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All (ACL2 In Java) is a deep embedding in Java of an executable, side-effect-free, non-stobj-
accessing subset of the ACL2 language without guards. ATJ (ACL2 To Java) is a simple Java code
generator that turns ACL2 functions into AIJ representations that are evaluated by the AlJ interpreter.
AlJ and AT]J enable possibly verified ACL2 code to run as, and interoperate with, Java code, without
much of the ACL2 framework or any of the Lisp runtime. The current speed of the resulting Java
code may be adequate to some applications.

1 Motivation and Contributions

A benefit of writing code in a theorem prover is the ability to prove properties about it, such as the satis-
faction of requirements specifications. A facility to generate code in one or more programming languages
from an executable subset of the prover’s logical language enables the possibly verified code to run as,
and interoperate with, code written in those programming languages. Assuming the correctness of code
generation (whose verification is a separable problem, akin to compilation verification) the properties
proved about the original code carry over to the generated code.

The ACL2 theorem provers’s tight integration with the underlying Lisp platform enables the exe-
cutable subset of the ACL2 logical language to run readily and efficiently as Lisp, without the need for
explicit code generation facilities. Nonetheless, some situations may call for running ACL?2 code in other
programming languages: specifically, when the ACL2 code must interoperate with external code in those
programming languages in a more integrated and efficient way than afforded by inter-language commu-
nication via foreign function interfaces [4, [9], or by inter-process communication with the ACL2/Lisp
runtime via mechanisms like the ACL2 Bridge [2, :doc bridgef]. Using Lisp implementations written
in the target programming languages [1/] involves not only porting ACL2 to them, but also including
much more runtime code than necessary for the target applications. Compilers from Lisp to the target
programming languages may need changes or wrappers, because executable ACL?2 is not quite a subset
of Lisp; furthermore, the ability to compile non-ACL2 Lisp code is an unnecessary complication as far
as ACL?2 compilation is concerned, making potential verification harder.

The work described in this paper contributes to the goal of running ACL2 code in other programming
languages in the integrated manner described above:

* ATJ (ACL2 To Java) is a Java code generator for ACL2. AT]J translates executable, side-effect-
free, non-stobj-accessing ACL2 functions, without their guards, into Java. It does so in a simple
way, by turning the functions into deeply embedded Java representations that are executed by an
ACL2 evaluator written in Java.

e All (ACL2 In Java) is a deep embedding in Java of an executable, side-effect-free, non-stobj-
accessing subset of the ACL2 language without guards. AlJ consists of (i) a Java representation
of the ACL2 values, terms, and environment, (ii) a Java implementation of the ACL2 primitive
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functions, and (iii) an ACL2 evaluator written in Java. AlJ executes the deeply embedded Java
representations of ACL2 functions generated by ATJ. AlJ is of independent interest and can be
used without AT]J.
The ACL?2 language subset supported by ATJ and AlJ includes all the values, all the primitive functions,
and many functions with raw Lisp code—see Section 2] for details on these two kinds of functions.

The initial implementation of AlJ favored assurance over efficiency: it was quite simple, to reduce the
chance of errors and facilitate its potential verification, but it was also quite slow. The careful introduction
of a few optimizations, which do not significantly complicate the code but provide large speed-ups,
makes the speed of the current implementation arguably adequate for some applications; see Section [3]
Furthermore, the code is amenable to additional planned optimizations; see Section [6]

2 Background: The Evaluation Semantics of ACL2

ACL2 has a precisely defined logical semantics [11]], expressed in terms of syntax, axioms, and inference
rules, similarly to logic textbooks and other theorem provers. This logical semantics applies to logic-
mode functions, not program-mode functions. Guards are not part of the logic, but engender proof
obligations in the logic when guard verification is attempted.

ACL2 also has a documented evaluation semantics [2, |: doc evaluation], which could be formal-
ized in terms of syntax, values, states, steps, errors, etc., as is customary for programming languages.
This evaluation semantics applies to both logic-mode and program-mode functions. Guards affect the
evaluation semantics, based on guard-checking settings. Even non-executable functions (e.g. introduced
via defchoose or defun-nx) degenerately have an evaluation semantics, because they do yield error
results when called; however, the following discussion focuses on executable functions.

Most logic-mode functions have definitions that specify both their logical and their evaluation se-
mantics: for the former, the definitions are logically conservative axioms; for the latter, the definitions
provide “instructions” for evaluating calls of the function. For a defined logic-mode function, the rela-
tionship between the two semantics is that, roughly speaking, evaluating a call of the function yields, in
a finite number of steps, the unique result value that, with the argument values, satisfies the function’s
defining axiom—the actual relationship is slightly more complicated, as it may involve guard checking.

The primitive functions [2,|:doc primitive] are in logic mode and have no definitions; they are all
built-in. Examples are equal, if, cons, car, and binary-+. Their logical semantics is specified by
axioms of the ACL2 logic. Their evaluation semantics is specified by raw Lisp code (under the hood).
The relationship between the two semantics is as in the above paragraph, with the slight complication
that pkg-witness and pkg-imports yield error results when called on unknown package names. The
evaluation of calls of if is non-strict, as is customary.

Most program-mode functions have definitions that specify their evaluation semantics, similarly to
the non-primitive logic-mode functions discussed above. Their definitions specify no logical semantics.

The logic-mode functions listed in the global variable logic-fns-with-raw-code have a logical
semantics specified by their ACL2 definitions, but an evaluation semantics specified by raw Lisp code.
(They are disjoint from the primitive functions, which have no definitions.) For some of these functions,
e.g. len, the raw Lisp code just makes them run faster but is otherwise functionally equivalent to the
ACL2 definitions. Others have side effects, carried out by their raw Lisp code but not reflected in their
ACL2 definitions. For example, hard-error prints a message on the screen and immediately terminates
execution, unwinding the call stack. As another example, fmt-to-comment-window prints a message on
the screen, returning nil and continuing execution. But the ACL2 definitions of both of these example
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functions just return nil.

