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Recursive Length Prefix (RLP) is used to encode a wide variety of data in Ethereum, including
transactions. The work described in this paper provides a formal specification of RLP encoding and
a verified implementation of RLP decoding, developed in the ACL2 theorem prover. This work has
led to improvements to the Ethereum documentation and additions to the Ethereum test suite.

1 Problem and Contribution

Errors in cryptocurrency code may lead to particularly direct financial losses. This applies not only to
smart contracts, but also to the underlying execution engines, to wallets, and to other critical components.

In Ethereum [20], Recursive Length Prefix (RLP) [21, Page ‘RLP’] [23, Appendix B] is used to
encode a wide variety of data, including transactions. It is thus important for this fundamental building
block to be specified precisely and implemented correctly.

The work described in this paper contributes to this goal by providing a formal specification of RLP
encoding and a verified implementation of RLP decoding, developed in the ACL2 theorem prover [11].
The development is available [18, Path books/kestrel/ethereum/rlp] and thoroughly documented
[17, Topic rlp]. Some excerpts of the development shown in this paper are slightly simplified for brevity.

This work has led to improvements to the Ethereum Yellow Paper [23] and to the Ethereum Wiki [21],
which are major components of the Ethereum documentation. It has also led to additions to the Ethereum
test suite [19], which contains tests for all Ethereum implementations. See Section 5 for details.

This work is part of an ongoing effort to develop, in ACL2, a formal specification and a verified
implementation of a complete Ethereum client [12]. This formal specification will also be useful for
formally verifying existing client implementations, smart contracts at the level of the EVM (Ethereum
Virtual Machine), and the compilation of higher-level programming languages to EVM code.

2 Background

Ethereum uses RLP to encode transactions, which may include smart contract code to run on the EVM.
It also uses RLP to encode blocks, whose hashing plays a critical role in the blockchain paradigm. Thus,
errors in RLP encoders and decoders may lead, among other problems, to unexpected smart contract
code, or to incorrect block verification or mining.

RLP is specified informally in the Ethereum wiki (‘WK’ for short) [21, Page ‘RLP’] and more for-
mally in the Ethereum Yellow Paper (‘YP’ for short) [23, Appendix B].

RLP encodes nested sequences of bytes into flat sequences of bytes that can be decoded back into
the original nested sequences. These nested sequences are finitely branching ordered trees with flat
sequences of bytes at their leaf nodes and no additional information at the branching nodes. An example
is 〈〈[1,2,3],〈〉〉, [255], [ ]〉, where [. . .] denote leaf nodes and 〈. . .〉 denote branching nodes; this tree is
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Figure 1: An example RLP tree and its encoding.

depicted in Figure 1 (left). The leaf tree [ ] with the empty sequence of bytes differs from the branching
tree 〈〉 with no subtrees.1

WK calls the trees ‘items’, the branching trees ‘lists’, and the leaf trees ‘strings’ or ‘byte arrays’; it
uses Python notations "..." for strings (with the implicit assumption that characters consist of 8 bits)
and [...,...] for lists; it also uses lists [...,...] of numbers and characters for flat sequences of
bytes. YP uses a more explicit tree terminology; it uses a mathematical notation (. . . , . . .) for both leaf
and branching nodes, as well as for flat sequences of bytes. This paper uses the notations [. . .] and 〈. . .〉
shown earlier and in Figure 1.

RLP prescribes to encode non-negative integers by first representing them as base-256 big-endian
byte arrays without leading zeros (not even a 0 byte for the integer 0, which is represented as the empty
byte array), and then encoding those as any other leaf trees. Other than that, RLP does not prescribe
encodings for any data types, delegating that to the “users” of RLP.

Leaf and branching trees are encoded into byte arrays by recursively adding a few extra bytes before
most nodes to indicate the kind of node (leaf or branching) and the length of the subsequent bytes. These
extra bytes tell the decoder how to reconstruct the nodes of the tree.

Leaf trees [. . .] are encoded by encoding their byte arrays as follows. Singleton byte arrays whose
only byte is below 128 are encoded as themselves, without extra bytes. Other byte arrays whose length is
in the range 0–55 have an extra starting byte in the range 128–183, which is 128 plus the length. Longer
byte arrays have from 1 to 8 extra bytes that contain the base-256 big-endian no-leading-zeros length,
preceded by an extra byte in the range 184–191 that indicates the number of the base-256 big-endian
bytes—184 for 1, 185 for 2, . . . , and 191 for 8.

Branching trees 〈. . .〉 are encoded by first recursively encoding the subtrees and concatenating all the
encodings, and then adding one or more extra bytes to indicate the length of the concatenated encodings:
if the length is in the range 0–55, there is a single extra byte in the range 192–247, which is 192 plus
the length; otherwise, there are from 1 to 8 extra bytes that contain the base-256 big-endian no-leading-
zero length, preceded by an extra byte in the range 248–255 that indicates the number of the base-256
big-endian bytes—248 for 1, 249 for 2, . . . , and 255 for 8.

For instance, 〈〈[1,2,3],〈〉〉, [255], [ ]〉 is encoded as [201,197,131,1,2,3,192,129,255,128]. This is
illustrated in Figure 1 (right).

There is a symmetry between leaf and branch encodings with respect to small and large lengths:
the first 56 values of the 64 values in the range 128–191 or 192–255 are used for small lengths from
0 to 55, while the remaining 8 values are used for large lengths up to 264− 1, i.e. the maximum value
representable in 8 digits in base 256, since 2568 = 264. However, leaf trees have an additional shorter
encoding, when they consist of single bytes below 128.

1In this paper, a ‘leaf tree’ is one that consists of just one leaf node (which is also necessarily the root), while a ‘branching
tree’ is one that has (at least) a branching node as root.
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(fty::deftypes rlp-trees
(fty::deftagsum rlp-tree
(:leaf ((bytes byte-list)))
(:branch ((subtrees rlp-tree-list))))

(fty::deflist rlp-tree-list :elt-type rlp-tree))

Figure 2: Formalization of RLP trees in ACL2.

3 RLP Encoding

3.1 Tree Structures

As explained in Section 2, RLP encodes trees (i.e. nested byte sequences) into flat byte sequences (i.e.
byte arrays). These trees are formalized in Figure 2, using the FTY library [17, Topic fty].

The fty::deftagsum defines a tagged sum type (disjoint union) called rlp-tree. Leaf trees are
tagged by :leaf; branching trees are tagged by :branch. A leaf tree has a single component called
bytes of type byte-list, which consists of lists of natural numbers below 256 (its definition is not
shown). A branching tree has a single component called subtrees of type rlp-tree-list, defined
by the fty::deflist as consisting of lists of trees; :elt-type specifies the element type of the lists.
The surrounding fty::deftypes introduces rlp-tree and rlp-tree-list as mutually recursive types,
with rlp-trees as the name of the ensemble.

In more detail, the fty::deftagsum introduces a recognizer rlp-treep, a fixer rlp-tree-fix,
constructors rlp-tree-leaf and rlp-tree-branch for leaf and branching trees, accessors rlp-tree-
leaf->bytes and rlp-tree-branch->subtrees for leaf and branching trees, and several theorems
about these functions, which are all guard-verified. The fty::deflist introduces a recognizer rlp-
tree-listp, a fixer rlp-tree-list-fix, and theorems about these functions and existing list functions;
no specific constructors or accessors are introduced by fty::deflist, since the generic ones for lists
can be used.

In essence, Figure 2 defines the set T of trees as a least fixpoint of the recursive set equation T =
{0, . . . ,255}? ]T?, where {0, . . . ,255} is the set of bytes, X? is the set of all the finite sequences of
elements in X (Kleene star), and X ]Y is the disjoint union of X and Y . This is consistent with the
set-theoretic notation in YP, which uses O for {0, . . . ,255}, B for O?, and L for T?.

