
Toward Automatic Generation of
Provably Correct Java Card Applets

Alessandro Coglio

Kestrel Institute
3260 Hillview Avenue, Palo Alto, CA 94304, USA

Ph. +1-650-493-6871 Fax +1-650-424-1807
http://www.kestrel.edu/˜coglio

coglio@kestrel.edu

Abstract. This paper overviews an ongoing project aimed at devel-
oping an automatic generator of Java Card applets from higher-level
spec(ification)s written in a domain-specific language called “Smart-
Slang”. The generator is based on Specware, a system for the formal
specification and refinement of software. The applet generator translates
a SmartSlang spec into the logical language of Specware, re-expresses the
translated spec in terms of Java Card concepts via a series of refinement
steps using Specware’s machinery, and generates Java Card code from
the refined spec. The Java Card concepts used for refinement and code
generation are captured as a shallow embedding of the Java Card lan-
guage and API in the logic of Specware. Since proofs are associated to
refinement steps, the applet generator produces a machine-processable
proof tree along with the code, enabling the correctness of the generated
code (with respect to the spec) to be checked independently from the
applet generator, via a smaller and simpler applet checker to be also
developed in this project.

1 Introduction

A smart card [10] consists of a chip embedded in a plastic substrate that is
the size of a credit card or smaller. Since the chip is very small, it has rela-
tively limited storage and processing capabilities. A smart card communicates
with the external world via metal contacts on the surface of the card or via
an antenna wound into the card. The signals exchanged through the contacts
or the antenna encode commands to and responses from the card. The card’s
memory and functionality can be accessed exclusively via these commands and
responses. Smart cards are easily portable, cost-effective computing devices that
can securely store and process information. Applications include authentication,
banking, and telephony. Since bugs in a smart card’s hardware or software may
compromise its security, correctness is of paramount importance in smart cards.

Java Card [4] is a version of Java [2] for smart cards. A Java Card applet is
written in a subset of Java and uses a different API from regular Java. The Java
Card API provides functionality to receive commands and send responses ac-
cording to certain standardized protocols, perform cryptographic computations,

1

etc. Java Card provides a uniform platform to develop portable smart card ap-
plications that can be also installed and updated after the card is issued to the
user. In addition, the type safety of Java is a good foundation for security.

Even though Java is relatively high-level, developing Java Card applets re-
quires the programmer to deal with fairly low-level details, thus greatly increas-
ing the potential for bugs. For example, commands and responses must be ex-
plicitly decoded from and encoded into bytes. Furthermore, because of the severe
memory limitations and the typical absence of garbage collection from Java Card
implementations, often the programmer has to forgo object-oriented principles
and write code that makes almost no use of inheritance, keeps nested method
calls to a bare minimum, and allocates all the needed objects when the applet is
installed, re-using them during the applet’s normal operation. While smart card
memory keeps increasing thanks to the continual advancements in semiconduc-
tor technology, the market demand for smart card functionality keeps increasing
too. So, memory limitations are likely to be a problem at least for a while.

This paper overviews an ongoing project aimed at developing an automatic
generator of space-efficient and time-efficient Java Card applets from higher-level
spec(ification)s. The generator is being built on top of Specware [9], a system for
the formal specification and refinement of software, whose mathematical foun-
dations guarantee that the output applet code is provably correct with respect
to the input applet spec. It is expected that the use of the generator will greatly
increase the productivity of applet developers and the confidence that applets
are correct.

2 Applet Generator

From the user’s point of view, the applet generator is a box that takes an ap-
plet spec written in a domain-specific language called “SmartSlang” (“Smart
Card Specification Language”) and automatically produces Java Card code that
implements the specified applet. Internally, there are three components that op-
erate in sequence, as shown in Figure 1.

applet
spec

- translator - refinement
engine

- code
generator

- applet
code

GENERATOR

Fig. 1. Structure of the generator

2

2.1 SmartSlang and Translator

The design of (a first version of) SmartSlang is ongoing and not finalized yet.
So, only some highlights and goals are discussed here.