The program-mode functions listed in the global variable program-fns-with-raw-code have an
evaluation semantics specified by raw Lisp code. Their ACL2 definitions appear to have no actual use.

Since stobjs [2, :doc stobj| are destructively updated, functions that manipulate stobjs may have
side effects as well—namely, the destructive updates. Because of single-threadedness, these side effects
are invisible in the end-to-end input/output evaluation of these functions; however, they may be visible
in some formulations of the evaluation semantics, such as ones that comprehend interrupts, for which
updating a record field in place involves different steps than constructing a new record value with a
changed field. The built-in state stobj [2, |:doc state] is “linked” to external entities, e.g. the file
system of the underlying machine. Thus, functions that manipulate state may have side effects on these
external entities. For example, princ$ (a member of logic-fns-with-raw-code) writes to the stream
associated with the output channel argument, and affects the file system.

The fact that the side effects of the evaluation semantics are not reflected in the logical semantics
is a design choice that makes the language more practical for programming while retaining the ability
to prove theorems. But when generating Java or other code, these side effects should be taken into
consideration: for instance, turning hard-error and fmt-to-comment-window into Java code that
returns (a representation of) nil, would be incorrect or at least undesired. As an aside, a similar issue
applies to the use of APT transformations [3]: for instance, using the simplify transformation [6] to
turn calls of hard-error into nil, while logically correct and within simplify’s stipulations, may be
undesired or unexpected.

3 AlJ: The Deep Embedding

AlJ is a Java package whose public classes and methods provide an API to (i) build and unbuild represen-
tations of ACL2 Valuesm (i) build representations of ACL2 terms and of an ACL2 environment, and (iii)
evaluate calls of ACL2 primitive and defined functions, without checking guards. By construction, the
ACL2 code represented and evaluated by AlJ is executable, has no side effects, does not access stobjs,
and has no guards.

AlJ consists of a few thousand lines of Java code (including blank and comment lines), thoroughly
documented with Javadoc comments. The implementation takes advantage of object-oriented features
like encapsulation, polymorphism, and dynamic dispatch.

The Java classes that form AIJ are shown in the simplified UML class diagram in Figure (1| and
described in the following subsections. Each class is depicted as a box containing its nameE] Abstract
classes have italicized names. Public classes have names preceded by +, while package-private classes
have names preceded by ~. Inheritance (‘is a’) relationships are indicated by lines with hollow triangular
tips. Composition (‘part of”) relationships are indicated by lines with solid rhomboidal tips, annotated
with the names of the containing class instances’ fields that store the contained class instances, and with
the multiplicity of the contained instances for each containing instance (‘0..*’ means ‘zero or more’).

I'When talking about AlJ, this paper calls ‘build’ and ‘unbuild’ what is often called ‘construct’ and ‘destruct’ in functional
programming, because in object-oriented programming the latter terms may imply object allocation and deallocation, which is
not necessarily what the AIJ API does.

2In AIJ’s actual code, each class name is prefixed with ‘Ac12’ (e.g. Ac12Value), so that external code can reference these
classes unambiguously without AlJ’s package name edu.kestrel.acl2.aij. This paper omits the prefix for brevity, and
uses fully qualified names for the Java standard classes to avoid ambiguities, e.g. java.lang.String is the Java standard
string class, as distinguished from String in FigureE'}
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Figure 1: Simplified UML class diagram for AlJ.

The dashed boxes are just replicas to avoid clutter. This UML class diagram is simplified because the
class boxes do not contain fields and methods.

3.1 Values

The set of values of the ACL2 evaluation semantics is the union of the sets depicted in Figure 2} (i)
integers, recognized by integerp; (ii) ratios, i.e. rationals that are not integers, with no built-in rec-
ognizer;ﬂ (ii1) complex rationals, recognized by complex-rationalp; (iv) characters, recognized by
characterp; (v) strings, recognized by stringp; (vi) symbols, recognized by symbolp; and (vii) cons
pairs, recognized by consp. Integers and ratios form the rationals, recognized by rationalp. Ratio-
nals and complex rationals form the Gaussian rationals, which are all the numbers in ACL2, recognized
by ale—numberpﬂ The logical semantics of ACL2 allows additional values called ‘bad atoms’, and
consequently cons pairs that may contain them directly or indirectly; however, such values cannot be
constructed in evaluation.

AlIJ represents ACL2 values as immutable objects of Value and its subclasses in Figure [} Each

3The term ‘ratio’ is used in the Common Lisp specification [14}, Section 2.1.2].
4This discussion does not apply to ACL2(r).
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Figure 2: Values of the ACL2 evaluation semantics.

such class corresponds to a set in Figure 2] The subset relationships in Figure 2] match the inheritance
relationships in Figure[I] The sets of values that are unions of other sets of values correspond to abstract
classes; the other sets correspond to concrete classes. All these classes are public, except for the package-
private ones for ratios and complex rationals: ratios and complex rationals are built indirectly via AlJ’s
API, by building rationals that are not integers and numbers that are not rationals.

The information about the represented ACL2 values is stored in fields of the non-abstract classes.
Integer stores the numeric value as a java.math.BigInteger. Ratio stores the numerator and de-
nominator as Integers, in reduced form (i.e. their greatest common divisor is 1 and the denominator is
greater than 1). ComplexRational stores the real and imaginary parts as Rationals. Character stores
the 8-bit code of the character as a char below 256. String stores the codes and order of the characters
as a java.lang.String whose chars are all below 256. Symbol stores the symbol’s package name
as a PackageName (a wrapper of java.lang.String that enforces the ACL2 constraints on package
names) and the symbol’s name as a String. Cons stores the component Values. All these fields are
private, thus encapsulating the internal representation choices and enabling their localized modification.
ACL2 numbers, strings, and symbols have no preset limits, but the underlying Lisp runtime may run
out of memory. Their Java representations (e.g. java.math.BigInteger) have very large limits, whose
exceedance could be regarded as running out of memory. If needed, the Java representations could be
changed to overcome the current limits (e.g. by using lists of java.math.BigIntegers).

