
A Software Platform for Fractionated Spacecraft
Abhishek Dubey, William Emfinger, Aniruddha Gokhale, Gabor Karsai, William R. Otte, Jeffrey Parsons, Csanád Szabó

Institute for Software Integrated Systems
Vanderbilt University

1025 16th Ave S, Suite 102
Nashville, TN 37212

{dabhishe, emfinger, gokhale, gabor, wotte, parsons, csanad}@isis.vanderbilt.edu
Alessandro Coglio and Eric Smith

Kestrel Institute
3260 Hillview Avenue
Palo Alto, CA 94304

{coglio, eric.smith}@kestrel.edu

Prasanta Bose
Advanced Technology Center (ATC)

Lockheed Martin Space Systems Company
3251 Hanover Street
Palo Alto, CA 94304

prasanta.bose@lmco.com

Abstract—A fractionated spacecraft is a cluster of independent
modules that interact wirelessly to maintain cluster flight and
realize the functions usually performed by a monolithic satellite.
This spacecraft architecture poses novel software challenges
because the hardware platform is inherently distributed, with
highly fluctuating connectivity among the modules. It is critical
for mission success to support autonomous fault management
and to satisfy real-time performance requirements. It is also
both critical and challenging to support multiple organizations
and users whose diverse software applications have changing de-
mands for computational and communication resources, while
operating on different levels and in separate domains of security.

The solution proposed in this paper is based on a layered ar-
chitecture consisting of a novel operating system, a middleware
layer, and component-structured applications. The operating
system provides primitives for concurrency, synchronization,
and secure information flows; it also enforces application sep-
aration and resource management policies. The middleware
provides higher-level services supporting request/response and
publish/subscribe interactions for distributed software. The
component model facilitates the creation of software applica-
tions from modular and reusable components that are deployed
in the distributed system and interact only through well-defined
mechanisms.

Two cross-cutting aspects - multi-level security and multi-
layered fault management - are addressed at all levels of the
architecture. The complexity of creating applications and per-
forming system integration is mitigated through the use of a
domain-specific model-driven development process that relies
on a dedicated modeling language and its accompanying graph-
ical modeling tools, software generators for synthesizing infras-
tructure code, and the extensive use of model-based analysis for
verification and validation.

TABLE OF CONTENTS

ABSTRACT . 1
1 INTRODUCTION . 1
2 THE OPERATING SYSTEM: F6OS 2
3 THE MIDDLEWARE: F6ORB . 5
4 THE COMPONENT MODEL: F6COM 7
5 PLATFORM ACTORS . 10
6 FAULT MANAGEMENT . 12
7 SECURITY . 16
8 MODEL-DRIVEN DEVELOPMENT 16
9 RELATED WORK . 18

978-1-4577-0557-1/12/$26.00 c©2012 IEEE.

10 CONCLUSIONS . 18

ACKNOWLEDGMENTS . 18

REFERENCES . 18

1. INTRODUCTION
A fractionated spacecraft distributes its functions across mul-
tiple modules that communicate via wireless links and that
fly as a cluster [1]. Modules may be heterogeneous and
may contain multiple sensors and computing nodes. The
architecture is highly dynamic; the cluster deployment can
include varying mission applications that take advantage of
the computing and sensing devices available in arbitrary
configurations. The cluster architecture itself may change;
modules can join and leave the cluster at any time. Fur-
thermore, the architecture must exhibit fault tolerance: if
a software application, sensor, node, or module fails, the
cluster must (preferably autonomously) reconfigure itself and
continue operations. Finally, the spacecraft could serve as
an open platform for executing multiple missions for various
stakeholders whose information flows must be strictly regu-
lated by security policies.

The above challenges have a significant impact on the de-
sign of the software architecture. Ultimately, the software
infrastructure provides the platform for system integration;
over the lifetime of the system, the physical structure changes
infrequently (with the exception of adding and removing
modules), but the deployed software applications and the
information flows that connect them to the sensing and com-
munication resources are highly variable. This necessitates
a systems engineering approach where the software system
itself is designed for change and evolution.

Advanced software and systems engineering approaches are
based on models. With the advent of UML for software
systems and SysML for systems in general, model-driven
development and engineering practices are gaining accep-
tance. While modeling is fundamental to all engineering,
the explicit use of models in implementation (synthesis) and
verification (analysis) has only recently started to appear
in the industry. The model-driven engineering of software
systems is codified in the OMG’s vision for Model-Driven
Architecture (MDA) [2].

This paper introduces an information architecture called

1

F6MDA (F61 MDA) for fractionated spacecraft. F6MDA
consists of (1) a layered component-based software platform
that provides resource management, fault management, and
multi-level security (MLS) [3] services, and (2) a suite of
model-driven development tools that support software ap-
plication development and system integration. As shown
in Figure 1, the layers of the software platform are: (i)
F6OS, an operating system that provides core abstractions
for concurrency, synchronization, resource management, and
secure communications; (ii) F6ORB, a middleware layer
that implements the essential communication services for the
distributed system; and (iii) F6COM, a component model
that defines how components are built and how applications
are constructed from components. Components are grouped
into actors, which are temporally and spatially isolated from
each other, and may be distributed and replicated across
nodes. Application actors form applications; one application
may be split across multiple application actors, potentially
on different nodes and modules. Platform actors provide
system-level services.

There are a number of cross-cutting aspects in the architec-
ture: resource management, fault management, and MLS.
These are addressed partially by each layer, and partially by
cross-layer dedicated services. The architecture is complex,
hence developers need the support of model-driven develop-
ment tools that facilitate the high-level specification of com-
ponents, interfaces, and the architecture of the applications.
Such models are used to synthesize the engineering artifacts
needed to build and deploy the applications on the software
platform.

Figure 1. Overview of F6MDA

The paper is structured as follows. First, we describe the three
layers of the software platform: F6OS, F6ORB, and F6COM.
Then we describe platform actors. Next, two cross-cutting
issues are discussed: fault management and the security ser-
vices. After this, we present the model-driven development
process and the tools used. Finally, we summarize essential
related work and conclude the paper.

2. THE OPERATING SYSTEM: F6OS
F6OS provides the necessary abstractions to manage the re-
sources available to all applications: CPU, memory, network,
file system space, and threads. It also provides the low-
level computing and communication services needed to run
applications according to MLS policy. An instance of F6OS
runs on each node of each module of a cluster, as well as on
each ground node that communicates with the cluster.

1Short for ‘Future, Fast, Flexible, Fractionated, Free-Flying Spacecraft
united by Information eXchange’ [1].

F6OS enforces strict limits on resource use, ensures fault
isolation among applications, and weakens the opportunities
for information leakage. This behavior is achieved by the
partitioning of computing resources: CPU time and memory.
Partitioning has been extensively used in avionics systems (cf.
Integrated Modular Avionics [4]) and provides strong fire-
walls between applications for fault and information contain-
ment. Faults introduced in one partition do not propagate to
other partitions. Information flows across partitions can take
place only via mechanisms provided by the operating system,
and all shared resources (e.g., peripheral devices) must be
encapsulated into their own partitions to avoid unintended
interference among partitions. Figure 2 shows the schematic
of F6OS.

Threads and Actors

A thread is the smallest unit of execution in F6OS. F6OS
threads are similar to threads in typical operating systems.
F6OS views an actor as a collection of threads that share a
unique, isolated memory space. The relationship between
threads and components is discussed in Section 4. F6OS
actors are similar to processes in typical operating systems.
F6OS ensures that actors are spatially separated, that is, no
two actors share any memory space. As usual in modern
operating systems, actors run in user space, which is sep-
arated from kernel space where F6OS runs. User space is
virtualized: each actor sees an independent copy of the user
space. An application is a collection of actors, possibly
running on different nodes. Note that F6OS has no notion
of an ‘application’, just that of an ‘actor’. Which actors
constitute which applications is a notion that is external to
F6OS.

There are two kinds of actors:
• Application actors, which make up applications and per-
form mission-specific tasks. They can be dynamically in-
stalled and removed. Application actors include services that
encapsulate mission-specific devices (e.g., a camera).
• Platform actors, which complement and extend F6OS by
providing services that are essential for other actors to run
on the node. They run in user space but can make system
calls (e.g., to install application actors) that application actors
cannot make.

Platform actors perform functions that have complex imple-
mentation logic that is developed and verified independently
of F6OS. These functions are kept separate from F6OS for
efficiency reasons. Modern operating systems often rely on
such capabilities (e.g., daemons in Linux, services in Win-
dows). This approach also provides more security, because a
faulty or compromised platform actor will cause less damage.
There are six platform actors, shown in Figure 2. Platform
actors are present on all nodes, and they are in the Trusted
Computing Base (TCB) along with F6OS. F6OS and the
platform actors form the foundation that supports application
actors, as described in Section 5.