The domain of the domain-specific language SmartSlang is the one of smart
cards. This means that SmartSlang features high-level constructs for smart card
concepts, such that an applet’s functionality can be specified in a very clear
and concise way, minimizing the chance of specification errors. SmartSlang in-
cludes explicit constructs for commands, responses, encoding of commands and
responses as bytes forming Application Protocol Data Units (APDUs), error han-
dling, cryptography (keys and encryption/decryption operations), personal iden-
tification numbers (PINs), challenge-response protocols, and so on. For example,
commands are identified symbolically and are accompanied by declarations of
their encoding as APDUs, as opposed to Java Card where APDU bytes are ex-
plicitly retrieved and decoded, dispatching to code that processes the various
commands. As another example, cryptographic operations are readily accessible
as pure functions operating on data and keys, as opposed to Java Card where
a Cipher object is created, initialized with a key, and used to encrypt/decrypt
data, possibly in chunks. Of course, the applet generator turns these higher-level
constructs into Java Card code that implements their semantics.

SmartSlang features a richer type system than Java Card. For instance, in-
stead of only the few Java Card integral types, arbitrary integer ranges can be
used as types, to describe more precisely the semantics of certain values (e.g.
a balance in an e-wallet cannot be negative). Conformance of values to integer
range types, as well as all the other type safety properties of an applet spec (e.g.
array indices within bounds), are meant to be statically checked by the applet
generator. This requires a fancier type checker than found in typical languages.
Since loops are generally problematic for this kind of analyses, the intention is
to use restricted, tractable forms of loops (e.g. loop through an array) and/or to
have the user add suitable annotations (e.g. invariants) to guide the type checker.
The challenge is to develop a powerful but tractable type system that does not
require general symbolic theorem proving (only lightweight decision procedures,
e.g. for Presburger arithmetic) and does not force the user to write too many
annotations. The payoff of full static checking is that more specification errors
are caught (e.g. forgetting to check a balance in a debit command) and that the
generated Java Card code will not throw any exception at run time.

SmartSlang has a mathematical semantics in terms of state machines: an
applet is a state machine that updates its state and produces a response when it
receives a command. Anyhow, SmartSlang should be simple enough to be effec-
tively understood and used by smart card experts without a formal background.

We have used some tentative SmartSlang constructs to specify a few realistic
applets, e.g. an applet that signs data with an internally stored private key after a
successful PIN verification and/or challenge-response external authentication. In
these preliminary experiments, the tentative SmartSlang specs are considerably
shorter and clearer than their corresponding Java Card code.

3

The first component of the applet generator is a translator from SmartSlang
to MetaSlang, the specification language of Specware. MetaSlang is a version of
higher-order logic [1], similar to the languages of PVS [11], HOL [13], and other
systems. A MetaSlang spec consists of some sorts (i.e. types), some op(eration)s
(i.e. functions over the types), and some axioms that constrain the sorts and the
ops, i.e. a spec is a theory in higher-order logic. The translation of a SmartSlang
spec is a MetaSlang spec of the state machine denoted by the SmartSlang spec.
In fact, this translation can be considered to formally define the semantics of
SmartSlang. The translator also performs the needed type safety checks on the
SmartSlang spec. The translator will be developed after the design of SmartSlang
is finalized.

2.2 Refinement Engine

No substantial work has been done on this component yet. So, only high-level
concepts are presented here.

The idea is that the high-level MetaSlang spec of the applet, obtained by
translating the SmartSlang spec, is transformed into a low-level MetaSlang spec
from which Java Card code is readily generated. The transformation consists of
a series of refinement steps that are applied by means of Specware’s underlying
refinement machinery.

Specware provides a simple and powerful notion of refinement as a morphism
between specs. A morphism is a mapping from the source spec’s sorts and ops
to the target spec’s sorts and ops, such that all the axioms in the source spec are
theorems in the target spec, once translated according to the sort/op mapping.
Often a morphism maps the sorts and ops of the source spec to the same sorts
and ops in the target spec, especially when the two specs describe the same
entity at different levels of abstraction.

Starting from the high-level applet spec, each refinement step carried out
by the refinement engine re-expresses the spec in lower-level terms, making use
of Java Card concepts. For example, a state component consisting of a balance
having some SmartSlang integer range type is re-expressed as having an ap-
propriate Java Card type where the balance can fit without wasting space; e.g.
for a balance between 0 and 100 a byte is sufficient, but for a balance between
0 and 1,000,000 two shorts (or just a short and a byte, if space is scarce) are
needed (int can be used if supported by the target Java Card implementation).
As another example, the application of a SmartSlang cryptographic operation is
re-expressed as a series of actions where (a representation of) a Cipher object
is created, initialized with some key, and used to encrypt/decrypt data, possibly
in chunks.