The public classes for ACL2 values and package names provide public static factory methods to
build objects of these classes. For example, Character.make(char) returns a Character with the
supplied argument as code, throwing an exception if the argument is above 255. As another example,
Cons.make (Value,Value) returns a Cons with the supplied arguments as components. Some classes
provide overloaded variants, e.g. Integer .make (int) and Integer .make (java.math.BigInteger).
All these classes provide no public Java constructors, thus encapsulating the details of object creation
and re-use, which is essentially transparent to external code because these objects are immutable.

The public classes for ACL2 values provide public instance getter methods to unbuild (i.e. ex-
tract information from) objects of these classes. For example, Character.getJavaChar () returns
the code of the character as a char that is always below 256. As another example, Cons.getCar ()
and Cons.getCdr () return the component Values of the cons pair. Some classes provide variants,
e.g. Integer.getJavalnt() (which throws an exception if the integer does not fit in an int) and
Integer.getJavaBigInteger().
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3.2 Terms

ACL2 translates the terms supplied by the user, which may include macros and named constants, into a
restricted internal form, in which macros and named constants are expanded [2, :doc term]. In the rest
of this paper, ‘term’ means ‘translated term’, i.e. a term in the restricted internal form.

The set of ACL2 terms consists of (i) variables, which are symbols, (ii) quoted constants, which are
lists (quote walue) where value is a value, and (iii) function applications, which are lists (fn arg;

arg,) where fn is a function and argy, ..., arg, are zero or more terms. A function fn used in
a term is (i) a named function, which is a symbol, or (ii) a lambda expression, which is a list (Lambda
(var; ... wary) body) where vary, ..., var, are zero or more symbols and body is a term, whose
free variables are all among vary, ..., var, (i.e. lambda expressions are always closed).

AlJ represents ACL2 terms in a manner similar to ACL2 values, as immutable objects of Term and
its subclasses in Figure [T} functions are represented as immutable objects of Function and its subclasses
in Figure[I] The superclasses are abstract, while the subclasses are concrete. All these classes are public.

The information about the represented ACL2 terms is stored in private fields of the non-abstract
classes. Variable and NamedFunction are wrappers of Symbol. Constant is a wrapper of ValueE]
FunctionApplication stores a Function and an array of zero or more Terms. LambdaExpression
stores an array of zero or more Variables and a Term.

The non-abstract classes for ACL2 terms (and functions) provide public static factory methods to
build objects of these classes, but no public Java constructors, similarly to the classes for ACL2 values.

3.3 Environment

ACL2 terms are evaluated in an environment that includes function definitions, package definitions, etc.
AlJ stores information about part of this environment in Environment in Figure[I] Since there is just
one environment at a time in ACL2, this class has no instances and only static fields and methods.

An ACL2 function definition consists of several pieces of information, of which AlJ only stores (i)
the name, which is a symbol, (ii) the parameters, which are zero or more symbols, and (iii) the body,
which is a term. Environment stores function definitions in a private static field, as a java.util.Map
from Symbols for the functions’ names to LambdaExpressions for the functions’ parameters and bodies.
The public static method Environment . addFunctionDef (Symbol,Symbol[],Term) adds a function
definition to the map.

An ACL2 package definition associates a list of imported symbols to a package name. Environment
stores package definitions in a private static field, as a java.util.Map from PackageNames for the
packages’ names to java.util.Lists of Symbols for the packages’ import lists. The public static
method Environment.addPackageDef (PackageName,List<Symbol>) adds a package definition to
the map. AlJ uses this field to implement the primitive function pkg-imports. AlJ also uses information
derived from this field to implement the overloaded factory methods Symbol .make that build symbols:
for instance, Symbol.make ("ACL2","CONS") returns a Symbol with name "CONS" and package name
"COMMON-LISP", not package name "ACL2", because "ACL2" imports cons from "COMMON-LISP"; the
call Symbol.make ("ACL2","CONS") is the Java equivalent of the ACL2 symbol notation acl2: : cons.

Environment also stores the value of the ACL2 constant *pkg-witness-name* in a private static
field, as a java.lang.String. This field may be set, at most once (otherwise an exception is thrown),

SThese wrappers place Symbols and Values into the class hierarchy of Term and Function, given that Java does not
support multiple class inheritance. For instance, Symbol could not be both a subclass of Value and a subclass of Term.
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via the public static method Environment . setPackageWitnessName (java.lang.String). AlJ uses
this field to implement the primitive function pkg-witness.

3.4 Primitive Functions

Since the ACL2 primitive functions have no definitions, AIJ cannot evaluate their calls via their bodies as
described in Section[3.5] AIJ implements these functions “natively” in Java, in the package-private class
Primitive in Figure [I] Each primitive function except if, whose calls are evaluated non-strictly as
described in Section is implemented by a private static method Primitive.execPrim (Value) or
Primitive.execPrim (Value,Value) (based on the function’s arity), where Prim is a Java “version”
of the function’s name; the method returns a Value. For instance, Primitive.execCharCode (Value)
implements char-code. The package-private static method Primitive.call (Symbol,Value[]) eval-
uates a call of the primitive function named by the Symbol argument on the values in the Value[]
argument, by calling the appropriate Primitive.execPrim method and returning the result Value.
Primitive has no fields and only the above static methods; no instances of this class are created.

The recognizers integerp, consp, etc. are implemented to return a Symbol for t or nil, based on
whether the argument Value is an instance of Integer, Cons, etc.

The destructors car, numerator, etc. are implemented to return information from the private fields.

The constructors complex and cons are implemented via the factory methods Number .make and
Cons.make. The constructor intern-in-package-of-symbol is implemented via the factory method
Symbol .make, and it also calls the getter method Symbol . getPackageName on the second argument.