Partitions and Scheduling

A (temporal) partition is a periodically repeating interval that
provides a slice of CPU time to one or more actors. (Allowing
several actors to share a partition can lead to more efficient
use of the CPU, but this choice has security implications as
described in Section 7.) Actors in different partitions are
temporally firewalled from each other, and even actors in
the same temporal partition are spatially separated (separate
memory spaces and file systems). At most one partition is
running on the CPU at any given time, and each application

2

Figure 2. Overview of F6OS

actor belongs to a single partition. Each partition has a period
and a duration, which determine cyclically repeating time
intervals in which the partition’s actors can run. Platform
actors run in the system partition and are not subject to
temporal partitioning. That is, they run on demand and
concurrently with any application actor active at the moment.

The scheduler is responsible for maintaining temporal par-
titioning and scheduling the active threads. It is also re-
sponsible for managing the relative CPU utilization limit
imposed on an actor. The F6OS scheduler divides CPU
time into a periodically repeating sequence of time intervals
called hyperperiods. The hyperperiod value is calculated
as the least common multiple of the periods of all temporal
partitions. Thus, every partition executes one or more times
within a hyperperiod. The temporal interval associated with
a hyperperiod is known as a major frame. The major frame
is subdivided into several smaller time windows called minor
frames, each of which belongs exclusively to one partition.
The length of each minor frame is the same as the duration
of the corresponding partition. A partition is awakened at the
beginning of its minor frame and put into a dormant state at
each frame’s end.

The F6OS scheduler has the following states:

• Initial, when the system boots up. Upon boot, the platform
actors are initialized. Once all the platform actors are run-
ning, the Deployment Manager (described in Section 5) de-
ploys and runs the initial set of application actors as specified
by the initial deployment plan;
• Active, when the application actors are running. The
scheduler keeps executing the partition schedule;
• Paused, in which only the system partition is scheduled so
that platform actors can run (to change the scheduling table).

System Calls

Actors interact with F6OS exclusively via system calls, which
cross the boundary between user and kernel space and al-
ways return within a bounded time—each system call has a
timeout. Some system calls are privileged, that is, they can
be made only by specific platform actors, and not by any
application actors.

System calls are divided into the categories listed in Table 1,
where regular and privileged system calls are distinguished.
The table begins with the most common categories of calls
that are available to any actor. These are followed by cate-
gories that have both regular and privileged calls. The table
ends with the categories that contain only privileged system
calls. The platform actors allowed to access the privileged
calls of each category are listed in the table as well. All
application and platform actors can access all the regular
system calls.

Regular Privileged Platform Actors

Timer
Synchronization
Actor Management Privileged A. M.

Deployment Manager

Thread Management Privileged T. M.
File Management Privileged F. M.
Secure Transport Privileged S. T.
Audit Privileged Audit

Partition
Management
Scheduling
Security
Actor Management
Notification

Fault Manager

Network
Management

Communication Re-
source Manager

Table 1. System call categories in F6OS

Restricted access to system calls is enforced by F6OS based
on the identity of the calling actor—F6OS knows the iden-
tities of the platform actors, which are always present in
the node. These restrictions ensure that an application actor
cannot use privileged system calls to change the system
behavior in a way that can affect other actors or create covert
channels (e.g., by manipulating partitions).

MLS and Labels

In order to clarify subsequent discussion, we introduce the
basic concepts of MLS and labels. MLS is typically based
on n linearly ordered, hierarchical classification levels (e.g.,
Unclassified < Confidential < Secret < Top Secret) and
m non-hierarchical need-to-know categories (e.g., mission
identifiers) [3]. Levels and categories give rise to n × 2m

security labels: a label is a pair 〈L,C〉 where L is a level and
C is a set of categories. A label L1 = 〈L1, C1〉 dominates a
label L2 = 〈L2, C2〉 iff L1 ≥ L2 and C1 ⊇ C2, i.e., L1 has
at least the same level and categories as L2. Labels and the
domination relation form a lattice [5].

The MLS policy is that information can flow only from
lower to higher or between equal labels (according to the
domination relation), e.g., a Secret process for mission A can
read Confidential or Secret data for mission A, but not Top
Secret data for mission A or Secret data for mission B. In
practical systems, trusted applications are allowed to transfer
information against the policy, e.g., to declassify sanitized
data.

F6MDA supports applications from different organizations
on the same cluster. Different organizations may have dif-
ferent labeling domains, e.g., NATO and the US have slightly
different levels. If applications from different domains are
isolated, a global MLS policy reduces to the individual do-

3

mains’ MLS policies. However, if applications with different
domains need to exchange data (e.g., for cooperative space
missions), a global MLS policy is less straightforward. A
typical approach is to define mappings between the labels
of the different domains (e.g., US Secret could be mapped
to NATO Secret) and to re-label data that crosses domains
according to those mappings.

F6MDA’s approach is to use multiple-domain labels [6]: a
multiple-domain label has the form [D1]L1C1 . . . [Dp]LpCp,
where D1, . . . , Dp are p ≥ 1 distinct (identifiers of) domains
and each 〈Li, Ci〉 is a label in Di as defined earlier, consisting
of a level Li and a set of categories Ci. In the rest of
this paper, the stand-alone term ‘label’ exclusively denotes
a multiple-domain label. Data exchanged among multiple
domains carries labels with levels and categories for all those
domains (p > 1), e.g., [US]TS{A}[NATO]CTS{A} labels data
that is both US Top Secret and NATO Cosmic Top Secret
for joint mission A. Data used exclusively within one domain
carries labels with levels and categories for just that domain
(p = 1), e.g., [US]C{B} labels data that is US Confidential for
mission B.

We have used the Isabelle/HOL theorem prover [7] to formal-
ize the syntax and semantics of labels and to prove that they
form a lattice. Domination for multi-domain labels is defined
as domination in every individual domain, and the absence
of a domain in a label is equivalent to its presence with its
minimum level and the empty set of categories. Details of
the formalization and proofs will be published in a separate
paper.

Actor Communications: Secure Transport and Networking

F6OS provides the mechanisms of endpoints and flows to
support communication between actors deployed on the same
node or on different nodes. An endpoint is a logical “port”
that an actor can read/write messages from/to, via system
calls. A flow logically connects a write endpoint to one or
more read endpoints. The mechanism that securely delivers
messages between endpoints through flows is called Secure
Transport and is built into F6OS. All actors, including the
platform actors, lack any other means to communicate with
each other. Endpoints and flows are created by the Deploy-
ment Manager, as it implements a deployment plan.

F6OS assigns to each actor and to each endpoint a set of
one or more labels and enforces the constraint that an actor’s
labels must include all the labels of the actor’s endpoints.
Each message has a security label, chosen by the sending
actor from among the write endpoint’s labels, which are
among the sending actor’s labels. A message is delivered
to a read endpoint only if the message’s label is among the
read endpoint’s labels, which are among the receiving actor’s
labels. Thus, message exchanges comply with MLS.

MLS does allow information to flow from lower to strictly
higher labels. However, since a message has a label that must
be among both the sending and the receiving actor’s labels,
F6OS does not allow, for example, an actor with a single label
L to send a message directly to an actor with a single label
L′ that strictly dominates L. A third actor with both labels
L and L′ must mediate the transmission, by re-labeling the
message from L to L′, which complies with MLS. This is a
design choice: the complication of having mediating actors is
balanced by the increased simplicity of the Secure Transport
and avoids the question of whether the message should be
labeled L, L′, or both.

The networking layer of F6OS is abstracted away from the
actors by the Secure Transport system calls. From the actors’
perspective, messages are sent on the write endpoint and
received on the read endpoint. The mechanism of communi-
cation remains the same, except for differences in latency and
bandwidth, whether communicating actors are on the same
node or on different nodes.

When a message is exchanged between two actors on differ-
ent nodes, the message and its label are transmitted across the
network, cryptographically protected end-to-end, between
the two nodes. Each node has a public key, used to establish
the needed cryptographic protection (e.g., using IPsec). The
sending node checks that the message’s label is among the
read endpoints’ labels on the receiving nodes before sending
the message; for robustness and protection from compromise,
the receiving node repeats that check on every incoming
message.

Each flow is associated with a Quality of Service (QoS)
class. This association is made during the creation of the
flow. Along with the QoS class, F6OS provides the ability
to associate QoS parameters (e.g., priority, maximum packet
rate) with a flow. F6OS uses these parameters to put the
message in the correct rate-based device queue or limit the
network usage of an actor. If an actor exceeds its bandwidth
limits it receives an error. F6OS drops messages for the time
interval in which the actor tries to send data exceeding its
bandwidth limits. The actor is responsible for limiting (if
necessary, decreasing) its network usage.