2.3 Code Generator

A first version of this component has been completely designed and implemented.
So, more details than for the other two components are given here.

4

At the end of the refinement process, the applet’s functionality is entirely ex-
pressed in terms of Java Card concepts. These Java Card concepts are captured
in the form of parameterized (i.e. generic) MetaSlang specs that are suitably
instantiated (i.e. particularized) for the specific applet. The code generator gen-
erates Java Card code from the instantiated specs.

The parameterized MetaSlang specs are a shallow embedding of (a significant
subset of) the Java Card language and API in higher-order logic. The adjective
“shallow” means that Java Card expressions and statements are identified with
their semantics, i.e. their syntax is not explicitly formalized but is implicitly
captured by MetaSlang terms. In contrast, in a “deep” embedding Java Card
expressions and statements would be defined as syntactic entities to which se-
mantics is associated. The choice of a shallow embedding is solely motivated by
it being slightly simpler and smaller than a deep embedding; a deep embedding
would work as well.

Figure 2 shows some excerpts of the formalized semantics of Java Card ex-
pressions and statements. Following the Java language specification [6], an ex-
pression may complete abruptly with an exception or normally returning a result
that is a value, a variable (e.g. for assignment), or nothing (i.e. a call to a void
method); a statement may complete normally or abruptly with an exception
or returning a value (e.g. return 2;) or nothing (i.e. return;); other forms of
statement abrupt completion are currently excluded from the formalization. In
general, executing an expression or statement causes a side effect consisting of
a state change and finite sequences of input/output events. An expression or
statement is defined as the set of all its possible executions, where an execu-
tion consists of a side effect and a completion (note that a value of sort S ->
Boolean is isomorphic to a set of values of sort S). Expressions include calls to
API methods, whose semantics is defined not in terms of Java Card constructs
but directly, as if they were “macro-expressions” in the language.

Input and output events are a mildly original aspect of this formalization,
compared to others. Certain API method calls cause APDU bytes to be trans-
ferred between the card and the external world. These APDU chunks are cap-
tured as input/output events. Having them explicit allows to express the in-
put/output behavior of (the MetaSlang representation of) an applet’s code in
terms of command and response APDUs.

Since the semantics is relational (i.e. sets of side effects and completions),
expressions and statements may be non-deterministic. Non-determinism is used
to model the creation of fresh references to new objects (the axioms only say
that the fresh reference must not be already present in the heap) and to model
API method calls for random number generation. Because of these two features,
non-determinism ripples to all the expressions and statements of the formaliza-
tion. Otherwise, expressions and statements could be defined as functions from
old states and input events to new states, output events, and completions. An al-
ternative approach is to capture fresh references and generated random numbers
as input events, thus keeping the semantics functional.

5

sort ExpressionResult = | var Variable

| val Value

| nothing

sort ExpressionCompletion = | normal ExpressionResult

| abrupt Exception

sort StatementAbruptCompletion = | retnothing

| ret Value

| exc Exception

sort StatementCompletion = | normal

| abrupt StatementAbruptCompletion

sort SideEffect = {old : State,

new : State,

in : FSeq InputEvent,

out : FSeq OutputEvent}

sort Expression = SideEffect * ExpressionCompletion -> Boolean

sort Statement = SideEffect * StatementCompletion -> Boolean

Fig. 2. Excerpts of Java Card expression and statement semantics

Java Card constructs are formalized by means of ops that combine subex-
pressions and substatements into compound expressions and statements. For
example, addition is captured by an op of sort Expression * Expression ->
Expression: the resulting expression combines the side effects of the subexpres-
sions and yields the sum of their results as result, unless either subexpression
throws an exception, in which case the compound expression completes abruptly
with the same exception; for lack of space, we do not show the MetaSlang axioms
here.