The conversions char-code and code-char are implemented by passing information from the pri-
vate field of one class to the factory method of the other class. The conversion coerce has a slightly
more laborious implementation, which scans or builds a Java representation of an ACL2 list.

The arithmetic operation unary-- is implemented via package-private instance methods negate ()
in the numeric classes. Primitive.execUnaryMinus, when given z as argument, calls z .negate ().
Dynamic dispatch selects a negate method based on the runtime class of z. Integer.negate calls
java.math.BigInteger.negate on its private field and uses the result to return a negated Integer.
Since —(a/b) = (—a)/b, Ratio.negate calls Integer.negate on the numerator, and uses the re-
sult to return a negated Ratio. Since —(a+ bi) = (—a) + (—b)i, ComplexRational.negate calls
Rational .negate on the real and imaginary parts, and uses the returned Rationals to return a negated
ComplexRational; each of these two calls to Rational .negate is, in turn, dynamically dispatched to
Integer.negate or Ratio.negate, based on the runtime classes of the real and imaginary parts.

The arithmetic operation binary-+ is similarly implemented via package-private instance methods
add(Value) in the numeric classes. But the presence of the second argument leads to a slightly more
complicated interplay among the methods. Primitive.execBinaryPlus, when given z and y as argu-
ments, calls = .add (y), dynamically dispatching based on the runtime class of . Integer.add splits
into two cases: if y is an Integer, an Integer sum is returned using java.math.BigInteger.add;
otherwise, the roles of = and y are swapped, exploiting the commutativity of addition, by calling
y .add(z), which dynamically dispatches to a different add method. Ratio.add performs an analo-
gous split; since a/b+ ¢/d = (ad + cb)/bd, this method calls the multiply methods, further compli-
cating the method interplay. Since (a + bi) + (¢ +di) = (a+c¢) + (b +d)i, ComplexRational.add
calls Rational.add on the real and imaginary parts, which are further dynamically dispatched to
Integer.add or Ratio.add.

The arithmetic operations unary-/ and binary-* are implemented analogously to unary-- and
binary-+, via reciprocate() and times(Value) methods in the numeric classes. There is some
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additional interplay among methods: for instance, since 1/(a + bi) = (a/(a* + b?)) — (b/(a® + b?))i,
ComplexRational.reciprocate calls all the arithmetic methods of Rational.

The arithmetic comparison < is implemented analogously to binary-+ and binary-*, as part of
an implementation of ACL2’s total order [2, :doc lexorder] via compareTo(Value) methods in
Value and its subclasses, which all implement the java.lang.Comparable<Value> interface. In the
compareTo methods in the numeric classes, when the roles of =z and y are swapped in the same way as
in the add methods described above, the result is negated before being returned, because comparison,
unlike addition and multiplication, is not commutative.

The equality equal is implemented via methods equals(java.lang.Object) in Value and its
subclasses, which override java.lang.0Object.equals. These equality methods are implemented in
the obvious way.

The implementation of bad-atom<= returns a Symbol for nil, consistently with the raw Lisp code.

The functions pkg-imports and pkg-witness are implemented as discussed in Section [3.3] They
throw an exception if the argument does not name a defined package, matching ACL2’s behavior.

All of these implementations do not check guards. They handle Values outside the guards according
to the applicable ACL2 completion axioms.

3.5 Evaluation

AlJ evaluates ACL2 terms via (i) eval(java.util.Map<Symbol,Value>) methods in Term and its
subclasses, and (ii) apply (Value [1) methods in Function and its subclasses. This evaluation approach
is well known [12]].

The eval methods take maps as arguments that bind values to variable symbols, and return Value
results. Constant.eval returns the constant’s value, ignoring the map. Variable.eval returns the
value bound to the variable, throwing an exception if the variable is unbound. Application.eval
recursively evaluates the argument terms and then calls Function.apply on the function and resulting
values. However, if the function represents if, Application.eval first evaluates just the first argument,
and then, based on the result, either the second or third argument, consistently with the non-strictness of
if.

The apply methods take arrays of zero or more Values as arguments, and return Value results.
LambdaExpression.apply evaluates the lambda expression’s body with a freshly created map that
binds the values to the parameters—no old bindings are needed, because lambda expressions are closed.
NamedFunction.apply calls a public method Environment.call (Symbol,Value[]) with the name
of the function and the argument values. Environment . call operates as follows: if the symbol names a
primitive function, it is forwarded, with the values, to Primitive.call; if the symbol names a function
defined in the environment, the lambda expression that defines the function is applied to the values; if
the symbol does not name a primitive or defined function, an exception is thrown.

AlJ evaluates ACL2 terms in a purely functional way, without side effectsE] AlJ does not check the
guards of primitive or defined functions. The aforementioned method Environment.call calls ACL2
functions on values only, not on (names of) stobjs.

3.6 Usage

Al is designed to be used as follows by Java code outside AlJ’s package:

6 Aside from exhausting the available memory, which is, unavoidably, always a possibility.
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1. Define all the ACL2 packages of interest by repeatedly calling Environment .addPackageDef.
For each package, use the factory methods of PackageName and Symbol to build the name and the
imported symbols. Define both the built-in and user-defined packages, in the order in which they
appear in the ACL2 history. This order ensures that Symbol .make does not throw an exception
due to an unknown package.

2. Define all the ACL2 functions of interest by repeatedly calling Environment .addFunctionDef.
For each function, use the factory methods of the value and term classes to build the name, the
parameters, and the body. The functions can be defined in any order, so long as all the packages
are defined before the functions (see step above).

3. Call Environment.setPackageWitnessName with the appropriate value from the ACL2 con-
stant *pkg-witness-namex*.

4. Call an ACL2 primitive or defined function as follows:

(a) Build the name of the ACL2 function to call, as well as zero or more ACL2 values to pass as
arguments, via the factory methods of the value classes.

