
CONSONA: Constraint Networks for the Synthesis of
Networked Applications

Lambert Meertens & Cordell Green

Asuman Suenbuel

asu@kestrel.edu

Stephen Fitzpatrick, Douglas Smith, Stephen Westfold

Kestrel Institute

Palo Alto, California

http://consona.kestrel.edu/

Q1: Technical Approach

• Develop goal-oriented techniques for modeling, designing and
synthesizing NEST applications and service packages

– express goals using time-based constraints

– model solution methods/service packages as progress conditions on
time-based constraints

• Co-design of applications & service packages

– exploit context to optimize
• multiple applications executing simultaneously over shared

middleware

• multiple service packages executing over shared communication

• Codify techniques as problem/solution taxonomies manipulated in
automated composition and refinement tools

– iteratively refine high-level goals into constraints satisfiable by
known solution methods

• Generate optimized code for solution methods

– use constraint propagation & maintenance techniques to optimize
communication & to direct searches

Example: UAV swarm

Step 1: State the problem

• Assumptions:

– UAVs communicate through wireless broadcasts

– range is limited (scalability!)

– signal strength can be used to estimate distance

• Safety requirements:

– vehicles must maintain safe distances

• Progress requirements:

– observe given area

– collect information in a timely manner

• “Non-functional” requirements:

– minimize energy expenditure

Refining requirements:
Maintain safe distance

Step 2: refine problem statement by strengthening constraints

• System-wide constraint:

– safe distances => projected flight cones should not intersect

• This constraint can be maintained by adjusting the flight paths

– => maintain knowledge of relative positions, velocities, …

Step 3: refine system-wide constraints into local form

• System-wide constraint => distributed constraint network:

– each UAV has a map of some other UAVs’ positions

– each UAV’s map must be consistent with observed signal strengths

• Constraint network can be maintained by each UAV adjusting
estimated positions

– need to maintain inter-map consistency as local adjustments are
independently made

• this is an instance of the general requirement of consistency in
distributed knowledge!

Generating Code

Step 4: optimize communication & searches

• Maintenance of constraint network => local variable updates

– local variable updates must be propagated
• optimization restricts propagation to needed information & to needed

recipients

– local variable updates must be coordinated
• stochastic, local algorithms

• self-stabilizing algorithms

Inspiration: Taxonomy of Algorithm Theories

Problem Theory
(D|I → R|O)

generate-and-test

Constraint Satisfaction
(R = set of maps) Global Structure

(R = set + recursive partition)
global search
binary Search

backtrack
branch-and-bound

Local Structure
(R = set + relation)

local search
hill climbing

simulated annealing
tabu search

Local Structure
(R = set + relation)
genetic algorithms

Local Poset Structure
(R = set + partial order)

Local Semilattice Structure
(R = semilattice)

GS-CSP
(R = recursively partitioned

set of maps)

GS-Horn-CSP
(Horn-like Constraints)
constraint propagation

Monotone
Deflationary Function
fixed point iteration

Integer
Linear

Programming
0-1 methods

Linear
Programming
simplex method

interior point
primal dual

Network Flow
specialized simplex

Ford-Fulkerson

Transportation
NW algorithm

Assignment Problem
Hungarian method

Divide-and-Conquer
divide-and-conquer

Problem Reduction
Generators

dynamic programming
branch-and-bound
game tree search

Complement
Reduction

sieves

Problem Reduction
Structure

….variants + combinations of algorithms…

Problem � global constraints + local platform capabilities

seq. const.
propagation ?

Ant algs.

sequential
algorithms
(traditional
algorithms design)

self-stabilization

spanning
“tree”

Extension to Distributed Constraints

distributed
local-repair

protocol
transformers

distributed
constraint propagation

Q2: Product type

• Middleware

• Application software

– Berkeley OEP

• Algorithms/theoretical foundations

– Methods for developing self-stabilizing algorithms and design
patterns for distributed systems

• Tools

– Integrated modeler-generator

Q3: NEST Technology Areas

• Coordination services

– models, specifications of NTP etc.

• time-bounded synthesis

– distributed anytime algorithms for constraint satisfaction

• service composition and adaptation

– composition of service packages and applications

– context dependent optimization

Q4: Challenge Area Classification

a) Primary: Lifecycle - our research creates design time tools and methods for
generating efficient runtime code based upon self-stabilizing algorithms

b) Secondary: Solution domain - our technology supports co-design of
applications and middleware

c) Solution domain issues: our technology addresses

• Primary:

- online reconfiguration

- probabilistic methods

• Secondarily:

- offline configuration (pre compilation)

- (fault tolerance)

• Could be applied to:

- time synchronization

- group membership & consensus

Q5: Initial Collaboration Plan

a) OEP collaboration

– Berkeley OEP

b) Group 1 collaboration:

– technical exchange with XEROX PARC
• constraint algorithms

• component-based expertise exchange

– open for other groups
• formal modeling of existing middleware e.g NTP

• developing stochastic local algorithms for distributed constraint
satisfaction

Q6: Integration Interface and Opportunities

a) Provide:
– framework for constraint based specification of service packages
– tools for composition and refinement
– Generic patterns and taxonomy for distributed self-stabilizing

algorithms
b) Need:

- standard Berkeley APIs
- initially NTP and point-to-point communication

Q7: OEP Framework Requirements

• On board clock

• Development environment

– compiler, debugger

– profiling tools, simulator

• Sensors & effectors
(we are considering an application involving distributed beam
focusing)

– photo-sensors

– actuactors for mirrors

Q8: Scalability

• Number of nodes:

– ~105

• Node memory

– application dependent

• Other specific scalability issues

– scalable communication mechanism
• e.g. local multicast rather than global broadcast

– scalable application

Q9: Training Requirements

• What knowledge is needed by researchers trying to integrate with/ use
your group technology?

– some understanding of first-order logic and temporal logic

– expressing application specifications as directed constraints