The parameters of the parameterized MetaSlang specs of Java Card consist
of sorts and ops that are suitably instantiated to represent specific programs. For
instance, one of the parameters is an uninterpreted sort UserClass, accompanied
by an axiom stating its finiteness, whose values are meant to be exactly the
user-defined classes comprising the program (API classes, which are fixed for
every program, are captured by an interpreted sort APIClass). For instance,
to represent a program with three user-defined classes C, D, and E, the sort is
defined as consisting of three values:

sort UserClass = | class_C | class_D | class_E

Similarly, there are uninterpreted sorts for user-defined fields, methods, etc., as
well as uninterpreted ops that associate fields and methods to the classes where
they are declared, bodies to non-abstract methods, and so on. All these sorts
and ops are accompanied by axioms that constrain their possible instantiations
so that the instantiated specs represent legal programs (e.g. no method is both
abstract and static).

In Specware, a parameterized spec is instantiated by means of a morphism
from the subspec consisting of the parameter sorts and ops along with their
constraining axioms, to a spec that instantiates those sorts and ops. The validity

6

of the morphism ensures that the parameters are instantiated consistently with
their constraints, because all the axioms in the parameter subspec are theorems
in the instantiating spec. The result of instantiation is the spec obtained by
replacing the parameter subspec in the parameterized spec with the instantiating
spec.

The refinement engine ultimately produces an instantiated spec that repre-
sents a specific Java Card program. The program is a Java Card applet that
behaves as specified by the high-level MetaSlang spec obtained by translating
the SmartSlang spec. The code generator examines the instantiated spec and
straightforwardly produces Java Card source code for the program. For exam-
ple, from the definition of the sort UserClass, the code generator determines
which classes are declared in the program. Fields, methods, etc. are similarly
determined from the definitions of the associated sorts and ops.

Code generation is reversible: from the Java Card program it is possible to
reconstruct the instantiated spec from which the program was produced. For
instance, the definition of the sort UserClass can be reconstructed by exam-
ining the classes declared in the program. The relevance of this reversibility is
explained in the next section.

3 Independent Certification

Each refinement step carried out by the refinement engine of the applet generator
has an associated proof that all the axioms in the source spec of the morphism
are theorems in the target spec. The sequential composition of the morphisms
corresponding to all the refinement steps yields a morphism from the high-level
spec obtained by translating the SmartSlang spec to the low-level spec from
which Java Card code is generated. The proof for the compound morphism is
obtained by composing the proofs for the component morphisms.

A future goal of this project is to have the applet generator produce, besides
the code, a machine-processable proof tree of the overall refinement, as shown
in Figure 3. This enables to certify the correctness of the code with respect to
the spec independently from the generator, by means of an automatic checker
to be also developed in this project. The applet checker, also shown in Figure
3, takes as input the SmartSlang spec, the Java Card code, and the proof. The
SmartSlang spec is translated into a high-level MetaSlang spec, using the same
translator used in the applet generator. The Java Card code is translated into
a low-level MetaSlang spec using the code abstractor, which is the inverse of
the code generator used in the applet generator. Given the high-level and the
low-level MetaSlang specs, a simple proof checker for the higher-order logic of
MetaSlang is used to establish whether the purported proof is a valid proof that
all the axioms in the high-level spec are theorems in the low-level spec.

When a Java Card applet is produced by the applet generator, the input
spec and the generated proof constitute a checkable certificate that accompa-
nies the generated code. By using the applet checker to establish the validity of
the certificate, trust is essentially shifted from the relatively large and complex

7

applet
spec

- translator - refinement
engine

- code
generator

- applet
code

GENERATOR

?
proof

?
proof

checker
- translator - �code

abstractor
�

?
yes/no

CHECKER

Fig. 3. Independent certification

refinement engine to the much smaller and simpler proof checker. The size and
complexity of the code abstractor are about the same as the code generator,
relatively modest; the size and complexity of the translator are also relatively
modest. The translator and code abstractor are necessary to bring the applet
spec and the applet code, which are written in different languages (i.e. Smart-
Slang and Java Card), into a common logical language (i.e. MetaSlang) where
their relationship is formally expressed and proved.

As mentioned above, independent certification is a future goal: no work has
been done on generating refinement proofs or on the applet checker yet.

4 Implementation Language

The applet generator and checker are being written in MetaSlang. This is a
natural choice because Specware is itself written in MetaSlang and because the
applet generator and checker are built on top of Specware (e.g. they manipulate
MetaSlang specs).

