its for-
mal modeling challenging. We believe that the best approach to address this
challenge is to model the API in a demand-driven fashion, i.e., formalize the
API classes and methods as they are needed to verify apps. API methods writ-
ten entirely in Java need not be explicitly modeled; instead, their code can be
symbolically executed along with the app code. However, it may be beneficial
to explicitly model API methods that have complex code that may complicate
symbolic execution. It should be also noted that, as suggested in [6], typical
apps use a relatively small “popular” subset of the Android API: thus, it is not
necessary to model most of the Android API in order to verify interesting apps.

7 Conclusion and Future Work

We have described our ongoing work on formally modeling the Android platform
and verifying Android apps. Compared to existing research, our Android model
has the highest coverage of Android features, and our Android app verification
goes deeper to include proofs of full functional correctness. A major motivation
for this work is to ensure the absence of functional malware in apps, which other
detection approaches to do not address. Our approach can be used to prove deep
properties of apps with high assurance.

The proof methodology described in this paper, based on state machines
and simulations, can verify a large class of app properties. But the ACL2 logic
and our Android model can express other kinds of assertions over the deeply
embedded apps. Examples are program-level properties such as the fact that
certain API calls are made only under certain conditions and with certain data,
which enables much finer distinctions than coarse Android permissions such as
INTERNET. Other examples are hyperproperties (i.e., predicates over multiple
executions) [8], including security policies like non-interference [15], which could
express the non-leakage of private user data to network sockets, text messages,
and other destinations. To verify these kind of properties, extensions to our proof
methodology may be needed, e.g., invariants over multiple states from different
execution traces.

We are extending our formal model to cover more Android features and are
tackling the verification of larger and more complex apps. We would also like to
extend our approach to support reasoning about multiple apps, including their
communication via Android’s ’intent’ mechanism.

Another direction for future research is the modeling and proof of non-
functional aspects of apps, e.g., to reason about resource usage or covert chan-
nels.

Acknowledgments

This material is based on research sponsored by DARPA under agreement num-
ber FA8750-12-X-0110. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon.

We would also like to thank Garrin Kimmell, James McDonald, and Allen
Goldberg for their helpful reviews of this paper.

References

1. Alessandro Armando, Gabriele Costa, and Alessio Merlo. Formal modeling and
reasoning about the Android security framework. In Proc. 7th International Sym-
posium on Trustworthy Global Computing (TGC), volume 8191 of Lecture Notes
in Computer Science, 2013.

2. Alessandro Armando, Alessio Merlo, Mauro Migliardi, and Luca Verderame. Would
you mind forking this process? A denial of service attack on Android (and some
countermeasures). In Dimitris Gritzalis, Steven Furnell, and Marianthi Theohari-
dou, editors, Information Security and Privacy Research, volume 376 of IFIP Ad-
vances in Information and Communication Technology. Springer, 2012.

3. Thomas Bläsing, Leonid Batyuk, Aubrey-Derrick Schmidt, Seyit Ahmet Camtepe,
and Sahin Albayrak. An Android application sandbox system for suspicious soft-
ware detection. In Proc. 5th International Conference on Malicious and Unwanted
Software (Malware), 2010.

4. Robert S. Boyer and J Strother Moore. A Computational Logic. Academic Press,
1979.

5. Avik Chaudhuri. Language-based security on Android. In Proc. ACM SIGPLAN
Fourth Workshop on Programming Languages and Analysis for Security (PLAS),
2009.

6. Kevin Zhijie Chen, Noah Johnson, Vijay D’Silva, Shuaifu Dai, Kyle MacNamara,
Tom Magrino, Edward Wu, Martin Rinard, and Dawn Song. Contextual policy
enforcement in Android applications with permission event graphs. In Proc. 20th
Annual Network and Distributed System Security Symposium (NDSS), 2013.

7. Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing
inter-application communication in Android. In Proc. 9th International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2011.

8. Michael Clarkson and Fred Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010.

9. DARPA Information Innovation Office. Automated program analysis
for cybersecurity (APAC) program. http://www.darpa.mil/program/

automated-program-analysis-for-cybersecurity.
10. William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,

Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taint-
Droid: An information-flow tracking system for realtime privacy monitoring on
smartphones. ACM Transactions on Computer Systems (TOCS), 32(2), 2014.

11. William Enck, Machigar Ongtang, and Patrick McDaniel. Understanding Android
security. IEEE Security & Privacy Magazine, 7(1), 2009.

12. Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wag-
ner. A survey of mobile malware in the wild. In Proc. ACM CCS Workshop on
Security and Privacy in Smartphones and Mobile Devices, 2011.

13. Elli Fragkaki, Lujo Bauer, Limin Jia, and David Swasey. Modeling and enhancing
Android’s permission system. In Proc. 17th European Symposium on Research in
Computer Security (ESORICS), volume 7459, 2012.

14. Adam Fuchs, Avik Chaudhuri, and Jeffrey Foster. SCanDroid: Automated security
certication of Android applications. Technical Report CS-TR-4991, Department
of Computer Science, University of Maryland, College Park, 2009.