The Communication Resource Manager (CRM) is the plat-
form actor responsible for managing the network resource.
Each module has a wireless network interface that connects it
to other modules. The quality of the network service is highly
variable due to the orbital mechanics of the modules. It is
also a very precious resource that requires access control. The
CRM achieves such access control by managing classification
rules in order to prioritize packets and to control the utiliza-
tion of a priority class. The CRM manages the bandwidth
access and utilization of local actors per mounted network
device. It also implements the resource sharing policies for a
given application concerning: (1) authorized communication
links that the actor is allowed to use, (2) maximum transmit
bandwidth to be used by the actor (per mounted network
device), and (3) classification rules for a given endpoint.
An actor can communicate through different endpoints with
different QoS requirements.

The CRM continuously monitors link quality (as reported by
the networking device), and modifies the routing tables and
classification rules (thus the logic for admission control and
routing), optimizing the utilization of the network. CRMs
deployed on the cluster also share information with each other
to optimize the performance of the network. The main driving
requirement for the optimization is the changing bandwidth
on the various wireless links. Through CRM coordination,
congestion control can be performed as well.

F6OS is designed to support communication over the hierar-
chical networks that are present in the context of fractionated
spacecraft. At the module level, nodes will be interconnected
by a wired local area network. A dedicated node equipped
with a wireless inter-module communication device will act
as a gateway to other modules in the cluster. At the cluster
level, modules may have several options to reach the ter-
restrial network. A module may use a direct ground link
that provides a high bandwidth connection within a limited

4

time window. Modules with actors that have permanent
availability requirements may use a Broadband Global Area
Network (BGAN) [8] link. Admission control to these links
is performed per actor by CRMs on the gateway modules.

Classification
rules

Momentary link state information

Target Link
bandwidth

Link
delay

Link
quality

… … …. ….

… …. …. ….

CRM
Updates routing tables and

classification rules periodically

Comm.
Device
Driver

Comm.
Device
Driver

R
O

U
TI

N
G

 T
A

B
LE

UPDATE

USER SPACE

KERNEL SPACE

Priority
Queues

SE
C

U
R

E
TR

A
N

SP
O

R
T

 E
N

D
P

O
IN

TS

Classification
rules

Priority
Queues

Figure 3. Overview of F6OS networking

Figure 3 gives an overview of the F6OS networking layer,
which supports three use cases: transmit, receive, and for-
ward. The routing table, which is periodically refreshed by
the CRM, determines the network device for the transmit
and forward cases and the read endpoint for the receive case.
The classification rules are maintained per mounted network
device. Based on these rules, F6OS inserts each message
into the priority queue that conforms to the QoS class of the
message. This classification is done only in the transmit and
forward cases, after the routing decision is made.

File And Auditing Services

In addition to assigning a separate address space to each actor,
F6OS also assigns a separate, isolated, and quota-controlled
file system to each actor.

Moreover, F6OS logs audit data about the system calls it
receives and their outcomes. Audit settings are done via
privileged system calls. Furthermore, F6OS provides system
calls for actors to log actor-specific audit data.

Audit data is stored in internal files by F6OS. Audit data is
partitioned by actor: the audit data generated by a system call
is added to the audit log of the actor that makes the system
call. An actor can only append new data to its audit log; it
cannot read, modify, or delete existing data in any audit log
(with the exception of the Operations Manager, as described
in Section 5).

To prevent audit data flooding, privileged system calls can
set a cap on the size and rate of audit data produced by an
actor. If the maximum size is reached, the oldest audit data is
overwritten by the newest audit data. If the maximum rate is
reached, the actor’s execution is paused until the next minor
frame for that actor.

3. THE MIDDLEWARE: F6ORB
Commonly available operating system and network layer
services are low-level, and do not, in themselves, provide

support for good reusable abstractions and design patterns
for effective software development. A middleware layer
can provide such reusable abstractions and services, which
reduces complexity and increases productivity of software de-
velopers. In F6MDA, developers build actors using F6ORB,
a middleware that (1) hides lower-level F6OS services (in
particular, the Secure Transport), (2) specifies a well-defined
set of communication patterns, both local and remote, that
reduce complexity, and (3) provides a set of reusable, generic
services that all actors can use. As shown in Figure 1, F6ORB
is part of user space actors. However, it is implemented as a
reusable library.

F6ORB provides two communication mechanisms between
actors, described in the next two subsections:
• Synchronous and asynchronous point-to-point communi-
cation, built using a subset of the Common Object Request
Broker Architecture (CORBA) standard [9]. This interaction
is mostly suitable for control or management aspects, where
a request is often accompanied by a response.
• Anonymous publish/subscribe, built using a subset of the
Data Distribution Service (DDS) standard [10]. This inter-
action is ubiquitous and provides one-to-many, many-to-one,
and many-to-many distribution patterns for transmitting data
in a global data space. Often, due to the nature of the distribu-
tion pattern, this interaction is inefficient to implement with a
point-to-point communication approach.

Synchronous and Asynchronous Point-to-Point Communica-
tion

The CORBA standard is a mature distributed object comput-
ing middleware that is standardized by the Object Manage-
ment Group. CORBA provides robust facilities for automat-
ing many important tasks in F6MDA, namely:
• Location transparency: Actor code need not be concerned
with the location of objects that it interacts with. From the
perspective of the actor, it may interact with remote objects
as if they were local. The ORB, in conjunction with the De-
ployment Manager, handles the mechanics of transparently
routing the request to the remote host.
• Request (de)multiplexing: In the likely event that an actor
provides multiple interfaces that are part of the same logical
connection between two hosts, the ORB and Object Adapter
ensure that requests and responses are routed to the correct
destination.
• Error handling: The ORB can automate many common
error handling tasks in distributed actors, including: request
timeouts, re-tries in the event of transient failures, etc. More-
over, CORBA provides an exception facility that can be used
to communicate both application- and system-level errors to
application logic in a descriptive manner.
• Parameter (de)marshaling: CORBA includes a well de-
fined mechanism for serializing and deserializing complex
data types for transmission on the network, called Common
Data Representation.

The real-time nature of the F6MDA environment requires
that F6ORB provide deterministic and predictable behavior,
insofar as possible given changing network conditions. As
a result, F6ORB explicitly excludes many of the dynamic
features of CORBA that are not required for the fractionated
spacecraft environment and would unnecessarily complicate
the middleware implementation. A recent OMG standard,
CORBA for Embedded [11] (CORBA/e), provides an excel-
lent starting point for reducing the profile of the CORBA
specification. F6ORB adheres to a modified version of the
CORBA/e Micro profile, described below, which excludes
support for most dynamic CORBA features and optional

5

CORBA services for event channels, load balancing, security,
and naming. CORBA/e Micro explicitly excludes support
for the CORBA Any datatype, which allows an arbitrary
IDL2 datatype to be stored. However, F6ORB includes
support for the CORBA Any datatype. These simplifications
significantly reduce the implementation complexity and run
time footprint of F6ORB.

Unlike CORBA implementations for standard environments,
F6ORB does not interact directly with the network to route
messages to remote ORBs, and is not aware of the actual ex-
ternal address of itself or any of the remote ORBs that it may
be interacting with. This is because all network connections
are established via Secure Transport endpoints and flows as
outlined in Section 2. Though seemingly rigid, this approach
supports changing the connections between two ORBs with-
out relying on the user space untrusted code (outside F6OS
and platform actors), while ensuring that the connection
satisfies MLS. However, as a result, the normal methods of
creating object references are insufficient to provide location
transparency to remote objects, and ORBs are incapable of
creating their own references that are usable by a remote host.
An object reference created by an ORB is usable only to route
a request to a particular object once the request has arrived at
its destination ORB. It is the responsibility of the Deployment
Manager and Dictionary Manager, described in Section 5, to
manage the creation of the Secure Transport endpoints and to
rewrite the object reference when establishing connections.

F6ORB Thread Management—F6ORB does not include any
of the complex dynamic thread management capabilities
included in CORBA or Real-Time CORBA (RTCORBA).
F6ORB, in nominal operation, is expected to have two or
more threads that operate in the following roles:
• Scheduler: This thread operates as the main ORB event
loop. It is responsible for listening for incoming requests,
decoding any received messages, and dispatching a worker
thread to handle the request. While a worker thread is
actively servicing a request, the scheduler is responsible for
monitoring the worker for deadline violations.
• Worker: These threads are responsible for processing re-
quests in the application. When the scheduler provides an
incoming request, the worker is released and provided to the
actor code to service the request.

F6ORB Communication— F6ORB uses the General Inter-
ORB Protocol (GIOP) version 1.4. This latest version of the
protocol supports fragmented messages, which are necessary
in order to support unreliable datagram oriented protocols
(e.g., UDP), which may be used by F6OS.