More in detail, the applet generator and checker are being written in an
executable subset of MetaSlang, which is like a purely functional programming
language. Specware is itself written in executable MetaSlang. Non-purely func-
tional computation such as accessing files is encapsulated in small hand-written
code fragments and/or in monads. Specware can turn executable MetaSlang into
LISP, C, or Java. However, C and Java code generation are not as developed as
LISP code generation yet. For this reason, the code generator component of the
applet generator, as well as Specware itself, are currently generated in LISP.

Eventually, we plan to write high-level MetaSlang specs for the applet gen-
erator and checker and to obtain the executable ones via refinement. This will
provide higher confidence in the correctness of the two tools.

8

5 Related Work

Hubbers, Oostdijk, and Poll [8, 7] have built a tool that automatically translates
finite state machines into Java Card skeleton code and associated Java Model-
ing Language (JML) annotations [5]. The generated JML annotations express
pre- and post-conditions, invariants, etc., which can be checked to hold for the
generated code by means of existing tools, somewhat analogously to the cer-
tificate produced by our applet generator. A difference from our approach is
that finite state machines, unlike SmartSlang, have no high-level constructs spe-
cific to smart cards. Another difference is that the generated skeleton code only
implements (and accordingly the JML annotations only express properties of)
part of the applet’s functionality, essentially its control structure; the rest of the
needed functionality must be added by hand. In contrast, our applet generator
is meant to generate the complete code. However, those authors plan to extend
their approach to generate more of the applet functionality.

Besides the work just mentioned, the author is unaware of other research
projects aimed at automatically generating Java Card applets from higher-level
specs.

There is extensive work on formally specifying the Java Card platform (lan-
guage, virtual machine, and API) to precisely document and validate the plat-
form itself and to verify properties of Java Card applets. That work relates to
the formalization of the Java Card language and API used in the applet genera-
tor, but our formalization has a different purpose, namely to capture Java Card
concepts for refinement and code generation.

Our formalization is relatively close to, and partially inspired by, the one
developed within the LOOP project [3]. In that project, properties of Java Card
applets are verified by translating the code into higher-order logic (like the code
abstractor in the applet checker) and then using theorem provers like PVS and
Isabelle [12] to prove conjectures in the resulting theories. The conjectures are
expressed as JML annotations, which are translated into higher-order logic along
with the code. The semantics of the Java Card language and API and of the
JML annotations is formalized via a shallow embedding in higher-order logic in
a coalgebraic style. The differences between the LOOP formalization and ours
are not very profound; they are motivated by subjective reasons (e.g. relational
vs. coalgebraic style) or by different project needs (e.g. our explicit input/output
events to express the input/output behavior of applets). Our formalization covers
a smaller Java Card subset than the LOOP formalization, but our coverage will
grow as this project proceeds.

References

1. Peter Andrews. Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Academic Press, 1986.

2. Ken Arnold, James Gosling, and David Holmes. The JavaTM Programming Lan-
guage. Addison-Wesley, third edition, 2000.

9

3. Bart Jacobs et al. The LOOP project. Information at http://www.cs.kun.nl/
˜bart/LOOP.

4. Zhiqun Chen. Java CardTM Technology for Smart Cards. Addison-Wesley, 2000.
5. Gary Leavens et al. The Java Modeling Language. Information at http://

www.cs.iastate.edu/˜leavens/JML.html.
6. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language

Specification. Addison-Wesley, second edition, 2000.
7. Engelbert Hubbers and Martijn Oostdijk. Generating JML specifications from

UML state diagrams. In Proc. Forum on specification and Design Languages
(FDL’03), September 2003.

8. Engelbert Hubbers, Martijn Oostdijk, and Erik Poll. From finite state machines
to provably correct Java Card applets. In Proc. IFIP SEC’03 Workshop on Small
Systems Security (WG 11.2), May 2003.

9. Kestrel Institute and Kestrel Technology LLC. SpecwareTM. Information at
http://www.specware.org.

10. W. Rankl and W. Effing. Smart Card Handbook. John Wiley and Sons, second
edition, 2000.

11. SRI International. The PVS specification and verification system. Information at
http://pvs.csl.sri.com.

12. Technical University of Munich and University of Cambridge. The Isabelle system.
Information at http://isabelle.in.tum.de.

13. University of Cambridge. The HOL system. Information at http://
www.cl.cam.ac.uk/Research/HVG/HOL.

10