15. Joseph Goguen and José Meseguer. Security policies and security models. In Proc.
IEEE Symposium on Security and Privacy, pages 11–20, 1982.

16. Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen Nguyen,
and Martin Rinard. Information-flow analysis of Android applications in Droid-
Safe. In Proc. 21st Annual Network and Distributed System Security Symposium
(NDSS), 2014.

17. David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, 2000.
18. C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,

1(4):271–281, 1972.
19. Jinseong Jeon, Kristopher Micinski, and Jeffrey Foster. SymDroid: Symbolic execu-

tion for Dalvik bytecode. Technical Report CS-TR-5022, University of Maryland,
College Park, 2012.

20. The Java Modeling Language (JML). http://jmlspecs.org.
21. The KeY project. http://www.key-project.org.
22. Matthias Lange, Steffen Liebergeld, Adam Lackorzynski, Alexander Warg, and

Michael Peter. L4Android: A generic operating system framework for secure smart-
phones. In Proc. 1st ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices (SPSM), 2011.

23. Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification – Java SE 8 Edition. March 2014. http://docs.oracle.

com/javase/specs/jvms/se8/html.

http://www.darpa.mil/program/automated-program-analysis-for-cybersecurity
http://www.darpa.mil/program/automated-program-analysis-for-cybersecurity
http://jmlspecs.org
http://www.key-project.org
http://docs.oracle.com/javase/specs/jvms/se8/html
http://docs.oracle.com/javase/specs/jvms/se8/html

24. Anthony Lineberry, David Luke Richardson, and Tim Wyatt. These aren’t the
permissions you’re looking for. DEF CON 18, 2010.

25. Panagiotis Manolios and J Strother Moore. Partial functions in acl2. Journal of
Automated Reasoning, 31:2003.

26. Masoumeh Al. Haghighi Mobarhan. Formal specification of selected Android core
applications and library functions. Master’s thesis, Chalmers University of Tech-
nology, University of Gothenburg, 2011.

27. John McCarthy. A formal description of a subset of Algol. Technical Report
Stanford Artificial Intelligence Project Memo No. 24, Stanford University, 1964.

28. Robin Milner. An algebraic definition of simulation between programs. Technical
Report CS-205, Stanford University, 1971.

29. J Moore. Proving Theorems about Java and the JVM with ACL2. http://www.

cs.utexas.edu/users/moore/publications/marktoberdorf-02/index.html.
30. Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending Android

permission model and enforcement with user-defined runtime constraints. In Proc.
5th ACM Symposium on Information, Computer and Communications Security
(ASIACCS), 2010.

31. Open Handset Alliance. Android Development Resources. http://developer.

android.com.
32. Open Handset Alliance. Android Open Source Project. http://source.android.

com.
33. Etienne Payet and Fausto Spoto. An operational semantics for Android activities.

In Proc. ACM SIGPLAN Workshop on Partial Evaluation and Program Manipu-
lation (PEPM), 2014.

34. Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, Shlomi Dolev, and Chanan
Glezer. Google Android: A comprehensive security assessment. IEEE Security &
Privacy Magazine, 8(2), 2010.

35. Ashkan Sharifi Shamili, Christian Bauckhage, and Tansu Alpcan. Malware detec-
tion on mobile devices using distributed machine learning. In Proc. 20th Interna-
tional Conference on Pattern Recognition (ICPR), 2011.

36. Wook Shin, Shinsaku Kiyomoto, Kazuhide Fukushima, and Toshiaki Tanaka. A for-
mal model to analyze the permission authorization and enforcement in the Android
framework. In Proc. IEEE Second International Conference on Social Computing
(SOCIALCOM), 2010.

37. Stephen Smalley and Robert Craig. Security enhanced (SE) Android: Bringing
flexible MAC to Android. In Proc. 20th Annual Network and Distributed System
Security Symposium (NDSS), 2013.

38. Eric W. Smith. Axe: An Automated Formal Equivalence Checking Tool for Pro-
grams. Ph.D. dissertation, Stanford University, 2011.

39. University of Texas at Austin. The ACL2 theorem prover. http://www.cs.utexas.
edu/~moore/acl2.

40. Timothy Vidas, Daniel Votipka, and Nicolas Christin. All your droid are belong
to us: A survey of current Android attacks. In Proc. 5th USENIX Workshop on
Offensive Technologies (WOOT), 2011.

41. Rubin Xu, Hassen Säıdi, and Ross Anderson. Aurasium: Practical policy enforce-
ment for Android applications. In Proc. USENIX Security Symposium, 2012.

http://www.cs.utexas.edu/users/moore/publications/marktoberdorf-02/index.html
http://www.cs.utexas.edu/users/moore/publications/marktoberdorf-02/index.html
http://developer.android.com
http://developer.android.com
http://source.android.com
http://source.android.com
http://www.cs.utexas.edu/~moore/acl2
http://www.cs.utexas.edu/~moore/acl2

	Android Platform Modeling and Android App Verification in the ACL2 Theorem Prover