Given the maximum limit on the messages sent over an end-
point and received over an endpoint (as discussed in Section
2), F6ORB provides support for fragmenting requests and re-
sponses based on the endpoint size, and appending sequence
numbers to them such that F6ORB on the recipient side can
re-assemble the messages. The re-assembly timeout can be
changed. After the timeout, for unreliable transmissions, the
messages can be dropped on the recipient side if a fragment
is missing. For reliable transmissions, the recipient ORB can
request a retransmission of a missing fragment.

The ORB provides appropriate support for the OSI Layer 4
protocol supported by F6OS. If the underlying protocol is
unreliable, F6ORB provides support for fragmenting requests

2Interface Definition Language, a language to describe datatypes indepen-
dently from specific programming languages. Mappings between IDL and
mundane programming languages exist.

that exceed the maximum transmission unit (MTU) supported
by the protocol, and for implementing an acknowledgement
protocol to ensure reliable transmission of fragmented re-
quests over an unreliable network.

Anonymous Publish/Subscribe

Anonymous publish/subscribe is an important abstraction for
building distributed systems, and it allows construction of
application architectures that are more loosely coupled than
is possible with remote method invocation technologies such
as CORBA. F6ORB leverages a subset of features from the
DDS standard from the OMG. DDS has seen wide adoption
in many mission- and safety-critical applications in both
military and commercial sectors.

DDS provides three important features to F6MDA:
• Loose coupling. Publishers and subscribers are matched
through the use of topics. A topic includes a datatype, a
unique name, Quality of Service (QoS) policies, and other
attributes. Publishers and subscribers indicate interest in a
topic, and the middleware handles the mechanics of matching
these participants.
• Quality of Service. A rich set of QoS policies describe
the requirements and behavior of the system, and allows
the middleware to automatically enforce properties such as
reliability, sample lifespan, data rates, etc.
• Low overhead. DDS minimizes the performance and band-
width overhead necessary to implement the above advanced
features.

The full DDS standard is, however, unsuitable for use
in F6MDA. F6ORB provides only the Data Centric Pub-
lish/Subscribe (DCPS) layer of the DDS specification, which
provides the basic support for efficient dissemination of data
from publisher to subscriber. The main reasons for the
unsuitability of full DDS are:
• The dynamic discovery mechanism through which pub-
lishers and subscribers are matched may incur unreason-
able bandwidth overhead, especially over inter-module links.
Moreover, the discovery mechanism is not MLS-aware.
• Many of the QoS policies included in the full specification
are impractical to implement in the context of F6MDA due
to limited resources, constrained bandwidth, unpredictable
latency, and unreliable connections.
• The DDS built-in topics that are used to communicate sys-
tem status to participants may establish unpredictable covert
channels that communicate information to lower-labeled ac-
tors about the presence and activity of higher-labeled actors.

The DDS implementation in F6ORB is realized using in-
terfaces found in the DDS for Lightweight CCM [12] [13]
(DDS4CCM) specification. DDS4CCM provides a set of
pseudo objects that provide a substantially simplified pro-
gramming API to the application developer, hiding much
of the complexity of using the standard DCPS interface
directly. Moreover, the DDS4CCM objects may be inte-
grated with the component model to provide formal anony-
mous publish/subscribe ports in component interfaces. The
DDS4CCM pseudo objects are implemented and hosted in-
side the F6ORB.

DDS Discovery—Discovery is the process by which publish-
ers and subscribers interested in a particular topic are matched
so that data flows between interested parties. The DDS
specification includes a decentralized discovery protocol that
allows for dynamic matching at run time. The protocol,
however, is inappropriate for use in F6MDA for the following
reasons:

6

• A spontaneous and decentralized discovery mechanism
requires that each Domain Participant be able to talk to others
on the network, which may violate MLS.
• The frequent message traffic required for dynamic discov-
ery consumes precious network bandwidth, especially over
the inter-module links.
• F6MDA is not fully dynamic, as application deployments
are carefully planned by system integrators, so the full set of
participants in a topic are easily calculated.
• In the event of system faults, fault recovery should be at
the discretion of the Fault Manager, as it has a more complete
view of the system than the DDS middleware.

To overcome these obstacles, F6MDA uses a quasi-static
discovery mechanism implemented by the Deployment Man-
ager and the Dictionary Manager. As discussed earlier, each
participant in a DDS topic has only a single endpoint that
allows it to communicate with its peers, and participants will
be connected to others by manipulating the flows in F6OS on
both the publishing and subscribing sides.

4. THE COMPONENT MODEL: F6COM
F6COM defines the basic software units that can be used
to assemble applications. An application can be distributed
across several actors, and each actor has one or more com-
ponents. Figure 4 shows the anatomy of an application
containing two actors created using F6COM components.
The first actor hosts two components: Filter and Archive,
the second actor contains a single component: Sensor. The
components interact with each other via the generated ‘glue’
code that connects them to the middleware layer. Interactions
within one actor involve only the middleware, while interac-
tions across actors involve the F6OS Secure Transport. The
middleware realizes its higher-level APIs in terms of F6OS
system calls.

Figure 4. Anatomy of an application

Figure 5 provides an overview of a component. A component
can have four different kinds of ports: publisher, subscriber,
facet (or provided interface), and receptacle (or required in-
terface). Note that the publisher/subscriber ports in F6COM
differ from the event ports in the CORBA Component Model
(CCM) [14]. A publisher port is a point of data emission;
a subscriber port is a point of data reception. All data
published or subscribed is strongly typed and is described
using a topic (see Section 3). A facet is attached to the
implementation of the methods defined in the provided inter-
face and it services the requests issued through a receptacle
on another component for these interface methods. Through
these ports, two basic kinds of interactions can be realized:
(a) asynchronous (or non-blocking) publish/subscribe, and
(b) synchronous call/return. Facets and receptacles can also
interact asynchronously, using callbacks. Details of these
interactions are presented later in this section.

A component may also have a number of associated triggers.
Triggers define the situations in which the various component
operations associated with each port may be activated. The
triggers may be invoked automatically and periodically, with
a specified rate, or they can be generated by the arrival of a
request detected in the middleware that hosts the component.

Figure 5. An F6COM component (this figure does not show
the asynchronous message invocation interaction)

A component is single-threaded; at most one thread can be
active in a component at any time. All component oper-
ations are serially scheduled based on the associated trig-
gers. Unlike CCM components, all operations in an F6COM
component must finish their unit of work within a specified
deadline. This deadline can be qualified as hard (strict) or soft
(relatively lenient). A hard deadline violation is an error that
requires intervention from the underlying middleware. A soft
deadline violation results in a warning. The intervention and
mitigation for deadline violations is described in Section 6.

The following subsections provide the details of component
internals. The ‘operations’ mentioned in these subsections
are the stubs generated by the development tools (see Sec-
tion 8) and are based on the component’s specification. The
signature of the generated operation depends upon the signa-
ture of the specified port.

Component Configuration Meta-Data

The following configuration meta-data is always required
for components: (1) memory size, i.e., the estimated total
memory size needed by the component throughout its life
cycle (as specified by the author of the component), and (2) a
set of security labels associated with each of the component
ports (specified by the system integrator).

Component Attributes

Component attributes are configuration values set by the
Deployment Manager during initialization. They remain
constant during the life cycle of that component. For each
parameter, the generated code includes a getter and a setter.
The setter of the parameter can be called only when the actor
owning the component is not in the active state.

Threads

Each component has only one thread that is managed by
F6ORB. Since the component has only one thread, compo-
nent developers are not required to and should not use the
locking APIs provided by F6OS. This prevents the developer
from creating code that may result in a deadlock or race

7

condition.

The component thread is configured with an initial priority
by the Deployment Manager. This value may be changed
dynamically during run-time by the component up to a limit
determined by the value set by the Deployment Manager
(and determined by the system integrator) when the actor was
created.

State Variables

State variables represent the internal state of the component.
By default, the component exposes no interface to allow
external entities to modify the component state directly. Any
such modification must happen through standard port inter-
actions. If the state variable is marked as observable, the
IDL compiler will generate operations necessary to query the
component’s state.

State variables may also be configured with a history param-
eter. The value of the history parameter specifies the number
of past samples of this state variable that are expected to be
archived by the middleware. This attribute has a default value
of 0, i.e., only the current value is preserved. For variables
with non-zero history value, the getter method has an attribute
which specifies which past sample is requested or specifies
that all past samples are requested.

Each state variable can be assigned an invariant condition
based on the value of the generate_invariant_hook attribute,
which is a Boolean function that, when specified, will be
called by the middleware after the execution of the setter.
The implementation of the invariant function can be provided
by the component developer or auto-generated by the model-
based development tools.

The rationale for the above is as follows. It is common to
store and process historical values in software components
implementing mathematical algorithms that relate to physical
phenomena. The invariant provides a way to detect anoma-
lous conditions that violate the safety assumptions.