(b) Call Environment.call with the Symbol that names the function and the Value array of
arguments.

(c) Unbuild the returned Value as needed to inspect and use it, using the getter methods of the
value classes.

5. Go back to step 4 as many times as needed.

The above protocol explains why AlJ provides a public API for unbuilding ACL2 values but no
public API to unbuild the other ACL2 entities (terms etc.). The latter are built entirely by Java code
outside AlJ’s package, which therefore has no need to unbuild the entities that it builds. Values, instead,
may be built by executing ACL2 code that returns them as results: Java code outside AlJ’s package may
need to unbuild the returned values to inspect and use them.

Besides the structural constraints implicit in the Java classes, and the existence of the referenced
packages when building symbols (necessary to resolve imported symbols), AIJ does not enforce any
well-formedness constraints when building terms and other entities, e.g. the constraint that the number
of arguments in a function call matches the function’s arity. However, during evaluation, AlJ makes
no well-formedness assumptions and performs the necessary checks, throwing informative exceptions if
these checks fail.

4 ATJ: The Code Generator

ATJ is an ACL2 tool that provides an event macro to generate Java code from specified ACL2 functions.
The generated Java code provides a public API to (i) build an AIJ representation of the ACL2 functions
and other parts of the ACL2 environment and (ii) evaluate calls of the functions on ACL2 values via AlJ.
The Java code generated by ATJ automates steps 1, 2, and 3 in Section and provides a light wrapper
for step 4b, while steps 4a and 4c must be still performed directly via AlJ’s APL

AT]J consists of a few thousand lines of ACL2 code (including blank lines, implementation-level
documentation, and comments), accompanied by a few hundred lines of user-level documentation in
XDOC. The implementation is thoroughly documented in XDOC as well.

4.1 Overview

ATJ generates a single Java file containing a single class, with the following structure:
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package pname; // if specified by the user
import edu.kestrel.acl2.aij.*; // all the AIJ classes
import ... // a few classes of the Java standard library
public class cname { // ‘ACL2’ if not specified by the user
// field to record if the ACL2 environment has been built or not:
private static boolean initialized = false;
// one method like this for each known ACL2 package:
private static void addPackageDef_hez (...)
// one method like this for each specified ACL2 function:
private static void addFunctionDef_hexz! _hez2(...)
// API method to build the ACL2 environment:
public static void initialize()
// API method to evaluate ACL2 function calls:
public static Value call(Symbol function, Value[] arguments)

}

The file has the same name as the class; it is (over)written in the current working directory, unless the user
specifies a directory. ATJ directly generates Java concrete syntax, via formatted printing to the ACL2
output channel associated to the file, without going through a Java abstract syntax and pretty printer.

4.2 Value and Term Building

As part of building an AlJ representation of the ACL2 environment, the Java code generated by ATJ
builds AlJ representations of ACL2 values and terms: function definitions include terms as bodies, and
constant terms include values. It does so via the factory methods discussed in Sections [3.1]and [3.2]

In principle, ATJ could turn each ACL?2 value or term into a single Java expression with an “isomor-
phic” structure. For example, the ACL2 value ((10 . #\A) . "x") could be built as follows:

Cons .make (Cons.make (Integer .make (10),
Character.make(65)),
String.make("x"))

However, values and terms of even modest size (e.g. function bodies) would lead to large expressions,
which are not common in Java. Thus, ATJ breaks them down into sub-expressions assigned to local
variables. For instance, the example value above is built as follows:

// statements:
Value valuel
Value value2

Integer.make(10);
Character.make(65) ;

Value value3 = Cons.make(valuel, value2);
Value value4 = String.make("x");

// expression:
Cons.make(value3, value4)

In general, ATJ turns each ACL2 value or term into (i) zero or more Java statements that incremen-
tally build parts of it and (ii) one Java expression that builds the whole of it from the parts. ATJ does so
recursively: the expression for a sub-value or sub-term is assigned to a new local variable that is used
in the expression for the containing super-value or super-term. The top-level expressions are used as
explained in Sections 4.3 and [4.4]
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To generate new local variable names, ATJ keeps track of three numeric indices (for values, terms,
and lambda expressions—recall that the latter are mutually recursive with terms) as it recursively tra-
verses values and terms. The appropriate index is appended to ‘value’, ‘term’, or ‘lambda’ and then
incremented.

4.3 Package Definition Building

The Java code generated by ATJ builds an AIJ definition of each ACL2 package known when ATJ is
invoked. The names of the known packages are the keys of the alist returned by the built-in function
known-package-alist, in reverse chronological order.

The AlJ definition of each of these packages is built by a method addPackageDef_hexz (see Sec-
tion {.1), where hex is an even-length sequence of hexadecimal digits for the ASCII codes of the
characters that form the package name. For instance, the definition of the "ACL2" package is built
by addPackageDef _41434C32. This simple naming scheme ensures that the generated method names
are distinct and valid, since ACL2 package names allow characters disallowed by Java method names.

Each addPackageDef_hez method builds a Java list of all the symbols imported by the package,
which ATJ obtains via pkg-imports. Then the method calls Environment .addPackageDef with the
PackageName and the list of Symbols.

4.4 Function Definition Building

The Java code generated by ATJ builds an AlJ definition of each (non-primitive) ACL2 function specified
via one or more function symbols fni, ..., fn, supplied to ATJ. Each fn; implicitly specifies not only
fn; itself, but also all the functions called directly or indirectly by fn;, ensuring the “closure” of the
generated Java code under ACL2 calls.