3.2 Encoding Functions

The encoding of RLP trees into byte arrays is formalized in Figure 3.
The function rlp-encode-bytes formalizes the encoding of the byte arrays at the leaves of RLP

trees, using the define enhancement of defun [17, Topic define], which supports type annotations for
arguments (abbreviating guards) and results (abbreviating theorems). The function rlp-encode-bytes
takes as input a list of bytes and returns as output a pair [17, Topic mv] consisting of a boolean error flag
and a list of bytes that is the RLP encoding of the argument. The error flag is t exactly when the input
consists of 264 or more bytes: in this case, the input cannot be RLP-encoded, and the second component
of the output is just nil, but irrelevant. Otherwise, the error flag is nil and the second component of the
output is the encoding.

First, rlp-encode-bytes fixes the argument to be a list of bytes via the fixer byte-list-fix (a
no-op under the guard), using the b* enhancement of let* [17, Topic b*]. Then there are four cases:

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____FTY
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____DEFINE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____MV
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____B_A2
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(define rlp-encode-bytes ((bytes byte-listp))
:returns (mv (error? booleanp) (encoding byte-listp))
(b* ((bytes (byte-list-fix bytes)))
(cond ((and (= (len bytes) 1) (< (car bytes) 128)) (mv nil bytes))

((< (len bytes) 56) (mv nil (cons (+ 128 (len bytes)) bytes)))
((< (len bytes) (expt 2 64))
(b* ((be (nat=>bebytes* (len bytes))))
(mv nil (cons (+ 183 (len be)) (append be bytes)))))

(t (mv t nil)))))

(defines rlp-encode-trees
(define rlp-encode-tree ((tree rlp-treep))
:returns (mv (error? booleanp) (encoding byte-listp))
(rlp-tree-case tree
:leaf (rlp-encode-bytes tree.bytes)
:branch (b* (((mv error? encoding) (rlp-encode-tree-list tree.subtrees))

((when error?) (mv t nil)))
(cond ((< (len encoding) 56)

(mv nil (cons (+ 192 (len encoding)) encoding)))
((< (len encoding) (expt 2 64))
(b* ((be (nat=>bebytes* (len encoding))))
(mv nil (cons (+ 247 (len be)) (append be encoding)))))

(t (mv t nil))))))
(define rlp-encode-tree-list ((trees rlp-tree-listp))

:returns (mv (error? booleanp) (encoding byte-listp))
(b* (((when (endp trees)) (mv nil nil))

((mv error? encoding1) (rlp-encode-tree (car trees)))
((when error?) (mv t nil))
((mv error? encoding2) (rlp-encode-tree-list (cdr trees)))
((when error?) (mv t nil)))

(mv nil (append encoding1 encoding2)))))

Figure 3: Formalization of RLP encoding in ACL2.

1. If the list consists of one byte and that byte is below 128, the operation is successful (i.e. the
error? result is nil) and the encoding is the singleton list of the byte itself.

2. Otherwise, if the list consists of l < 56 bytes, the operation is successful and the encoding is
obtained by prepending the byte 128+ l to the list of bytes.

3. Otherwise, if the list consists of l < 264 bytes, the operation is successful and the encoding is
obtained by prepending (i) the byte 183+ ll to the concatenation of (ii) the base-256 big-endian
no-leading-zeros representation of l of length ll (‘length of length’) and (iii) the initial list of bytes.
The library function nat=>bebytes* turns a natural number into a list of bytes as big-endian digits
in base 256, without leading zeros.

4. Otherwise, the operation fails: the list of bytes is too long to be encoded. To encode a list of 264 or
more bytes, 9 or more base-256 digits would be needed, i.e. it would be ll ≥ 9, and therefore the
first byte would be 192 or more, overlapping with the encoding of branching trees and preventing
a decoder from discriminating leaf and branching trees by the first byte of an encoding.

The function rlp-encode-bytes formalizes the function Rb in YP, which returns one result: either
the encoding (a byte sequence), or ∅ if the input byte sequence cannot be encoded. In the ACL2 for-
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mulation, it is more convenient to return two results, so that each result always has the same type. The
function nat=>bebytes*, mentioned above, formalizes the function BE in YP.

The function rlp-encode-tree formalizes the encoding of (both branching and leaf) trees. It takes
as input a tree and returns as output a pair consisting of a boolean error flag and a list of bytes that is the
RLP encoding of the argument—the same output types as rlp-encode-bytes.

First, rlp-encode-tree performs a case analysis on the argument via the macro rlp-tree-case,
generated by the fty::deftagsum in Figure 2. If tree is a leaf tree, rlp-encode-bytes is called on
the list of bytes in the leaf; the variable tree.bytes is bound to (rlp-tree-leaf->bytes tree) by
rlp-tree-case. If instead tree is a branching tree, rlp-encode-tree-list is called to encode each
subtree and concatenate their encodings (more details below); the variable tree.subtrees is bound to
(rlp-tree-branch->subtrees tree) by rlp-tree-case. The two results of rlp-encode-tree-list
are simultaneously bound to error? and encoding via b*’s support for binding patterns such as (mv
...). If rlp-encode-tree-list returns an error, rlp-encode-tree returns an error too, via b*’s
early-exit construct ((when ...) ...): if any subtree cannot be encoded, the tree cannot be encoded
either. Otherwise, there are three cases:

1. If the concatenated subtree encodings consist of l < 56 bytes, the overall operation is successful
and the overall encoding is obtained by prepending the byte 192+ l to the concatenated subtree
encodings.

2. Otherwise, if the concatenated subtree encodings consist of l < 264 bytes, the overall operation is
successful and the overall encoding is obtained by prepending (i) the byte 247+ ll to the concate-
nation of (ii) the base-256 big-endian no-leading-zeros representation of l of length ll and (iii) the
concatenated subtree encodings.

3. Otherwise, the overall operation fails, because the tree is too large to be encoded. To encode a
tree whose concatenated subtree encodings consist of 264 or more bytes, 9 or more base-256 digits
would be needed, i.e. it would be ll≥ 9, and therefore the first byte would be 256 or more, which
would not actually be a byte.

The function rlp-encode-tree-list formalizes the encoding of a list of (sub)trees and the concate-
nation of the resulting encodings. It takes as input a list of trees and returns as output a pair consisting of
a boolean error flag and a list of bytes that are the concatenated encodings of the argument trees; these
are the same output types as rlp-encode-tree. When the list of trees is empty, the result is the empty
list of bytes nil. Otherwise, the first tree is encoded, the remaining list of trees is encoded, and the two
resulting lists of bytes are concatenated. If any tree in the list cannot be encoded, an error is returned.

The functions rlp-encode-tree and rlp-encode-tree-list are mutually recursive. The macro
defines [17, Topic defines] groups mutually recursive functions that are introduced via define (and
also provides some enhancements over mutual-recursion), with rlp-encode-trees as the name of
the ensemble. Termination is proved automatically, based on the decreasing size of the argument trees,
which is explicitly supplied as measure (not shown).

The function rlp-encode-tree formalizes the function RLP in YP; the :branch case of the def-
inition of rlp-encode-tree formalizes the function Rl in YP. The function rlp-encode-tree-list
formalizes the function s in YP.

The functions rlp-encode-... are guard-verified; their guard verification proofs are essentially
automatic, with just a hint (not shown) to locally enable a rewrite rule that may be somewhat expensive
to be always enabled. The proofs of the result type theorems of the rlp-encode-... functions are
also proved essentially automatically, with just a hint (not shown) to locally enable a definition that is
normally kept disabled and to locally enable a linear arithmetic rule that may be somewhat expensive to
be always enabled. All these proofs make use of existing library rules about the functions called by the

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____DEFINES
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(define-sk rlp-tree-encoding-p ((encoding byte-listp))
:returns (yes/no booleanp)
(exists (tree) (and (rlp-treep tree)

(b* (((mv error? encoding1) (rlp-encode-tree tree)))
(and (not error?)

(equal encoding1 (byte-list-fix encoding))))))
:skolem-name rlp-tree-encoding-witness)

Figure 4: Formalization of valid RLP encodings in ACL2.

rlp-encode-... functions.
The rlp-encode-... functions provide a high-level specification of RLP encoding that also happens

to be executable. The definitions of these functions correspond very closely to the definitions in YP.
These definitions are also similar to the Python reference code in WK.