Local Interfaces

Components can have local interfaces, which are collections
of methods that are accessible only from components collo-
cated in the same actor.

Ports

All ports in F6COM are configured with one or more security
labels, depending on the port type. Facets and receptacles
may be configured with one or more labels, while publishers
and subscribers may be configured with only a single label.
These labels are configured by the Deployment Manager
during component deployment, based on meta-data supplied
by the system integrator. The set of labels associated with
the component is the union of the labels associated with all
the ports on that component. The set of labels associated
with an actor is the union of the labels associated with all
the components of the actor. Port labels are for use by the
component business logic (which can query them), especially
in the case of multi-label actors. The Deployment Manager
also configures the component’s associated Secure Transport
endpoints with the appropriate security labels. These mark-
ings on the endpoints cannot be changed by the component
business logic and are used by F6OS.

Publishers and Subscribers—A publisher port is a source of
information associated with an instance of a topic to which

other components will subscribe. Publishers are decoupled
from subscribers, i.e., there is no blocking interaction be-
tween the two. The messages exchanged between publishers
and subscribers are strongly typed and are instances of a topic
(see Section 3).

The following attributes can be set on both the publisher and
subscriber ports:
• History Depth: Controls the number of previously received
samples cached by the middleware.
• Reliability: If this option is set, the middleware that
manages the component will attempt to resend a multicast
message to subscribers that did not receive the message.
• Latency Budget: Indicates the maximum life of the mes-
sage, resulting in an error if it is violated.
• Destructive Read: Specifies whether the read operation
associated with the subscriber will still give the previously
read data on subsequent reads.
• Max Samples: Specifies the maximum number of messages
that can be read at once.

Facets and Receptacles—A facet is a collection of methods
that are implemented by a component and provided to other
components. A receptacle is the mirror image of a facet,
i.e., an interface by which a component that requires some
operations can connect to a facet that provides them. Facets
and receptacles support the synchronous and asynchronous
point-to-point communication provided by F6ORB described
in Section 3.

Contracts

If specified by the component developer, pre-condition and
post-condition hooks can be inlined into the call path of an
operation, including publish and subscribe operations as well
as method invocations:
• Pre-condition: This is a function with a Boolean return
value that is supplied by the component developer. It specifies
a condition that must be satisfied before the operation is
performed. This is typically used to build software anomaly
detectors that can evaluate guard conditions over the current
and historical values of parameters in the operation, as well
as current and historical values of the state variables of the
components.
• Post-condition: This takes the same form as a pre-condition
but is checked after the operation finishes.

Note that the total time taken for the operation will be the time
needed to complete the operation’s business logic plus the
time taken to evaluate the pre-condition and post-condition.

Triggers

Triggers define the situations in which the underlying middle-
ware managing the component needs to invoke some compo-
nent operation. Each trigger is associated with one and only
one component operation. All activities have a finite deadline
by which they must finish their task. Failure to do so will
result in some action being taken by the fault management in
the middleware based on the nature of the deadline (i.e., hard
or soft).

A trigger can be either time-based (which can be used to
schedule an activity at the specified rate), or event-based.
There are three kinds of trigger events:
• ON_DATA_AVAILABLE: This trigger is used to start an
operation associated with a subscriber.
• ON_CALL_AVAILABLE: This trigger is used to start an
operation associated with a facet. The operation (i.e., the

8

method) launched will depend on the incoming request.
• ON_CALLBACK_AVAILABLE: This trigger is used to start
a callback method associated with an asynchronous method
invocation (AMI).

Trigger and Operation Interaction—Figure 6 shows the in-
teraction between a time-based trigger, the middleware, and
the component. The middleware launches the operations
associated with the trigger when the trigger becomes active.
A time-based trigger will generate timeout events at a spec-
ified rate. If the operation is not completed within the time
deadline specified, an anomaly is detected and reported to the
Fault Manager. Violations of hard deadlines also result in the
termination of the operation by the underlying middleware.

Figure 6. Interaction of a time trigger and component

Triggers may be used to realize the following interaction
patterns:
• Periodic Publisher (Time-trigger with Publisher): This
pattern relies on an operation in a component that publishes
data at a specified rate.
• Periodic Subscriber (Time-trigger with Subscriber): This
pattern can be used to implement a ‘pull’ subscriber operation
that is triggered periodically. Based on port properties, the
subscriber will consume up to the maximum number of sam-
ples specified. A periodic subscriber should not block when
reading the message; the middleware ensures that this does
not happen. Note that the automatically scheduled periodic
subscriber can oversample (at a higher rate) or undersample
(at a lower rate) the data produced by a publisher.
• Aperiodic Subscriber (Event-trigger with Subscriber): This
pattern will allow the implementation of a ‘push’ subscriber
operation, which gets triggered only when the data is avail-
able.
• Periodic Receptacle (Time-trigger with Receptacle): Sim-
ilarly, a time-triggered receptacle can be specified. This
enables a component to periodically refresh itself with new
data from another component.

Operation to Operation Interaction— Inside a component,
once a trigger has started an operation, it is possible to

daisy-chain the calls by directly invoking other operations
as functions. However, care should be taken because the
deadline of the first operation must account for the longest
chain of other operations that can be called as part of the first
operation.

Component Life Cycle

Component attributes and states are set by the actor’s de-
ployment component, the Actor Home, which executes the
necessary operations in the actor on behalf of the Deployment
Manager. A component can be in one of four states during its
life-cycle. State changes are initiated by the Actor Home.
The component states are:
• Initial: This is how the component starts after being in-
stantiated. In this state the Actor Home can configure the
component parameters. Component parameters cannot be
altered in any other state.
• Activated: This is the typical state of a component when it
is fully operational i.e., it can perform all its operations.
• Passivated: The component can execute only state variable
setter operations, and cannot serve any other request. This
state is used to implement passive replicas [15].
• Semi-activated: The component can execute state variable
setter operations and subscriber operations, and can execute
facet operations with only in arguments and receptacle opera-
tions with only out arguments. This state is used to implement
active replicas. However, it ensures that the replica cannot
provide service to any other component. Only primary or the
‘activated’ component can provide service.

Component Interactions

While each component and its associated ports, state vari-
ables, and triggers can be individually configured, an as-
sembly of components (i.e., an actor or application) is not
complete until the interactions between all ports are config-
ured. The association between the ports depends on their type
(synchronous or asynchronous) and the datatype/interface
type associated with the port. Two kinds of interactions,
asynchronous and synchronous, are possible between com-
ponents.

Asynchronous Interaction

Publisher/Subscriber Interaction— This interaction occurs
when a publisher port of a component is logically associated
to one or more subscriber ports of another component. This
logical association between publishers and subscribers is
specified at development and integration time, and is based
on the topic of the publisher and subscriber. A topic includes
not only a data type, but also a security label. At run-
time, a subscriber is associated with a publisher by (i) the
Deployment Manager, which checks that the subscriber has
the topic of the publisher and creates F6OS flows to associate
the subscriber’s endpoint with the multicast address, and
(ii) the Communication Resource Manager, which adds the
subscriber’s node to a multicast communication group. For
a publisher and subscriber to be associated with each other,
the topic of the publisher must be the same as the topic of
the subscriber, and the reliability settings on the publisher
and subscribers must match. Because each topic has a unique
label, a topic match implies that the publisher and subscriber
can be associated from a security point of view.

Since the publisher has a single label, the message sent by
the publisher operation is automatically marked with that
label by F6ORB. This label is used to send the message
to the underlying F6OS endpoint. Inside F6OS, the Secure
Transport checks that the current message security label

9

matches the multicast group. The message is forwarded to the
multicast group only after the security checks. Any security
violation is logged. This is the key enforcement mechanism
for secure information flows in the architecture. Note that
when a node receives the message, the Secure Transport
on the recipient side double-checks that the message label
matches the security label on the subscriber endpoint.

Based on the associated triggers, one can classify publishers
and subscribers into two categories: (a) periodic (time-based
trigger), or (b) aperiodic (event-based trigger). If a subscriber
is associated with a periodic trigger, it exhibits sampling
behavior. Even if the rate of the publisher is indeterminate
(for example if the publisher is aperiodic), setting the period
of the subscriber ensures that the events from the publisher
are sampled at a specific rate. When the interacting publisher
and subscriber are both periodic, the value of the subscriber’s
period relative to the publisher’s determines if the subscriber
is over-sampling or under-sampling.

Interaction between a periodic publisher and an aperiodic
subscriber indicates a pattern where the subscriber is reactive
in nature. In such a case, the subscriber stores incoming
published events in a queue, which is processed in a FIFO
manner. If the queue size (history of subscriber and size of
the buffer in the read endpoint) is configured appropriately,
the subscriber can operate on all the events received.

The case of interaction between an aperiodic publisher and an
aperiodic subscriber is similar to the one between a periodic
publisher and an aperiodic subscriber.