ATJ uses a worklist algorithm, initialized with (fn; ... fn,), to calculate a list of their closure
under calls. Each iteration removes the first function fn from the worklist, adds it to the result list, and
extends the worklist with all the functions directly called by fn that are not already in the result list.
Here ‘directly called by’ means ‘occurring in the unnormalized-body property of’; occurrences in the
guard of fn do not count, because ATJ, like AlJ, ignores guards. If fn has no unnormalized-body
property, it must be primitive, otherwise ATJ stops with an error—this happens if fn is a constrained,
not defined, function. If fn is in logic-fns-with-raw-code or program-fns-with-raw-code (see
Section [2)), it must be in a whitelist of functions that are known to have no side effectsﬂ If fn has input
or output stobjs, ATJ stops with an error—this may only happen if fn is not primitive.

The AlJ definition of each of these functions is built by a method addFunctionDef_hez! _hex2
(see Section 4. 1)), where hez! and hez2 are even-length sequences of hexadecimal digits for the ASCII
codes of the package and symbol names of the function symbol. For instance, the definition of the 1en
function is built by addFunctionDef_41434C32_4C454E. This simple naming scheme ensures that the
generated method names are distinct and valid, since ACL2 package and symbol names allow characters
disallowed by Java method names.

Each addFunctionDef_hex! _hex2 method first builds a Term from the unnormalized-body
property of the function, as explained in Section 4.2] Then the top-level Java expression, along with
a Symbol for the function name and with a Variable array for the function parameters, is passed to
Environment.addFunctionDef.

"This whitelist is currently a subset of logic-fns-with-raw-code. It consists of functions whose raw Lisp code makes
them run faster but is otherwise functionally equivalent to the ACL2 definitions.
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4.5 Environment Building

The initialize method generated by ATJ (see Section calls all the addPackageDef_hex and
addFunctionDef _hexz! _hexz2 methods described in Sections [4.3] and .4l The method also calls
Environment.setPackageWitnessName with an argument derived from *pkg-witness-namex.

The package definition methods are called in the same order in which the corresponding packages
are defined, which is the reverse order of the alist returned by known-package-alist.

This ensures the success of the calls of Symbol.make that build the elements of a package’s im-
port list. For instance, if "P" imports q: : sym, then "Q" must be already defined when "P" is being
defined. That is, addPackageDef_51 must have already been called when addPackageDef_50 calls
Symbol.make ("Q","SYM") as part of building "P"’s import list, which is needed to define "P"; other-
wise, Symbol.make ("Q","SYM") would throw an exception due to "Q" being still undefined.

The function definition methods are called after the package definition methods, again to ensure the
success of the Symbol .make calls. The relative order of the function definitions is unimportant; the result
list returned by ATJ’s worklist algorithm (see Section[#.4)) is in no particular order.

The initialize method may be called once by external code: the method throws an exception
unless the initialized field (see Section[4.1)) is false, and sets the field to true just before returning.

4.6 Call Forwarding

The cname .call method generated by ATJ (see Section forwards the function name and the ar-
gument values to Environment .call, after ensuring that the initialized field is true, i.e. that the
ACL2 environment has been built. It throws an exception if initialized is still false.

S Preliminary Tests and Optimizations

The initial version of AlJ was deliberately written in a very simple way, without regard to performance,
as a sort of “executable specification” in Java. The reasons were to increase assurance by reducing the
chance of errors, facilitate the potential verification of the code, avoid premature optimizations, and
observe the impact of gradually introduced optimizations.

Performance has been tested mainly on three example programs. The first is an ACL2 function
that computes factorial non-tail-recursively. The second is an ACL2 function that computes Fibonacci
non-tail-recursively. The third is a slightly modified version of the verified ABNF grammar parser [35]
from the ACL2 Community Books [2, |:doc abnf: :grammar-parser]: the parser, in the :logic part
of mbe, calls nat-1list-fix on its input list of natural numbers just before reading each natural number,
which makes execution “in the logic” (which is how AlJ executes) unduly slow; for testing AlJ more
realistically, the parser was tweaked to avoid these calls of nat-1ist-fix. The tweaked parser is about
2,000 lines (including blank lines), including theorems to prove its termination so that it is in logic mode,
and including return type theorems to prove its guards. The parser not only recognizes ABNF grammars,
but also returns parse trees

Unsurprisingly, the initial version of AlJ was quite slow. A re-examination of the code from a
performance perspective readily revealed several easy optimization opportunities, which were carried
out and are part of the current version of AlJ. These are the main ones, in order:

81nitially, tests were conducted on a simplified version of the parser that only recognized ABNF grammars, because ATJ did
not support mbe, which is used in the construction of parse trees (defined via fixtypes [2} :doc fty]). After extending ATJ to
support mbe, testing was switched to the more realistic version of the parser that also returns parse trees.


http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ABNF____GRAMMAR-PARSER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____FTY
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1. The Character array representation of Strings was replaced with java.lang.String.

2. Symbols frequently used during evaluation, such as the ones for t, nil, and the names of the
primitive functions, were cached as constants instead of being built repeatedly.

3. Characters were interned, as follows. Character objects for all the 256 codes were pre-created
and stored into an array, in the order of their codes. The factory method Character .make (char)
indexes the array with the input code and returns the corresponding object. Since this ensures that
there is just one object for each character code, Character.equals uses pointer equality (i.e. ==)
and the default fast java.lang.Object.hashCode is inherited.

4. PackageNames, Strings, and Symbols were interned, similarly to Characters, as follows. Since
there is a potentially infinite number of them, they are are created on demand. For each of these
three classes, all the objects created thus far are stored as values of a java.util.Map, whose
keys are java.lang.Strings for PackageName and String, and PackageNames paired with
Strings for Symbol—the pairing is realized via nested maps. Each factory method first consults
the appropriate map, either returning the existing object, or creating a new one that is added to the
map. Similarly to Character’s interning, the interning of these classes enables the use of pointer
equality in the equality methods and the inheritance of the default fast hash code method.

Thanks to AlJ’s object-oriented encapsulation, all these optimizations were easy and localized. These
optimizations did not involve ATJ, because the code generated by AT]J is essentially used just to initialize
the ACL2 environment (see Section[4.5]), which happens quickly for the factorial and Fibonacci functions
and for the ABNF parser.