3.3 Valid Encodings

Valid encodings are formalized in Figure 4, using the define-sk enhancement [17, Topic define-sk]
of defun-sk [17, Topic defun-sk], which provides conveniences similar to define.

The predicate rlp-tree-encoding-p returns t exactly on the byte arrays that encode some trees.
Roughly speaking, this predicate characterizes the image of rlp-encode-tree, restricted to the second
result of that function, and subject to the constraint that the first result is nil. This predicate has a
declarative, non-executable definition.

3.4 Decodability Properties

RLP encodings are decodable, i.e. trees can be recovered from their encodings—a basic requirement for
any encoding method. This is expressed by the theorems in Figure 5: (i) the RLP encoding function is
injective, i.e. no two distinct trees have the same encoding; and (ii) the RLP encoding function is prefix-
unambiguous, i.e. no valid tree encoding is a strict prefix of another one. The second property ensures
the ability to decode from byte streams without “end-of-encoding” markers: if a valid encoding could be
a strict prefix of another valid encoding, then after reading the former, a decoder could either stop there
or proceed to decode a longer encoding, giving rise to an ambiguity.

Typically, the injectivity of a function f is stated as [x 6= y =⇒ f (x) 6= f (y)], with x and y universally
quantified, or equivalently as [ f (x) = f (y) =⇒ x = y]. Because [x = y=⇒ f (x) = f (y)] is always trivially
true, injectivity can be equivalently stated as [ f (x) = f (y)⇐⇒ x = y], which is usable as a rewrite rule.
If f operates on values of a type (predicate) τ , its injectivity restricted to values of that type can be stated
as [τ(x)∧ τ(y) =⇒ ( f (x) = f (y)⇐⇒ x = y)]; if f implicitly or explicitly fixes values outside τ via a
fixer φ for τ , injectivity can be equivalently stated as [ f (x) = f (y)⇐⇒ φ(x) = φ(y)],2 which is generally
preferable as a rewrite rule because it has no hypotheses. This is the formulation in Figure 5, applied to
the encoding results and with the necessary hypotheses that the error? results are nil; the results are
obtained via mv-nth [17, Topic mv-nth].

First, a theorem rlp-encode-bytes-injective, not shown here but analogous to rlp-encode-
tree-injective (with rlp-encode-tree and rlp-tree-fix replaced with rlp-encode-bytes and

2This is obtained by replacing x and y with φ(x) and φ(y) in [τ(x)∧ τ(y) =⇒ ( f (x) = f (y)⇐⇒ x = y)], and using the fact
that ∀z.τ(φ(z)) (i.e. φ is a fixer for τ) and ∀z. f (φ(z)) = f (z) (i.e. f fixes its argument). Conversely, assuming τ(x) and τ(y),
[ f (x) = f (y)⇐⇒ φ(x) = φ(y)] reduces to [ f (x) = f (y)⇐⇒ x = y] because ∀z.τ(z) =⇒ φ(z) = z (i.e. φ is identity over τ).

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=STD____DEFINE-SK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____DEFUN-SK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____MV-NTH
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(defthm rlp-encode-tree-injective
(implies (and (not (mv-nth 0 (rlp-encode-tree x)))

(not (mv-nth 0 (rlp-encode-tree y))))
(equal (equal (mv-nth 1 (rlp-encode-tree x))

(mv-nth 1 (rlp-encode-tree y)))
(equal (rlp-tree-fix x) (rlp-tree-fix y)))))

(defthm rlp-encode-tree-unamb-prefix
(implies (and (not (mv-nth 0 (rlp-encode-tree x)))

(not (mv-nth 0 (rlp-encode-tree y))))
(equal (prefixp (mv-nth 1 (rlp-encode-tree x))

(mv-nth 1 (rlp-encode-tree y)))
(equal (mv-nth 1 (rlp-encode-tree x))

(mv-nth 1 (rlp-encode-tree y))))))

Figure 5: ACL2 theorems asserting the decodability of RLP encodings.

byte-list-fix), is proved by first proving a variant lemma (not shown) with byte-listp hypotheses on
x and y and without byte-list-fix (i.e. the form [τ(x)∧τ(y) =⇒ ( f (x) = f (y)⇐⇒ x= y)] above). The
lemma is proved automatically, once the definition of rlp-encode-bytes is enabled via a hint, which
leads ACL2 to consider nine cases—three for x and three for y, corresponding to the three branches in the
definition of rlp-encode-bytes; see the documentation [17, Topic rlp] for details. Then the theorem is
easily proved from the lemma via a hint (not shown) to use the instance of the lemma where x and y are
replaced with (byte-list-fix x) and (byte-list-fix y). Attempting to prove the theorem directly,
with just the hint to enable the definition of rlp-encode-bytes, fails.

Then, the theorem rlp-encode-tree-injective is also proved by first proving a variant lemma
analogous to the one for rlp-encode-bytes-injective described above (i.e. the form [τ(x)∧τ(y) =⇒
( f (x) = f (y)⇐⇒ x = y)] above). Since rlp-encode-tree is mutually recursive with rlp-encode-
tree-list, this lemma is proved by induction along with a similar lemma about the injectivity of
rlp-encode-tree-list (not shown). The induction schemas that ACL2 automatically generates for
trees and for the encoding functions, which operate on single variables, do not work for these lemmas:
a new induction schema (not shown) is provided that operates on two variables simultaneously, such
as x and y in the lemmas; this new induction schema is more general than its use in this proof. Some
of the base and step cases of the induction are proved automatically, while others make use of some
fairly specific lemmas (not shown); see the documentation [17, Topic rlp] for details. The base case,
in which x or y is a leaf tree, makes use of rlp-encode-bytes-injective, the injectivity theorem for
rlp-encode-bytes.

The injectivity of the RLP encoding functions could be alternatively proved by defining RLP decod-
ing functions, proving that the latter are left inverses of the former, and using the inverse property to
prove injectivity.3 In contrast, the injectivity proofs explained above, which are not particularly difficult,
are solely in terms of the encoding functions, which is more elegant and abstract in my opinion.

The prefix-unambiguity theorem in Figure 5 says that if a valid encoding is a prefix of another valid
encoding, then the two encodings are equal; similarly to the injectivity theorem, this theorem also states
the obvious converse implication, making the theorem a more useful rewrite rule. The library function
prefixp tests whether the first argument is a (not necessarily strict) prefix of the second argument. Thus,

3If f has a left inverse g, then given f (x) = f (y), and applying g to both sides to obtain g( f (x)) = g( f (y)), the left inverse
property yields g( f (x)) = x = y = g( f (y)). Thus f is injective.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ETHEREUM____RLP
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ETHEREUM____RLP
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(define rlp-decode-tree ((encoding byte-listp))
:returns (mv (error? booleanp) (tree rlp-treep))
(b* ((encoding (byte-list-fix encoding)))
(if (rlp-tree-encoding-p encoding)

(mv nil (rlp-tree-encoding-witness encoding))
(mv t (rlp-tree-leaf nil))))) ; 2nd result irrelevant

Figure 6: Declarative definition of RLP decoding in ACL2.

the theorem prohibits a valid encoding from being a strict prefix of another valid encoding.
The theorem rlp-encode-tree-unamb-prefix is proved via a case split, specified as a hint (not

shown), on whether the lengths of the encodings are equal or not. If the lengths are equal, the encodings
must be equal since one is a prefix of the other; this is proved automatically via library theorems about
prefixp. If the lengths are not equal, a more general theorem (not shown) is used to show that the
lengths must be actually equal, proving this case by contradiction. That more general theorem says that
the length of an encoding is determined by the first few bytes of the encoding, because encodings start
with length information. Additional hints (not shown) guide ACL2 to recognizing that those first few
bytes must be the same for the two encodings if one is a prefix of the other.