Asynchronous Method Invocation (AMI)— In order to use
AMI for a receptacle, the component developer must mark the
interface as ‘two-way AMI’. Based on this attribute, the IDL
compiler generates a callback operation for every method in
the receptacle. A callback method can be associated only with
an event-based trigger. Thus the callback method is triggered
when the reply from the facet arrives back at the middleware
of the requesting component.

AMI has the constraint that the receptacle can be used for
only one call at a time. The receptacle cannot be used to
send another request unless the reply has arrived back (via
a callback or a timeout specified on the receptacle). If a
method in the receptacle is invoked before this happens, the
call will return with an error that must be handled by the
calling operation.

Synchronous Interaction

This interaction follows a request/response semantics. A
receptacle port can be associated with a facet port of an
identical interface type. A facet can be associated with one
or more receptacles. A receptacle can be associated with one
or more facets. However, the component business logic on
the receptacle side must indicate the facet to which the call
must be sent. The connection between facets and receptacles
is implemented by the Deployment Manager, which creates
the required endpoints and flows to connect facets and recep-
tacles.

At run-time, a multi-label port sets the label to use in
subsequent calls using the component context. This label
should be chosen from among the port’s labels, but it is
always then checked by the Secure Transport in the F6OS
to decide whether the message should be sent to the facet.
If the message cannot be sent, a NOT_AVAILABLE error
code is returned to the middleware, which forwards it to

the component. Because of the synchronous nature of these
interactions, the deadline of the required interface method
(i.e., the caller) must be greater than the deadline value for
the provided interface method (i.e., the callee).

Synchronous facets in this model are always event-triggered.
The interaction patterns for synchronous ports are borrowed
from CCM. The key difference is deadline monitoring and
security label monitoring via F6OS. The default type of inter-
action is request/response or two-way communication, i.e., a
receptacle port blocks until the facet finishes the operation
and returns the results.

One-Way Call—A receptacle method can be marked as ‘one-
way’. A one-way call returns from the receptacle as soon
as the message is handed over to the Secure Transport (and,
if the facet is on another node, handed over to the network
queue). A one-way call cannot have out arguments.

Relationship with CORBA Component Model (CCM)

F6COM shares a number of features with the CCM [14].
However, there are key differences in functionality. These
differences are (a) single-threaded operation, (b) specification
of time bounds on each operation associated with the compo-
nent, (c) replacement of the standard CCM event subsystem
with anonymous publish/subscribe interactions, (d) specifi-
cation of triggers, time- or event-based, that determine when
the component operations are scheduled, (e) fixed resource
allocation, and (f) security labels on ports. Since F6COM
components are expected to operate on resource-constrained
systems, their resource needs are declared at development
time, verified at system integration time, and enforced at run
time. Ports in F6COM have security labels, assigned by the
system integrator, which play a role in supporting MLS.

5. PLATFORM ACTORS
Table 2 lists the platform actors that complement F6OS (see
Figure 2). Recall that platform actors run in the system
partition and are not subject to temporal partitioning.

Operations Manager Manages Spacecraft System Oper-
ations

Deployment Manager Deploys Software Applications
Dictionary Manager Maintains Dictionary of Objects
Certificate Manager Verifies Public Key Certificates
Communication Resource Man-
ager

Manages Communication
Resources

Fault Manager Provides Fault Management Ser-
vices

Table 2. F6MDA platform actors

This section describes four platform actors: the Operations
Manager, the Deployment Manager, the Dictionary Manager,
and the Certificate Manager. The Communications Resource
Manager, responsible for managing networking resources
on a node, is described in Section 2. The Fault Manager,
responsible for system wide fault mitigation, is described in
Section 6.

Operations Manager

The Operations Manager (OM) is responsible for the overall
management of operations on a node, a module, or the cluster.
It works with the application that runs the flight control

10

software, the Fault Manager, and the Deployment Manager.
There is one OM per node, called the node OM. In each
module, the node OMs elect one node OM to be the leader of
that module, called the module OM. In the cluster, the module
OMs elect one module OM to be the leader of the cluster,
called the cluster OM. All OMs periodically emit a heartbeat
message, which is used to assess their liveliness. If an OM
dies, F6OS will restart it automatically.

The periodic heartbeats, leader election, and automatic
restarts are intended to support fault tolerance of the OMs and
to establish a clear command and control hierarchy. If an OM
terminates, its own F6OS will attempt to restart it. If it fails
to restart (because the node is dead, for instance) the failure
will eventually be detected by the other OMs. If the failed
OM played a leader role (as a module OM or a cluster OM),
it is replaced by a newly elected OM. The status of an OM
as either a node, module, or cluster OM dictates its behaviors
and responsibilities. A node OM is responsible for managing
the operations on only that node. A module OM has a wider
array of responsibilities, including:
• Maintenance and periodic refresh of a module-local cluster
membership table.
• Receiving communications from OMs of modules that
wish to join the cluster.
• Management of the relative security authentication, re-
source allocation, and potential (re-)deployment of applica-
tions.

In addition to the functions of a module OM, a cluster OM
has the following responsibilities:
• Coordination with module OMs about cluster-wide au-
tonomous flight operations like scatter/gather maneuvers, for-
mation flight, and orbital changes.
• Receiving communications from the ground about immi-
nent scatter maneuvers.
• Receiving communications from the ground to deploy new
software configurations.

Deployment Manager

The Deployment Manager (DeM) is responsible for deploy-
ing and configuring the components, actors, partitions, and
Secure Transport endpoints and flows on a node. The DeM
can also modify the partition scheduling table of the node.

Analogously to the Operations Manager, there are three roles
for DeMs:
• Node DeM, responsible for coordinating deployments only
on the local node.
• Module DeM, responsible for coordinating application de-
ployments across nodes in a module. The DeM collocated
with the module Operations Manager is given this role.
• Cluster DeM, responsible for coordinating application de-
ployments across the cluster. The DeM collocated with the
cluster Operations Manager is given this role.

On each node, the DeM uses the functionality provided by
the Actor Home (described in Section 4), which runs on the
main thread of an actor and is created when the actor is first
spawned. The Actor Home acts as a component server for the
components that make up an actor.

The interface of the DeM and Actor Home, as well as the
structure of the meta-data used to encode information about
application deployment and the hardware environment, is
derived from the OMG Deployment and Configuration for
Component-based Application specification [16] [17].

Dictionary Manager

The Dictionary Manager (DiM) maintains a directory of
references and publish/subscribe information that is used at
run-time by the platform actors to locate platform actors
on other nodes and by the Deployment Manager to resolve
connection endpoints and publish/subscribe groups.

DiMs across nodes in the cluster remain synchronized in
order to provide the most up-to-date information to their local
Deployment Managers, and to ensure that changes made by
the Fault Manager to mitigate faults propagate to other nodes
and modules in a timely manner. The architecture does not
mandate a particular synchronization strategy or algorithm,
as this may change depending on a number of factors, includ-
ing available inter-module network bandwidth/latency or the
status of a DiM as the cluster DiM (by virtue of its collocation
with the cluster Operations Manager).

The DiM performs three functions: (1) it stores addressing
information for the platform actors for each node; (2) it stores
information necessary to establish connections between com-
ponents; and (3) it facilitates the quasi-static discovery mech-
anism used by the DDS portion of F6ORB. These three
functions are described below.

Node-Level Platform Actors— The DiM stores information
necessary to locate all the platform actors on a remote node.
This information is stored in the DiM as a set of records, one
for each node, which contains a reference for each of the node
Deployment Manager, Operations Manager, Fault Manager,
and Communication Resource Manager. Additionally, this
record provides the network address of the node. These
records are indexed by the unique node name assigned by the
cluster owner (i.e., system integrator).

Component References— The DiM stores information nec-
essary for the Deployment Manager to resolve connection
references during deployment of application actors. These
references are maintained at the granularity of components
inside those actors. The dictionary information is indexed us-
ing a unique component name that is comprised of the unique
identifier of the deployment plan that was used to deploy the
component, the actor name that hosts the component, and
the name of the component as specified at deployment. The
component data record consists of a list of facet and recepta-
cle ports that are provided by the component. Additionally,
the component record contains a list of replicas that have
been deployed through either explicit action by the system
integrator, or through autonomous fault mitigation strategies
planned by the Fault Manager.

Publish/Subscribe Communication Groups—The DiM is re-
sponsible for facilitating the quasi-static discovery mecha-
nism used by the anonymous publish/subscribe middleware
described in Section 3. This is accomplished by maintaining
a dictionary of all topics present in the cluster.

Data associated with a topic includes a domain ID (repre-
sented by an integer), a topic name (represented by a string),
a datatype (represented by the CORBA RepositoryID of the
datatype), the multicast group name, QoS policies, and the
associated security label.