Based on a few time measurements on the ABNF parser and a few other artificial programs, the
above optimizations reduced execution time, very roughly, by the following factors, one after the other:
2 for optimization #1, 5 for optimization #2, and 2 for optimizations #3 and #4—all combined, 20.

Tables [I} 2] and [3] report more systematic time measurements for the factorial function, Fibonacci
function, and ABNF parser. Each row corresponds to an input of the program: natural numbers for
the factorial and Fibonacci functions; ABNF grammars (all from Internet standards, including ABNF
itself) for the ABNF parser. The ‘ACL2’ columns are for execution in ACL2, with guard checking
(‘g.c’) set to t, i.e. typical execution, and :none, i.e. execution “in the logic”; the latter matches AlJ’s
execution. The ‘AlJ’ column is for execution with AIJ’s current version. Each cell contains minimum,
average, and maximum real times from 10 runs, in seconds rounded to the millisecond. The ACL2 times
were measured as the difference between the results of read-run-time just before and just after the
call of the factorial function, Fibonacci function, or top-level ABNF parsing function. The Java times
were measured as the difference between the results of java.lang.System.currentTimeMillis()
just before and just after the call of cname . call on the corresponding ACL2 function. Given the AlJ
evaluator’s recursive implementation, a larger stack size than the default must be passed to the JVM (1
GB for these time measurements) to avoid a stack overflow.

The times in Table [T] are all roughly comparable for each input, with ACL2 faster on smaller inputs
and AlJ faster on larger inputs: presumably, most of the time is spent multiplying large numbers, which
all happens in java.math.BigInteger in the Java code and in Lisp’s bignum implementation in the
ACL2 code, dwarfing the contributions of ACL2 and AlJ proper, especially for the larger inputsﬂ The
times in Table 2] differ: looking at the averages, AlJ is about 17-30 times slower than ACL2 with guard
checking :none, which is about 8-10 times slower than ACL2 with guard checking t. The times in
Table [3| differ as well: looking at the averages, AlJ is about 19-22 times slower than ACL2 with guard
checking :none, which is about 16—87 times slower than ACL2 with guard checking t; nonetheless,

9Even the initial, unoptimized version of AlJ took comparable times.
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the absolute times suggest that the Java code of the parser is usable Performance needs vary: All’s
current speed may be adequate to some applications, such as security-critical interactive applications like

cryptocurrency wallets. Furthermore, as discussed in Section [f] there are more opportunities to optimize
All.

Input ) ACL2 [g.c.t] A.CLZ [g.c. :none] ) AlJ
min avg max min avg max min avg max
1,000 {| 0.000 0.000 0.001 | 0.000 0.000 0.001 | 0.003 0.005 0.012
5,000 {| 0.007 0.011 0.022 | 0.007 0.009 0.011 | 0.009 0.029 0.059
10,000 || 0.031 0.035 0.038 | 0.032 0.034 0.040 | 0.026 0.035 0.068
50,000 1.324 1.355 1432 | 1.319 1.328 1.337 | 0.589 0.687 1.044
100,000 || 6.280 6.385 6.604 | 6.279 6.291 6.307 | 2.340 2.547 2.705
Table 1: Time measurements for the factorial function.
Input . ACL2 [g.c.t] A.CLZ [g.c. :none] . AlJ
min avg max min avg max min avg max
10 ][ 0.000 0.000 0.000 | 0.000 0.000 0.000 | 0.000  0.001 0.004
20 0.000 0.000 0.000 | 0.001 0.001 0.001 0.019 0.030 0.053
30 || 0.007 0.008 0.009 | 0.061 0.063 0.079 1.043 1.094 1.210
40 || 0.727 0.734 0.750 | 7.144 7.205 7.355 | 126.167 127.149 129.959
Table 2: Time measurements for the Fibonacci function.
Input ) ACL2 [g.c. t] A'CL2 [g.c. :none] . AlJ
min avg max min avg max min avg max
ABNF grammar || 0.004 0.007 0.014 | 0.109 0.113 0.117 2.391 2478 3.076
JSON grammar 0.001 0.002 0.006 | 0.044 0.049 0.053 1.011 1.023 1.031
URI grammar || 0.002 0.003 0.006 | 0.100 0.105 0.112 2218 2.233 2.251
HTTP grammar || 0.002 0.004 0.010 | 0.167 0.175 0.189 3.577 3.597 3.626
IMF grammar 0.009 0.014 0.021 1.028 1.079 1.414 | 21.173 21.522 21.741
SMTP grammar || 0.007 0.010 0.019 | 0.398 0.404 0411 8.648 8.733 8.896
IMAP grammar || 0.020 0.026 0.030 | 2.198 2.267 2.481 | 43.083 43490 43.805

Table 3: Time measurements for the ABNF parser.

All the time measurements were taken on a MacBook Pro (15-inch, 2017) with 3.1 GHz Intel Core
i7 and 16 GB 2133 MHz LPDDR3, running macOS High Sierra Version 10.13.6. The ACL2 times were
measured with commit 852ee0aca96deac2b3c062ee03f458acca668f6e from GitHub running on 64-bit
Clozure Common Lisp Version 1.11.5. The Java times were measured with the version of AlJ in the
same commit from GitHub as above, running on Oracle’s 64-bit Java 10 2018-03-20, Java SE Runtime
Environment 18.3 (build 10+46). Just before taking the measurements, the machine was rebooted and
only the necessary applications were started.

The performance of ATJ does not affect the performance of the Java code. ATJ runs in 1-2 seconds
on each of the factorial function, Fibonacci function, and ABNF parser, including the time to write the
Java files; this was measured by wrapping the calls of ATJ with time$.