4 RLP Decoding

4.1 Declarative Specification

The RLP decoding of trees from their encodings is formalized in Figure 6.
The function rlp-decode-tree takes as input a list of bytes that is the purported encoding and

returns as output a pair consisting of a boolean error flag and a tree. The error flag is nil exactly
when the input is a valid encoding of a tree: in this case, that tree is returned, via the witness function
rlp-tree-encoding-witness associated to rlp-tree-encoding-p in Figure 4 (more details on this
below). Otherwise, the error flag is t and the second component of the output is irrelevant.

The existentially quantified function rlp-tree-encoding-p is defined in terms of the witness func-
tion rlp-tree-encoding-witness (under the hood [17, Topic defun-sk]; see :skolem-name in Figure
4), which is axiomatized, via the matrix of the quantification, to be a right inverse of the encoding
function rlp-encode-tree: if encoding is a valid tree encoding, then (rlp-tree-encoding-witness
encoding) returns tree of type rlp-treep such that (rlp-encode-tree tree) returns (mv nil
encoding), i.e. no error and the original encoding. This readily implies that rlp-decode-tree is a
right inverse of rlp-encode-tree, as stated by the theorem rlp-encode-tree-of-rlp-decode-tree
in Figure 7: if encoding is a valid tree encoding (modulo byte-list-fix), then rlp-decode-tree suc-
ceeds and returns tree, and rlp-encode-tree succeeds on tree and returns the original encoding. This
is proved automatically, using easily proved theorems (not shown) about rlp-tree-encoding-witness.

Since, as discussed in Section 3.4, rlp-encode-tree is injective, rlp-decode-tree is also a left in-
verse of rlp-encode-tree,4 as stated by the theorem rlp-decode-tree-of-rlp-encode-tree in Fig-
ure 7: if tree is (modulo rlp-tree-fix) a tree, and rlp-encode-tree succeeds and returns encoding,
then rlp-decode-tree succeeds on encoding and returns the original tree. This is proved via a few

4In general, if a function f is injective and has a right inverse g, then g is also a left inverse of f : given the right inverse
property f (g(x)) = x, replacing x with f (y) yields f (g( f (y))) = f (y), which the injectivity of f reduces to g( f (y)) = y, i.e. the
left inverse property.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____DEFUN-SK
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(defthm rlp-encode-tree-of-rlp-decode-tree
(implies (rlp-tree-encoding-p encoding)

(b* (((mv d-error? tree) (rlp-decode-tree encoding))
((mv e-error? encoding1) (rlp-encode-tree tree)))

(and (not d-error?)
(not e-error?)
(equal encoding1 (byte-list-fix encoding))))))

(defthm rlp-decode-tree-of-rlp-encode-tree
(b* (((mv e-error? encoding) (rlp-encode-tree tree))

((mv d-error? tree1) (rlp-decode-tree encoding)))
(implies (not e-error?)

(and (not d-error?)
(equal tree1 (rlp-tree-fix tree))))))

Figure 7: ACL2 theorems asserting that RLP encoding and decoding are mutual inverses.

hints (not shown) to instantiate (replacing encoding with (mv-nth 1 (rlp-encode-tree tree))) and
use the right inverse theorem rlp-encode-tree-of-rlp-decode-tree, while the injectivity theorem in
Figure 5 is automatically used as a rewrite rule.

Figure 6 defines the RLP decoding function as inverse of the RLP encoding function. This is a
declarative, non-executable definition. YP does not explicitly define any RLP decoding function, but,
clearly, it implicitly defines it as inverse of the encoding function: this implicit definition is formalized in
Figure 6. WK provides Python reference code for RLP decoding, but the definition in Figure 6 is more
abstract and manifestly correct.

4.2 Executable Implementation

The function rlp-decode-tree in Figure 6 can be regarded as a high-level specification of RLP decod-
ing, which can be implemented by an equivalent executable function.

The executable decoding function is defined in terms of the executable RLP parser shown in Figure
8. This function is mutually recursive with the one in Figure 9. Similarly to Figure 3, these two functions
are surrounded by defines (not shown).

The function rlp-parse-tree takes as input a list of bytes and returns as output a triple consisting
of an error indication (nil if parsing is successful), a decoded tree (an irrelevant one if parsing fails),
and the remaining bytes after the parsed encoding (nil if parsing fails5). The parser stops as soon as a
tree is successfully decoded (because of theorem rlp-encode-tree-unamb-prefix in Figure 5, there
cannot be a longer encoding to parse), returning the remaining bytes for further parsing: thus, as lists
of trees are recursively parsed, the input bytes are threaded through, and consumed chunk-wise. The
function rlp-parse-tree-list takes as input a list of bytes and returns as output a pair consisting of an
error indication (similarly to rlp-parse-tree) and a list of decoded trees; it returns no remaining bytes
because it is always called (by rlp-parse-tree) on a sublist of the input of known length that must
exactly encode zero or more trees. The predicate maybe-rlp-error-p recognizes nil (for no error) and
error values (recognized by rlp-error-p, not shown) that convey information about different possible
parsing errors; the exact errors are not shown in Figure 8, replaced with ellipses.

5Returning nil as third result when parsing fail may seem an odd choice, compared to returning the remaining bytes whose
parsing caused the error, which could convey information about the error. However, this (and more) information is already
included in the error result, whose recognizer rlp-error-p is mentioned a few sentences later (but not explained in detail).
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(define rlp-parse-tree ((encoding byte-listp))
:returns (mv (error? maybe-rlp-error-p) (tree rlp-treep) (rest byte-listp))
(b* ((encoding (byte-list-fix encoding))

((when (endp encoding)) ...) ; error
((cons first encoding) encoding)
((when (< first 128)) (mv nil (rlp-tree-leaf (list first)) encoding))
((when (<= first 183))
(b* ((len (- first 128))

((when (< (len encoding) len)) ...) ; error
(bytes (take len encoding))
((when (and (= len 1) (< (car bytes) 128))) ...)) ; error

(mv nil (rlp-tree-leaf bytes) (nthcdr len encoding))))
((when (< first 192))
(b* ((lenlen (- first 183))

((when (< (len encoding) lenlen)) ...) ; error
(len-bytes (take lenlen encoding))
((unless (equal (trim-bendian* len-bytes) len-bytes)) ...) ; error
(encoding (nthcdr lenlen encoding))
(len (bebytes=>nat len-bytes))
((when (<= len 55)) ...) ; error
((when (< (len encoding) len)) ...) ; error
(bytes (take len encoding))
(encoding (nthcdr len encoding)))

(mv nil (rlp-tree-leaf bytes) encoding)))
((when (<= first 247))
(b* ((len (- first 192))

((when (< (len encoding) len)) ...) ; error
(subencoding (take len encoding))
(encoding (nthcdr len encoding))
((mv error? subtrees) (rlp-parse-tree-list subencoding))
((when error?) ...)) ; error

(mv nil (rlp-tree-branch subtrees) encoding)))
(lenlen (- first 247))
((when (< (len encoding) lenlen)) ...) ; error
(len-bytes (take lenlen encoding))
((unless (equal (trim-bendian* len-bytes) len-bytes)) ...) ; error
(encoding (nthcdr lenlen encoding))
(len (bebytes=>nat len-bytes))
((when (<= len 55)) ...) ; error
((when (< (len encoding) len)) ...) ; error
(subencoding (take len encoding))
(encoding (nthcdr len encoding))
((mv error? subtrees) (rlp-parse-tree-list subencoding))
((when error?) ...)) ; error

(mv nil (rlp-tree-branch subtrees) encoding)))

Figure 8: Executable parser of RLP encodings in ACL2 (Part 1).
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(define rlp-parse-tree-list ((encoding byte-listp))
:returns (mv (error? maybe-rlp-error-p) (trees rlp-tree-listp))
(b* (((when (endp encoding)) (mv nil nil))

((mv error? tree encoding1) (rlp-parse-tree encoding))
((when error?) ...) ; error
((unless (mbt (< (len encoding1) (len encoding)))) ...) ; error
((mv error? trees) (rlp-parse-tree-list encoding1))
((when error?) ...)) ; error

(mv nil (cons tree trees))))

Figure 9: Executable parser of RLP encodings in ACL2 (Part 2).