Certificate Manager

Recall that each node has a public key used to establish cryp-
tographic protection for messages (and their labels) transmit-
ted over the network by the Secure Transport. Each node

11

has a signed certificate that binds the node’s public key to
the node: the certificate is distributed to and verified by all
the other nodes that communicate with that node. Certificate
verification is carried out by the Certificate Manager (CM),
using standard techniques (e.g., as used by web browsers to
verify certificates of web sites). Since the techniques are
standard and described in detail elsewhere, here we only
provide highlights and F6MDA-specific information.

The CM contains one or more root certificates, which the CM
regards as containing public keys of Certification Authorities
that are trusted to sign other node’s certificates (root certifi-
cates are often self-signed, because they are trusted but not
verified). Root certificates may vary from one node to the
other. The root certificates of a node’s CM are set by the
Deployment Manager of the same node, as part of the node’s
configuration.

The CM verifies node certificates upon request of the De-
ployment Manager, as part of a deployment plan. If the
deployment plan includes a flow between an endpoint on
node N1 and an endpoint on a different node N2, the De-
ployment Manager of N1 asks the CM of N1 to verify N2’s
certificate, and the Deployment Manager of N2 asks the
CM of N2 to verify N1’s certificate. Each CM checks the
signature of the node’s certificate with the public key of
the Certification Authority (contained in the associated root
certificate) indicated by the node’s certificate.

The CM also contains a Certificate Revocation List (CRL),
i.e., a list of certificates of public keys whose corresponding
private keys have been compromised and therefore are no
longer valid. As for root certificates, the CRL of the CM of
a node is updated by the Deployment Manager of the same
node, as part of the node’s configuration.

6. FAULT MANAGEMENT
Providing uninterrupted services for performance-sensitive
distributed applications operating in resource-constrained en-
vironments is hard. It is even harder when the operating
environment is dynamic, where processor or process failures,
system workload changes, and fluctuating network connectiv-
ity are common. An information architecture based on fault-
tolerant middleware for these applications must assure high
service availability and satisfactory response times for clients.
F6MDA is representative of such systems, calling for a range
of solutions that provide fault tolerance to the entire fraction-
ated spacecraft. The F6MDA fault management architecture
supports both high availability and application performance
while being aware of the resource constraints.

The primary vectors of the F6MDA fault tolerance design
include the following capabilities:

• Customizable and layered fault detection and isolation
strategies, which detect anomalies in different layers and
diagnose root causes to be treated by the fault mitigation
logic.
• Customizable and layered fault mitigation strategies, which
serve to mitigate faults as closely as possible to the source of
the faults, by restarting and reconfiguring failed entities.
• Semi-customizable fault recovery strategies, which use
redundancy-based mechanisms based on primary-backup
(passive replication) mechanisms to provide autonomous run-
time recovery from faults, while attempting to maintain ac-
ceptable response times to applications and being aware of
the scarcity of resources.

• A model-driven fault management framework, which
F6MDA application developers can use to define fault man-
agement policies for their applications, which in turn are
followed by the run-time fault management architecture.

System Assumptions and Fault Model

Before describing our fault tolerance solution, it is important
to understand the underlying system assumptions and the
fault model.

System Assumptions—F6MDA assumes that a predominant
number of applications in the fractionated spacecraft missions
require soft real-time assurances, where some tolerance to
variation in response times is acceptable. Both periodic and
aperiodic applications are assumed to be present. Applica-
tions are realized as a collection of one or more connected
actors. Actors in turn can include a collection of one or
more collocated components and are assumed to execute in
partitions on nodes within modules.

The system is highly resource-constrained, there being lim-
its on the available computing, storage and networking re-
sources, in addition to constraints on other physical resources
such as cameras, radios, and GPS. These resource constraints
prohibit any sophisticated, resource-intensive, transactional
solutions for fault tolerance. Instead, simpler yet robust
solutions to fault tolerance are desirable. The fractionated
spacecraft is an inherently distributed system of satellites
and ground stations. Because of changing orbital conditions,
network connectivity is highly variable, with available band-
width varying over time, and at times no connectivity at all.

In terms of workloads, the system is not a statically defined
closed system where all the possible applications and their
workloads are predefined. On the contrary, it is assumed that
new applications can be introduced into the cluster via ground
stations, while existing applications can be decommissioned
for a variety of reasons, including mission changes. Despite
the open nature of the system, the “openness” is bounded
in that before introducing a new application (or decommis-
sioning an existing application), the system integrator has
sufficient information to perform a system-wide resource
management function. By system-wide, we refer to decisions
that must be made at the level of the overall system, which
could include a node, module or cluster.

All physical devices in the system, including sensors, com-
munication devices, GPS receivers, spacecraft sensors and
actuators, etc., are assumed to be encapsulated by appropriate
service actors that are able to indicate anomalies with their
devices. These actors provide access control and resource
management functions for the devices, in addition to anomaly
reporting and fault mitigation functions.

Finally, a Trusted Computing Base is assumed that hosts the
critical fault management capability.

Fault Model—Two types of faults are handled in F6MDA:
physical and software-level. Each of these two categories
may experience both permanent and transient faults. Exam-
ples of permanent physical faults include: a node malfunc-
tion, a module malfunction, or a cluster-wide malfunction,
all of which are fail-stop (i.e., the failed entity does not
respond to any stimuli, and it is possible for external entities
to observe their failure); a malfunction of other physical
entities, such as sensors, GPS, radio, etc., becoming inopera-
tive; network links permanently down; and “blabbering idiot”
(i.e., an entity producing useless and arbitrary information,

12

interfering with normal operations). Examples of transient
physical faults include: temporary resource exhaustion (e.g.,
storage full) that may cause delays in responses, or temporary
network disconnection (e.g., due to signal fading or obsta-
cles).

Examples of permanent software-level faults include: OS ex-
ceptions such as segmentation violation; security violations;
response times that exceed limits and deadline violations for
critical tasks; unintended actor (process) termination; and
invariant, pre- and post-condition violations reported by a
component that cause it to stop. Temporary software-level
faults include temporary exhaustion of locks and timeouts on
operations.

Fault Management System

The F6MDA fault management architecture includes layered
anomaly detection, diagnostics, mitigation strategies, and
redundancy-based fault recovery (needed when mitigation
strategies are insufficient). The design allows application
developers to override the default approach by specifying
policies using the model-driven framework, manually provid-
ing the deployment meta-data for fault management, or by
using out-of-band solutions.

Figure 7 depicts the overall fault management system design
and its interaction with other F6MDA entities. The overall
functionality is realized through collection and coordination
of individual, layered fault management functions. F6MDA
requires system-wide fault management capabilities for a
node to reside and execute in the system partition (where plat-
form actors execute). This task is handled by a system-wide
Fault Manager (FM). Component-level fault management is
realized within F6ORB, while actor-level fault management
is handled by a special function running as an actor in the user
partition (i.e., the temporal partition in which an application
actor executes) along with application actors. Fault manage-
ment of platform actors is realized within F6OS, which is
where part of the fault management functionality also resides,
as shown in Figure 7.

The FM is responsible for system-wide fault diagnostics and
fault management function. This platform actor exists on
every node, and interacts with F6OS and other elements
of the fault management architecture, but also with other
platform actors, as well as other FMs residing on other nodes
and modules, as discussed below. Note also the distinction
between the fault management system function (which is
distributed across multiple entities and handles localized fault
management tasks) and the FM (which is one platform actor
on a node dedicated to system-wide fault management tasks).
This layering of the fault management functions and the need
to provide security imposes a certain hierarchy and flow of
messages as shown in Figure 8.

The rationale for this scheme is as follows. Distributing the
functionality of the fault management system is necessary
because F6MDA relies on temporal and spatial partitioning,
which means that the fault management functionality should
also remain appropriately isolated. Moreover, maintaining all
the functionality in one place (i.e., within a single, monolithic
FM inside the system partition), is not appropriate since it
would lead to significant inter-partition messaging and cause
delays for any corrective action that could be taken at the
source of the fault. Finally, security concerns require that
appropriate separation is maintained. Consequently, different
parts of the fault management system must exist in different
places and play different roles. In F6MDA, both mitigation

Figure 8. Interactions

and recovery from faults require coordination of the various
fault management functionalities with the other F6MDA plat-
form actors.

Fault Detection and Isolation— At each layer of the fault
management architecture, anomalies are detected, possibly
diagnosed, and mitigation actions are taken. The detection
mechanisms are layer-specific: anomalies with the commu-
nication device can be detected by the wireless networking
hardware, the device driver, or the Communication Resource
Manager; anomalies with the computing hardware can be
detected by F6OS; anomalies with actors can be detected by
F6OS; anomalies in software components can be detected
by F6ORB; and anomalies with nodes or modules can be
detected indirectly, through platform actors (e.g., the Oper-
ations Manager) that may receive reports from the spacecraft
fault protection system. The actual detection can take many
forms: hardware signals (for the network hardware) or lack
of response from the hardware (for the device driver); the de-
tection of an actor’s unexpected termination (for F6OS); the
violation of pre- and post-conditions, or deadline violations
on components (for F6ORB).