10 A5 another data point, the simplified parser mentioned in Footnotewas about 4-7 times faster than the current parser.
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6 Future Work

Evaluating non-executable functions (i.e. non-primitive and without an unnormalized-body property),
by throwing an exception that mirrors the error that ACL2 yields, is easy but not necessarily useful A
planned extension is to support guards and evaluation with different guard-checking settings, in the same
way as ACL2. Support for functions with side effects will be added one at a time, by writing native Java
implementations (as done for the primitive functions) that suitably mirror the ACL2 side effects in Java;
for instance, hard errors could be implemented as exceptions. User-defined stobjs could be supported
by storing their contents in Java fields that are destructively updated; since state is “linked” to external
entities (e.g. the file system), support for this built-in stobj will involve the use of the Java API of those
entities. Supporting stobjs also involves extending AlJ’s public API to call ACL2 functions on stobj
names, besides values. Direct support for calling macros directly, and for supplying named constants to
function calls, are also candidate extensions.

The generated method cname . call described in Section {.6|does not provide much beyond calling
Environment.call directly, but is suggestive of additional functionality. For example, future versions
of cname could provide a public method for each top-level target function fn; supplied to ATJ, with no
parameter for the function name, and with as many Value parameters as the function’s arity instead of a
single Value array parameter. As another example, cname could provide additional public methods to
call each fn; on objects of more specific types (e.g. Integer instead of Value), based on the guards. The
names of these methods should be derived from the names of the corresponding functions, according to
safe but more readable schemes than the one described in Section [f.4}—in fact, a more readable scheme
should be used for the methods described in Section 4.3]and Section 4.4 as well.

A reviewer suggested to make the fields and methods of Environment non-static and have multiple
instances of this class at once. This is worth exploring.

There are more optimization opportunities beyond the ones already carried out and described in
Section[5] For example, now each variable evaluation looks up the variable symbol in the hash map that
stores the current binding of values to variables. As another example, now each function call first looks
up the function symbol in the hash map that stores the function definitions in the environment, and then,
if no definition is found, it compares the function symbol with all the primitive function symbols until
a match is found. Replacing or enhancing AlJ’s representation of variable and function symbols with
numeric indices should make all these accesses much fasterE] As a third example, AlJ’s evaluator could
be re-implemented as a loop with an explicit stack, instead of a recursion. As a fourth example, many
built-in ACL2 functions could be implemented natively in Java (as done for the primitive functions),
instead of being interpreted.

A reviewer suggested to implement hons |2l :doc hons-and-memoization|] in AlJ, and use it
instead of cons. This amounts to interning all the Java objects that represent ACL2 values (not just
Characters, Strings, and Symbols—see Section [3)), enabling fast equality tests and hash code compu-
tations, which could increase performance in some applications. Perhaps future versions of AlJ and ATJ
could provide options to use hons vs. cons.

The eventual path to fast execution is to avoid the interpretation overhead, by having ATJ turn ACL2
functions into shallowly embedded Java representations, as is customary in code generatorsE] The shal-

11 support for evaluating non-executable function is added, ATJ should still include an option to signal an error when the
worklist algorithm reaches a non-executable function.

12 A preliminary experiment with just variable indices seems to reduce execution times roughly by 2.

13Besides more conventional translation approaches, a more speculative idea is to generate the shallowly embedded repre-
sentations by partially evaluating [10] the AlJ interpreter on the deeply embedded representations generated by ATJ.


http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____HONS-AND-MEMOIZATION
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low embedding will consist of Java methods that implement the ACL2 functions, with suitably matching
signatures. AlJ’s representation of and operations on ACL2 values will still be used, but AIJ’s represen-
tation and evaluator of ACL2 terms will not. Under certain conditions, it should be possible to generate
variants of these Java methods that use more efficient representations and operations, e.g. the Java int
values and integer operations when there is provably no wrap-around, in particular leveraging ACL2’s
the forms and the associated guard verification, which similarly help the Lisp compiler. Given that gen-
erating these shallowly embedded representations is inevitably more complicated and thus error-prone,
the slower but safer interpreted evaluation could be still available as an option, at least in the absence of
verification.

The Java code generated by ATJ can be called by external Java code, but not vice versa. Allowing the
other call direction may involve suitable ACL2 stubs that correspond to the external code to be called.

The implementation of ATJ could be simplified by directly generating a Java abstract syntax and
using a separable pretty printer to write abstract syntax to the file.

More ambitious projects are to (i) verify the correctness of AlJ’s evaluator and primitive function
implementations, and (ii) extend ATJ to generate a proof of correctness of the generated Java code, like
a verifying compiler. Optimizing AlJ and generating shallowly embedded representations in ATJ make
these verification tasks harder; an idea worth exploring is to perform a compositional verification of
optimized Java code against unoptimized Java code and of the latter against ACL2 code.

The approach to generate Java code described in this paper, including the envisioned extensions
described in this section, could be used to generate code in other programming languages. In particular,
the UML class diagram in Figure [T| could be used for other object-oriented programming languages.

7 Related Work

The author is not aware of any Java or other code generator for ACL2.

Several theorem provers (Isabelle, PVS, Coq, etc.) include facilities to generate code in various
programming languages (Standard ML, Ocaml, Haskell, Scala, C, Scheme, etc.) [8, (13, [7]. These
code generators use shallow-embedding approaches, very different from ATJ and AlJ’s deep-embedding
approach. These code generators may be more relevant to future versions of ATJ and AlJ that use a
shallow-embedding approach (see Section [6). However, the ACL2 language is quite different from the
languages of those provers: first-order vs. higher-order, untyped with a fixed universe of (evaluation)
values vs. typed with user-definable types, extra-logical guards vs. types that are part of the logic, and so
on. Thus, only some of the ideas from those provers’ code generators may be relevant to ACL2.

As discussed in Section|[T] there are other ways for ACL2 code to interoperate with code in other pro-
gramming languages, without the need for generating code in those programming languages from ACL2.
However, this obviated need should be balanced against the issues with these approaches discussed in
Section [T} different approaches may be best suited to different applications.
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