The parser operates as follows (cf. the encoding functions in Figure 3):
1. It fixes the encoding input to be a list of bytes (a no-op under the guard).
2. If the input list of bytes is empty, an error is returned: RLP encodings are never empty.
3. Otherwise, the encoding input is matched to the (cons first encoding) pattern, binding the

variable first to the first byte of the encoding and the (new) variable encoding to the rest of the
encoding. This way, the first byte can be examined to determine what to do next.

4. If the first byte is below 128, it encodes the singleton list of itself, and so the byte is returned as a
leaf tree.

5. If the first byte is in the range 128–183, the encoding must be of a byte array with length below 56.
The length is calculated: if not enough bytes occur after the first, an error is returned; otherwise,
the bytes are returned as a leaf tree. An error is also returned if there is just one byte below 128;
see Section 4.2.1.

6. If the first byte of the encoding is in the range 184–191, the encoding must be of a byte array whose
length len is encoded by the next lenlen bytes after the first one, as a base-256 big-endian no-
leading-zeros list. After obtaining lenlen from the first byte, an error is returned if there are not
enough bytes to encode the length. An error is also returned if the encoded length has leading zeros
(the library function trim-bendian* removes all the leading zeros from a list of big-endian digits);
see Section 4.2.1. Otherwise, the library function bebytes=>nat, inverse of nat=>bebytes* in
Figure 3, is used to calculate the length len of the encoded byte array. An error is returned if this
length is below 56; see Section 4.2.1. If there are enough bytes after the first and the next lenlen
bytes, they are returned as a leaf tree.

7. If the first byte of the encoding is in the range 192–247, the encoding must be of a branching tree
whose subtrees have a total encoded length below 56. That exact number of bytes is passed to
rlp-parse-tree-list (which is described in more detail below), which returns an error indica-
tion (nil if no error) and the list of decoded trees, which are wrapped into a branching tree and
returned. As above, an error is returned if there are not enough bytes in the input. Any error from
rlp-parse-tree-list is returned by rlp-parse-tree.

8. If the first byte of the encoding is in the range 248–255, the encoding must be of a branching tree
whose length len is encoded by the next lenlen bytes after the first one, as a base-256 big-endian
no-leading-zeros list. The processing of lenlen and len is analogous to the case in which the first
byte is in the range 184–191 (explained above), including returning errors if there are leading zeros
in the length or if len is below 56 (see Section 4.2.1). Similarly to the case in which the first byte
is in the range 192–247, rlp-parse-tree-list is called with the exact number of bytes to parse,
any error from that call is propagated, and ultimately (if no errors occur) the decoded branching
tree is returned.
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(define rlp-decodex-tree ((encoding byte-listp))
:returns (mv (error? maybe-rlp-error-p) (tree rlp-treep))
(b* (((mv error? tree rest) (rlp-parse-tree encoding))

((when error?) ...) ; error
((when (consp rest)) ...)) ; error

(mv nil tree)))

Figure 10: Executable definition of RLP decoding in ACL2.

The function rlp-parse-tree-list in Figure 9 takes as input a list of bytes purported to encode
zero or more trees and returns as output a pair consisting of an error indication (nil if no error) and
a list of decoded RLP trees. Unlike rlp-parse-tree, it does not return any remaining input bytes, as
explained earlier.

The body of rlp-parse-tree-list decodes trees while there are input bytes available, stopping if
an error occurs and propagating that error. After each tree is decoded, the remaining bytes are recursively
parsed. The mbt expression serves to prove termination, as discussed below.

The termination of the mutually recursive functions rlp-parse-tree and rlp-parse-tree-list
is proved automatically once a measure (not shown) is provided. The measure is lexicographic: it con-
sists of the length of the input list of bytes, followed by a linear ordering of the two functions de-
fined by rlp-parse-tree being smaller than rlp-parse-tree-list. When rlp-parse-tree calls
rlp-parse-tree-list, the first component of the measure decreases. When rlp-parse-tree-list
calls rlp-parse-tree, the first component is unchanged but the second decreases. When rlp-parse-
tree-list calls itself, the first component also decreases, because RLP encodings are never empty, and
therefore the preceding call of rlp-parse-tree must have consumed some input bytes. The latter is a
property of rlp-parse-tree, but in order to prove this property, the function must be first accepted by
ACL2, requiring its termination to be proved. This circularity is broken via the run-time test (< (len
encoding1) (len encoding)), which gets the function definition accepted by ACL2. The mbt around
the test avoids executing the test at run time [17, Topic mbt].

The guard verification proofs, which involve the truth of the aforementioned mbt test, are automatic
after proving a theorem saying that the third result of rlp-parse-tree, i.e. the remaining input bytes, is
strictly shorter than the input. This theorem (not shown) is proved automatically after supplying a hint to
expand the definition of rlp-parse-tree, which otherwise ACL2’s heuristics apparently prevent from
expanding.

The executable RLP decoding function for trees is defined in Figure 10; the ‘x’ in its name stands
for ‘executable’, as opposed to the declaratively defined decoding function in Figure 6. This decoding
function takes as input a list of bytes, purported to be a complete encoding with no extra bytes,6 and
returns as output a pair consisting of an error indication (nil if decoding is successful) and a tree—
whose value is irrelevant if the first result is not nil. A tree is decoded by calling the parser and ensuring
that there are no remaining bytes.

4.2.1 Rejection of Invalid Quasi-Encodings

As mentioned above, the parser rejects “quasi-encodings” of the following forms:

6This executable decoding function is meaningful as implementation of the inverse of the encoding function declaratively
defined in Figure 6. It can be used when the lengths of the purported encodings are known. When the lengths are not known,
e.g. when decoding from byte streams, the executable parser in Figure 8 can be used instead.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____MBT
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(defthm rlp-parse-tree-of-rlp-encode-tree
(b* (((mv e-error? encoding) (rlp-encode-tree tree))

((mv d-error? tree1 rest) (rlp-parse-tree encoding)))
(implies (not e-error?)

(and (not d-error?)
(not (consp rest))
(equal tree1 (rlp-tree-fix tree))))))

(defthm rlp-encode-tree-of-rlp-parse-tree
(b* (((mv d-error? tree rest) (rlp-parse-tree encoding))

((mv e-error? encoding1) (rlp-encode-tree tree)))
(implies (not d-error?)

(and (not e-error?)
(equal (append encoding1 rest)

(byte-list-fix encoding))))))

Figure 11: ACL2 theorems asserting that RLP encoding and parsing are mutual inverses.

• [129,x] with x < 128: this “could” encode (a leaf tree consisting of) a singleton byte array [x], but
RLP prescribes the encoding [x] in this case.

• [183+ ll, l1, . . . , lll,x, . . .] with 1≤ ll≤ 8 and l1 = 0: this “could” encode (a leaf tree consisting of) a
byte array [x, . . .] of length l = ∑1≤i≤ll li×256ll−i, but RLP prescribes the absence of leading zeros
in the base-256 big-endian representation of l.

• [184, l,x, . . .] with 0 < l < 56: this “could” encode (a leaf tree consisting of) a byte array [x, . . .] of
length l, but RLP prescribes the encoding [128+ l,x, . . .] in this case.

• [247+ ll, l1, . . . , lll,x, . . .] with 1 ≤ ll ≤ 8 and l1 = 0: this “could” encode a branching tree whose
concatenated encoded subtrees have length l = ∑1≤i≤ll li×256ll−i, but RLP prescribes the absence
of leading zeros in the base-256 big-endian representation of l.

• [248, l,x, . . .] with 0 < l < 56: this “could” encode a branching tree whose concatenated encoded
subtrees have length l, but RLP prescribes the encoding [192+ l,x, . . .] in this case.

These are not valid encodings because they do not satisfy the predicate in Figure 4. While they “could”
be encodings in the sense mentioned above, they are “non-optimal”: shorter valid encodings exist.

When implementing RLP decoding, the rejection of these quasi-encodings may be easily overlooked.
My initial writing of the parser failed to reject these quasi-encodings; I discovered the problem when
failing to prove the right inverse property in Section 4.3. The Python reference code in WK used to
accept these quasi-encodings, and some existing RLP implementations used to accept or still accept
them as well (see Section 5).

While it may seem benign to accept these quasi-encodings, they are not in the image of the RLP en-
coding function. Also see https://gitter.im/ethereum/research/archives/2016/07/30; search
for ‘consensus rule’. A possible problematic scenario is a database that uses RLP encodings as keys:
if different encodings for the same item were accepted, the item could be stored multiple times in the
database.

4.3 Verification of Correctness

The first step toward proving that the executable definition in Figure 10 is equivalent to the declarative
definition in Figure 6 is to prove that the tree parsing and encoding functions are mutual inverses, which
is expressed by the theorems in Figure 11.

https://gitter.im/ethereum/research/archives/2016/07/30
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The first theorem in Figure 11 says that rlp-parse-tree is a left inverse of rlp-encode-tree over
the encodable trees, i.e. the parser recognizes and reconstructs all valid encodings of trees. More in detail,
it says that if rlp-encode-tree succeeds, then rlp-parse-tree succeeds on the resulting encoding,
returning the original tree (modulo fixing) and no remaining bytes (i.e. it consumes the whole encoding).
Since rlp-parse-tree is mutually recursive with rlp-parse-tree-list, and rlp-encode-tree is
mutually recursive with rlp-encode-tree-list, that theorem is proved at the same time as another
theorem (not shown) that says that rlp-parse-tree-list is a left inverse of rlp-encode-tree-list.
These two theorems are proved by induction on rlp-encode-tree and rlp-encode-tree-list, via
the make-flag macro [17, Topic make-flag]. The proof is automatic once the definitions of these
and other functions are enabled, and some hints (not shown) are provided to force the expansion of
some calls of rlp-parse-tree; see the documentation [17, Topic rlp] for details. The proof also
makes use of a previously proved more general rewrite rule (not shown) saying that if rlp-parse-tree
succeeds on encoding, returning a tree and some remaining bytes rest, it also succeeds on an extended
input (append encoding more-bytes), returning the same tree and (append rest more-bytes) as
remaining bytes.

The second theorem in Figure 11 says that rlp-parse-tree is a right inverse of rlp-encode-tree
over the valid tree encodings, i.e. the parser recognizes and reconstructs only valid encodings of trees:
if it accepted an invalid encoding and returned a tree, rlp-encode-tree would have to map that tree
back to the encoding, which would be therefore valid, contradicting the hypothesis that it is invalid.
More in detail, the theorem says that if rlp-parse-tree succeeds, then rlp-encode-tree succeeds on
the resulting tree, returning the prefix of the original encoding (modulo fixing) that omits the remain-
ing bytes returned by rlp-parse-tree. Analogously to the left inverse theorem described above, this
theorem is proved at the same time as another theorem (not shown) about rlp-parse-tree-list and
rlp-encode-tree-list, via make-flag; the proof, by induction on rlp-parse-tree and rlp-parse-
tree-list7, is automatic once the definitions of these and other functions are enabled.

If the parser accepted the quasi-encodings discussed in Section 4.2.1, the left inverse theorem would
still hold, but the right inverse theorem would not.

The fact that rlp-decodex-tree in Figure 10 is both a left and a right inverse of rlp-encode-tree
easily follows from the theorems in Figure 11. This fact is asserted by two theorems (not shown) that
are written as in Figure 7 but where rlp-decode-tree is replaced with rlp-decodex-tree. The left
inverse theorem is proved automatically once the definition of rlp-decodex-tree is enabled; the first
theorem in Figure 11 applies as a rewrite rule. The right inverse theorem, besides enabling the definition
of rlp-decodex-tree, requires a couple of hints (not shown) to use the second theorem in Figure 11,
since the append in it does not make it readily applicable as a rewrite rule in this case.

The equivalence of rlp-decodex-tree and rlp-decode-tree is stated by the theorem in Figure 12.
Since rlp-decode-tree returns a boolean error result while rlp-decodex-tree returns a richer range
of error results, the first results of these two functions are only iff-equivalent, i.e. one is nil if and only
if the other one is nil; their second results are always equal instead.

The theorem in Figure 12 is proved by cases on whether (rlp-tree-encoding-p encoding) holds
or not. A preliminary lemma (not shown) is proved, with a few hints and a couple of simple intermediate
lemmas, asserting the equivalence of (i) rlp-tree-encoding-p returning t and (ii) rlp-decodex-tree
returning a nil error result. If rlp-tree-encoding-p holds:

7In ACL2, as in NQHTM [4, Chapt. 15], induction is applicable when the arguments that decrease in the recursion are
variables. Thus, while the left inverse theorems are proved by induction on rlp-encode-tree and rlp-encode-tree-list,
the right inverse theorems are proved by induction on rlp-parse-tree and rlp-parse-tree-list.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____MAKE-FLAG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ETHEREUM____RLP
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(defthm rlp-decode-tree-is-rlp-decodex-tree
(and (iff (mv-nth 0 (rlp-decode-tree encoding))

(mv-nth 0 (rlp-decodex-tree encoding)))
(equal (mv-nth 1 (rlp-decode-tree encoding))

(mv-nth 1 (rlp-decodex-tree encoding)))))

Figure 12: ACL2 theorem asserting the correctness of the executable RLP decoder.

• The first conjunct in Figure 12 is proved via a few hints, using the aforementioned lemma and the
definition of rlp-decode.

• The second conjunct in Figure 12 is proved via a few hints, from rlp-encode-tree-injective
and the right inverse properties of rlp-decode-tree and rlp-decodex-tree.8

If rlp-tree-encoding-p does not hold, both conjuncts are proved via a few hints, using the aforemen-
tioned preliminary lemma and the definitions of rlp-decode-tree and rlp-decodex-tree.

5 Related Work and Impact

RLP is formally defined in YP.9 Based on the ACL2 development, I contributed some improvements to
that definition (see Pull Requests 700, 736, 739, 742, 745, and 746 at https://github.com/ethereum/
yellowpaper) and helped close some outstanding items (see Pull Request 648 and Issue 116 at https:
//github.com/ethereum/yellowpaper).

RLP is informally defined in WK. Previously, the Python reference code for RLP decoding in WK
accepted the quasi-encodings described in Section 4.2.1. Based on the ACL2 development, I contributed
a fix to reject those quasi-encodings (see Issue 688 at https://github.com/ethereum/wiki).

The KEVM [7] [22] includes executable specifications of RLP encoding and decoding.10 The decod-
ing specification covers all encodings, while the encoding specification only covers byte arrays and some
data types that are encoded like byte arrays. There are no theorems stating that the specified encoding and
decoding are mutual inverses. The decoding specification appears to accept some of the quasi-encodings
described in Section 4.2.1 (see Issue 413 at https://github.com/kframework/evm-semantics).

The Lem EVM [9] [8] includes a partial (apparently in progress) Isabelle/HOL specification of RLP
encoding and decoding.11 The type of RLP trees is much like Figure 2. There is a complete specification
of RLP encoding, but only a partial specification of RLP decoding. There are no theorems stating that
the specified encoding and decoding are mutual inverses.

There are several implementations of RLP, in libraries and Ethereum clients, written in mainstream
programming languages. Some of these implementations used to accept, or still accept, the quasi-
encodings described in Section 4.2.1 (e.g. see Issue 1639 at https://github.com/ethereum/aleth
and Issue 49 at https://github.com/paritytech/parity-common).

The Ethereum test suite [19] contains JSON-formatted tests for all Ethereum implementations, in-
cluding tests for RLP encoding and decoding. Previously, this test suite included a few tests for rejecting
some, but not all, of the five kinds of quasi-encodings described in Section 4.2.1. Based on the ACL2 de-
velopment, I contributed additional tests to cover all the five kinds of quasi-encodings (see Pull Request

8In general, if an injective function f has right inverses g and h, then g = h: from the right inverse properties f (g(x)) = x =
f (h(x)), injectivity gives g(x) = h(x).

9Using “pencil-and-paper” mathematical notation, not in a theorem prover or similar tool.
10The KEVM is an evolving artifact. The following assertions are current at the time of this writing.
11The Lem EVM is an evolving artifact. The following assertions are current at the time of this writing.

https://github.com/ethereum/yellowpaper/pull/700
https://github.com/ethereum/yellowpaper/pull/736
https://github.com/ethereum/yellowpaper/pull/739
https://github.com/ethereum/yellowpaper/pull/742
https://github.com/ethereum/yellowpaper/pull/745
https://github.com/ethereum/yellowpaper/pull/746
https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper/pull/648
https://github.com/ethereum/yellowpaper/issues/116
https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper
https://github.com/ethereum/wiki/issues/668
https://github.com/ethereum/wiki
https://github.com/kframework/evm-semantics/issues/413
https://github.com/kframework/evm-semantics
https://github.com/ethereum/aleth/issues/1639
https://github.com/ethereum/aleth
https://github.com/paritytech/parity-common/issues/49
https://github.com/paritytech/parity-common
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612 at https://github.com/ethereum/tests).
There is extensive work on formal verification and analysis of (Ethereum and other) smart contracts,

for which just some references are provided here [1] [2] [3] [5] [6] [7] [9] [10] [13] [14] [15] [16]. That
work is complementary to the ACL2 RLP development, whose focus is (a component of) the platform
that runs smart contracts. However, as mentioned in Section 1, this platform-focused work can support
smart contract verification, by providing the underlying formal semantics of smart contracts.

6 Future Work

Alternative, perhaps more efficient, implementations of the RLP parser and decoder in Section 4.2 could
be written and verified, comparing their proof efforts and techniques with Section 4.3.

It could be investigated how to derive, via stepwise refinement, verified and efficient RLP parser and
decoder implementations from the declarative specification in Section 4.1, using the APT (Automated
Program Transformations) toolkit [17, Topic APT]. This may require the development of additional, but
more generally applicable, APT transformation tools.

The RLP parser and decoder in Section 4.2 are given the complete purported encodings, or more, as
input. However, practical implementations may read the input bytes as needed, e.g. from a socket. It
could be investigated how to extend the specification, implementation, and proof to accommodate this
approach. In this case, additional customizable length checks should be probably added, to thwart denial-
of-service-style attacks consisting in supplying the first few bytes of very long encodings, e.g. close to
the 264 limits.

The RLP parser and decoder in Section 4.2 process encodings completely, i.e. to the full depth
of the RLP trees. However, practical implementations may process encodings up to a specified tree
depth initially, then to lower depths as needed. It could be investigated how to extend the specification,
implementation, and proof to accommodate this approach. These new parser and decoder will need to
accept invalid encodings that are however valid up to the specified depths, requiring a corresponding
weakening of their specification.

While RLP is an important component of Ethereum, clearly a lot more work remains to extend the
development described in this paper to a complete Ethereum client. This remaining work is in progress
[18, Path books/kestrel/ethereum] [17, Topic ethereum].
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Appendix: Background on ACL2

This Appendix is not part of the published paper on EPTCS, but is included in the web version of the
paper to make it more self-contained. Without this Appendix, the two documents are the same.

Logic

ACL2 is a general-purpose interactive theorem prover.
It is based on an untyped first-order logic of total functions that is an extension of a purely functional

subset of Common Lisp.12

Predicates are functions and formulas are terms. They are false when their value is nil, and true
when their value is t or anything else non-nil.

Syntax

The ACL2 syntax is consistent with Lisp.
A function application is a parenthesized list consisting of the function’s name followed by the argu-

ments, e.g. x+2× f (y) is written (+ x (* 2 (f y))).
Comments extend from semicolons to line endings.
Names of variables, functions, theorems, and other entities are Lisp symbols, which are partitioned

into packages. The canonical way to denote a symbol is pkg::sym, where pkg is the package name and
sym is the symbol name. However, if pkg is the current package (as declared at the top of the file where
the symbol reference occurs), sym suffices to denote the symbol; examples are x, y, +, *, and f above.

A package pkg2 may import a symbol pkg::sym, in which case pkg2::sym and pkg::sym denote
the same symbol. In particular, sym denotes that symbol when the current package is pkg or pkg2.

Symbols in the built-in keyword package are written as :sym. These are often used as tags that look
the same in any current package.

Macros

ACL2’s Lisp-like macro mechanism provides the ability to extend the language with new constructs
defined in terms of existing constructs.

Examples are cond, b*, and defun-sk, described below. Other examples used in this paper are
define, define-sk, fty::deftagsum, and fty::deflist.

Conditionals

The basic conditional (if a b c) is non-strict: in execution, first a is evaluated, then either b or c is
evaluated (never both), based on whether a evaluates to non-nil or to nil.

The generalized conditional (cond ((c1 e1) ... (cn en))) evaluates each ci in sequence until
one returns non-nil, in which case the value of the corresponding ei is returned as result of the cond; if
every ci evaluates to nil, the result of the cond is nil. It is common for cn to be t, for ‘otherwise’. The
conditional cond is a macro defined as a nest of ifs, from which it inherits non-strictness.

12Matt Kaufmann and J Strother Moore, “A Precise Description of the ACL2 Logic”, Technical Report, Department of
Computer Sciences, University of Texas at Austin, April 1998, https://www.cs.utexas.edu/users/moore/publications/
km97a.pdf.

https://www.cs.utexas.edu/users/moore/publications/km97a.pdf
https://www.cs.utexas.edu/users/moore/publications/km97a.pdf
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Binders

The basic binder (let ((x1 e1) ... (xn en)) e) simultaneously binds each variable xi (which must
be distinct from the others) to the value of ei and then returns the value of e.

The macro b* is a more general binder, which is defined in terms of lets and ifs. In its simple form
(b* ((x1 e1) ... (xn en)) e), it is a sequential let construct: the variable x1 is bound to the value of
e1, then the variable x2 (which may be the same as x1) is bound to e2 (which may reference x1), and so
on; the final result is the value of e. In its general form (b* ((b1 e1) ... (bn en)) e), each bi may be
a pattern that binds multiple variables simultaneously, or an early-exit condition of the form (when ci)
or (unless ci) for immediately returning the value of ei if ci is non-nil (for when) or nil (for unless)
and no early-exit b j with j < i applies.

Types, Recognizers, and Fixers

Since the ACL2 logic is untyped, in ACL2 ‘type’ denotes just any subset of the universe of values.
A type is normally characterized by a ‘recognizer’ (in Lisp terminology), i.e. a predicate that returns

t (or non-nil) exactly on the values of the type. For example, natp is the recognizer of natural numbers.
As another example, bytep is the recognizer of (8-bit) bytes.13

A type may also have a fixing function, or ‘fixer’ for short, i.e. a function that “fixes” values outside
the type to be values inside the type, and leaves values already inside the type unchanged. For example,
nfix maps every natural number to itself and all other values to the natural number 0. As another
example, byte-fix maps every byte to itself and all other values to the byte with all 0 bits.

The FTY library [17, Topic fty] provides macros to associate recognizers and fixers to type names,
and to build structured, possibly recursive, types (records, unions, etc.) out of other types. For example,
the recognizer natp and the fixer nfix are associated to the type name nat. As another example, the rec-
ognizer bytep and the fixer byte-fix are associated to the type name byte. When the FTY macros are
used to build types out of other types, they generate not only recognizers and fixers, but also constructors
and accessors, as well as many boilerplate theorems that relate all these functions.

Proofs and Automation

The user interacts with ACL2 by submitting a sequence of theorems, function definitions, etc. ACL2
attempts to prove theorems automatically, via algorithms similar to NQTHM [4], most notably simpli-
fication and induction. The user guides these proof attempts mainly by (i) proving lemmas for use by
specific proof algorithms (e.g. rewrite rules for the simplifier) and (ii) supplying theorem-specific ‘hints’
(e.g. to case-split on certain conditions).

This paper says that a theorem is proved ‘automatically’ to mean that the proof involves no hints (at
all, or none besides the ones explicitly mentioned) as well as no lemmas that are specific to the theorem
(at all, or none besides the ones explicitly mentioned). However, it may, and generally does, involve
more generic library theorems, i.e. the theorem is typically not proved “from scratch”.

Functions

Function definitions are introduced via defun.
For example, the factorial function can be defined as

13In ACL2, as in Lisp, it is common to end predicate names with p.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____FTY
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(defun fact (n)
(if (zp n) 1 (* n (fact (- n 1)))))

where zp tests if n is 0 or not a natural number, * is multiplication, and - is subtraction. ACL2 integers
are unbounded,14 as in Lisp.

Via the zp test, fact treats arguments that are not natural numbers as 0. ACL2 functions often handle
arguments of the wrong type by explicitly or implicitly coercing them to the right type. This coercion
may be implicit, as in fact, or explicit by calling a fixer for the type.

To preserve logical consistency, recursive function definitions must be proved to terminate via a
measure of the arguments that decreases in each recursive call according to a well-founded relation. For
fact, ACL2 automatically finds a measure and proves that it decreases according to a standard well-
founded relation, but sometimes the user has to supply a measure.

Theorems

Theorems are introduced via defthm.
For example, a theorem saying that fact is (non-strictly) above its argument can be stated as

(defthm above
(implies (natp n) (>= (fact n) n)))

where natp tests if n is a natural number (as also explained earlier), >= is the greater-than-or-equal-to
relation on numbers, and implies is logical implication.

If a standard arithmetic library [18, Path books/arithmetic] is loaded, ACL2 proves this theo-
rem automatically, finding and using an appropriate induction rule—the one derived from the recursive
definition of fact, in this case.

Indefinite Descriptions

Besides the discouraged ability to introduce arbitrary axioms, ACL2 provides some logical-consistency-
preserving mechanisms to axiomatize new functions, such as indefinite description functions.

For example, a function constrained to be strictly below fact can be axiomatized as
(defchoose below (b) (n)
(and (natp b) (< b (fact n))))

where b is the variable bound by the indefinite description, < is the less-than relation on numbers, and
and is logical conjunction. This introduces the logically conservative axiom that, for every n, (below n)
is a natural number less than (fact n), if any exists—otherwise, (below n) is unconstrained.

In formal logic, an indefinite description is typically written as εx.P(x) and read as ‘choose an x
such that P(x)’. It denotes some unspecified x that satisfies P if at least one exists; if none exists,
εx.P(x) is unspecified, but is known not to satisfy P. In ACL2, defchoose introduces a named, possibly
parameterized, indefinite description; in more conventional notation, the function below could be written
as below(n) = εb. [b ∈ N ∧ b < n!].

Quantification

Despite the lack of built-in quantification in the logic, functions with top-level quantifiers can be intro-
duced via macros.

For instance, the existence of a value strictly between fact and below can be expressed by a predicate
defined as

14Subject to memory limitations during execution.

https://github.com/acl2/acl2/tree/master/books/arithmetic
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(defun-sk between (n)
(exists (m) (and (natp m) (< (below n) m) (< m (fact n)))))

where defun-sk is a macro defined in terms of defchoose and defun, following a well-known construc-
tion:15 ∃x.P(x) def

= P(εx.P(x)), where the indefinite description εx.P(x) is explained above. A defun-sk
introduces the indefinite description as a ‘witness’ function via defchoose (called between-witness
for between, but not appearing explicitly in the definition of between above) and defines the function
(i.e. between) via defun with a body obtained by instantiating, in the matrix of the quantification (i.e.
(and (natp m) ...) for between), the quantified variable (i.e. m for between) with the witness func-
tion applied to the arguments (i.e. (between-witness n) for between). The default name of the witness
function if obtained by concatenating the function name with -witness; the name of the witness function
can be customized via the :skolem-name option (not shown in the definition of between above).

Guards

ACL2 functions are total, i.e. well-defined for all possible argument values. Nonetheless, ACL2 supports
an optional guard mechanism to constrain function domains and ensure that functions are always called
in their constrained domains.

For example, a guarded version of fact can be introduced as

(defun gfact (n) ; a guarded function
(declare (xargs :guard (natp n)))
(if (zp n) 1 (* n (gfact (- n 1)))))

which requires the argument to be a natural number. The functions called by gfact also have guards: the
argument of zp must be a natural number; the arguments of - and * must be numbers; and, recursively,
the argument of gfact must be a natural number.

To guard-verify gfact, ACL2 generates proof obligations for all the arguments of all the functions
called by gfact, taking into account the context induced by if; these proof obligations are proved
automatically in this case. To guard-verify functions that call gfact, ACL2 generates proof obligations
requiring that gfact is always called with a natural number as argument.

Lists

Finite sequences are represented as lists in ACL2. List operations include the following:
• nil denotes the empty list. (It also denotes logical falsehood, as explained earlier.)
• (cons a x) adds the element a in front of the list x.
• (list a1 ... an) returns the list with the given elements, in that order; the list has length n.
• (car x) returns the first element of the (non-empty) list x.
• (cdr x) removes the first element from the (non-empty) list x.
• (len x) returns the length (i.e. number of elements) of the list x.
• (endp x) returns t if the list x is empty, otherwise it returns nil.
• (nth n x) returns the element at position n (0-based) in the list x of length greater than n.
• (take n x) returns the list of the first n elements of the list x of length at least n.
• (nthcdr n x) removes the first n elements from the list x of length at least n.

15Jeremy Avigad and Richard Zach, “The Epsilon Calculus”, The Stanford Encyclopedia of Philosophy, Edward N. Zalta
(editor), Summer 2016 Edition, Metaphysics Research Lab, Stanford University, https://plato.stanford.edu/archives/
sum2016/entries/epsilon-calculus/.

https://plato.stanford.edu/archives/sum2016/entries/epsilon-calculus/
https://plato.stanford.edu/archives/sum2016/entries/epsilon-calculus/
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Typed Lists

Lists with elements of the same type generally have recognizers called <type>-listp, fixers called
<type>-list-fix, and (possibly) FTY types called <type>-list.

For example, lists of natural numbers have recognizer nat-listp, fixer nat-list-fix, and type
nat-list. As another example, lists of bytes have recognizer byte-listp, fixer byte-list-fix, and
type byte-list.

Multiple Results

Functions that return multiple results may do so by returning a list. Using mv (for ‘multiple value’) to
construct the list is logically equivalent to using list (see above), but is more efficient in execution. It
avoids constructing, and thus allocating memory for, the list; instead, the values are kept and handled
separately. ACL2 enforces certain restrictions on the use of mv in order to maintain this separation.

For example, a function to return both quotient and remainder of a division of natural numbers can
be defined as

(defun quorem (a b)
(declare (xargs :guard (and (natp a) (natp b) (not (equal b 0)))))
(mv (truncate a b) (rem a b)))

When accessing components of multiple results in logical formulas, mv-nth is used, which is logi-
cally equivalent to nth (see above). This is because the expansion of mv binders (e.g. in b*) produces
mv-nth calls.

Execution

The executable subset of the ACL2 language is essentially a subset of Lisp, which can therefore run
efficiently on the underlying Lisp platform, especially when the functions are guard-verified. When
guards are satisfied at run time, the underlying Lisp functions cannot cause run-time errors; when guards
are verified at compile time, the checks for their satisfaction are omitted at run time.

Expressions, including defining bodies of functions, may have the form (mbe :logic a :exec b),
where mbe means ‘must be equal’. Logically, the expression is equivalent to a, but in execution it is
equivalent to b; as part of guard verification, it must be proved that a and b are equal under the guards.
Typically, b is more efficient, while a is logically simpler and handles values outside the guards.

The expression (mbt a), where mbt means ‘must be true’, abbreviates (mbe :logic a :exec t).
It logically performs tests that are satisfied under the guards, without executing them at run time.

Some fixers have guards requiring the argument, say x, to satisfy the corresponding recognizer, and
have a defining body of the form (mbe :logic ... :exec x). In this case, fixing is a no-op during
execution, but it logically coerces values outside the type to be treated as values inside the type. An
example is the fixer byte-list-fix, used in this paper.
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