Fault detection is followed by fault diagnostics (also called
fault isolation) that analyzes anomalies and hypothesizes the
causes of faults. In many situations, symptoms (anomalies)
can be directly mapped to faults, so the diagnosis is trivial.
However, when faults result in complex sequences of anoma-
lies, the diagnosis becomes more difficult and a full diagnos-
tics reasoning capability is needed. A diagnostics reasoner
collects multiple anomaly reports, correlates them, and gen-
erates hypotheses that best explain the observed anomalies.
This process is called ‘system-wide fault diagnostics’.

The F6MDA layered diagnoser design is flexible, making it
possible to customize the diagnostics and reasoning capabil-
ities at every layer that maps the detected anomaly to a fault
hypothesis. For system-wide diagnostics, the use of a graph-
based reasoning engine is suggested. This approach is based
on a temporal failure propagation graph model that represents
the causal relationships between various fault sources and
their effects as they propagate through the system. This
propagation can lead to observable anomalies or to secondary
faults in other parts of the system, which can trigger subse-
quent anomalies. The reasoning engine within the diagnoser
performs a backward analysis to relate the observed sequence

13

Figure 7. Layered fault management in F6MDA

of anomalies to the fault sources. Once fault sources are
isolated, they are used to form ranked fault assumptions that
represent plausible explanations for the anomalies.

The rationale for the above is as follows. Separating the
isolation and detection from other steps of fault management
(e.g., mitigation and recovery) is important because it enables
various diagnostics algorithms [18] to be used to produce a
fault hypothesis while totally decoupling the system from the
actual mitigation/recovery logic.

Mitigation-based Fault Management—The layered fault man-
agement architecture in F6MDA provides several opportu-
nities to mitigate faults before more sophisticated recovery
mechanisms are invoked. The design of the fault management
architecture is such that applications may decide to override
default behavior as desired. In the rest of this section, we
elaborate the default mitigation strategies at each layer and
the overrides that are possible.

Component-level Fault Management: This function pro-
vides mitigation and fault management at the level of fine-
grained components and is handled by F6ORB. Making the
component-level fault management capability reside within
an actor (in the middleware) provides for a simpler imple-
mentation and provides a way to realize finer-grained, actor-
specific actions to be taken after a fault.

Components include ports that can be monitored to detect
anomalies internal to a component for interested entities out-
side of the component. The component-level fault manage-
ment function receives anomaly events from the component.
Anomaly reports could include violations of pre- and post-
conditions, violations of component state variable invariants,
deadline violations, and timeouts. When such an anomaly
reaches the component-level fault management function in
F6ORB, it can immediately suspend the further execution
of the component until a mitigation action is taken, so that
further anomalies are not introduced into the system by the
malfunctioning component.

Depending on the state of the failing component, the corre-
sponding action could be: ignore; ignore but report to the
node FM (but not directly, see below); or abort the current
operation in the component and report to the node FM. The
aborting action can be performed internally by F6ORB. For

security reasons, the architecture does not allow any user
actor to directly communicate with the platform actors. Con-
sequently, the component-level fault management function
must escalate the reporting process to a special actor execut-
ing in the same partition as shown in Figure 9. This special
actor performs application actor-level fault management and
is a trusted entity developed and deployed in each partition
by the system integrator.

Figure 9. Fault escalation

Actor-level Fault Management: The special actor mentioned
above implements the actor-level fault management function.
An actor-level fault management function has two responsi-
bilities: (1) act as an intermediary to relay reports from the
component-level fault management function to the system-
wide FM, and (2) be responsible for the health management
of application actors in that partition. The actor-level fault
management function is assumed to be a trusted actor devel-
oped and deployed by the mission integrators that executes in
each user partition. Because they are trusted, they are allowed
to communicate with the system-wide fault manager through
the endpoints as shown in Figure 9.

Creating a per-user-partition actor-level fault management
function helps in system security, where application actors
are prevented from communicating with platform actors. It
also helps to throttle the rate at which messages from a
component-level fault management function may be gener-
ated. This capability is important when the component-level
fault management function may be malicious and intends
to cause a denial-of-service attack. Finally, delegating the
monitoring of the status of individual application actors in a
partition to this special actor helps scale the system. Other-

14

wise, a single system-wide FM would have to track the health
status of all the actors on the node, which might consume
additional resource cycles in the system partition, thereby
reducing the resource cycles available to user partitions.

Network-level Fault Management: Network faults occur
when the radio or its associated monitor signals a serious
problem, which makes the radio unusable. If no other
radio exists on the module, it would mean the module is
unreachable. The presence of additional radios provides a
possible alternate route to reach the module. The F6MDA
network-level fault management function relies on fault man-
agement (and possibly a power cycling option) within the
radio to mitigate faults within the radio. The Communication
Resource Manager (CRM) constitutes the remainder of the
network-level fault management. In particular, the CRM
is responsible for determining alternate routes and updating
the internal routing tables to reflect those changes. These
mitigation strategies are feasible if alternate radios are present
on the module. Otherwise, the CRM informs the system-wide
FM of the failure with the radio.

Security Violations: Security violations are considered faults.
F6MDA fault management requires that F6OS notify the
FM of the violation at the appropriate layer. Mapping is
then performed to a specific type of fault, and appropriate
mitigation or recovery action is taken. For this purpose, the
fault management functions at all the layers that are interested
in security and other policy violations register themselves
with the F6OS, using a specially provided system call. In
turn, F6OS will asynchronously report violations to the fault
management function. The mappings from security violation
to the type of fault and the action to be taken are specified by
the system integrator. The default action will quarantine the
violating entity by stopping the misbehaving actor(s) through
coordination with the Deployment Manager.

Managing Faults in Physical Devices: Managing faults in
other physical devices of the system requires custom so-
lutions as demanded by the missions and in concert with
the module’s fault management capability. Consequently,
the flexible design of the FM in F6MDA allows integration
of custom fault management capabilities, which will handle
these additional kinds of faults.

Platform-level Fault Management: Platform actors might
malfunction (i.e., fail-stop). F6OS maintains a node-level
fault management function that can restart one or more of the
failed platform actors. Naturally, when the failed platform
actor is rejuvenated, its state is made consistent using the
persistent file store used by the platform actors.

System-wide Fault Management: When the layer-wise mit-
igation strategies do not succeed, or when the layer-wise
fault management functions determine that it is necessary to
inform the system-wide fault management of the mitigation
action, the FM executing in the system partition gets notified
and must perform specific operations.3 Since the action
of deploying and connecting components of an application,
or starting/stopping actors, can be performed only by the
Deployment Manager that runs in the system partition, it
is important to include another trusted actor that can com-
municate with the Deployment Manager and other actors
of the system partition. Consequently, maintaining a fault
management function in the system partition is the right

3Due to space limitations, details of the specific actions taken are not
described.

approach. Not only can such a fault management function
deal with local mitigations, but since it is a trusted entity, it
can also participate in node-level, module-level and cluster-
level fault management.

Recovery-based Fault Management—Sometimes simple mit-
igation strategies are insufficient, or certain applications may
not want to undergo an iterative and incremental process of
mitigating a fault in the application. In both cases there is
a need for a redundancy-based mechanism to recover from
faults. Figure 10 illustrates the architecture of the F6MDA
autonomous, run-time mechanism for recovery from failures,
which attempts to deliver desired application response times
while conserving resources.

Figure 10. Redundancy-based autonomous recovery
mechanisms

The primary vectors of the redundancy-based fault recovery
mechanism are:

Redundancy-based Proactive Failure Recovery: F6MDA
uses redundancy-based recovery using primary-backup (pas-
sive) replication [15]. The passive scheme is attractive for
environments that are resource-constrained and where appli-
cations predominantly possess soft real-time requirements,
i.e., where average response times should be within tolerable
bounds. To enable fast and transparent failover, F6MDA em-
ploys a proactive, resource-aware failover strategy [19] that
attempts to maximally meet response times of applications by
dynamically ordering the failover targets based on measured
resource utilization.

F6MDA maintains the notion of a ranked list of failover
targets on the client side middleware, which resides in the
actor that plays the role of a client for an F6MDA application.
The ranked list is periodically computed by the FM, which
orders the replicas of the server according to the utilization
of the resources consumed by the replicas. Note that a server
is one or more actors of an application that together serve
client requests. In the simplest case, an ordering could be
from least-utilized to most-utilized resources. The motivation
for this ordering is that on failure, the client will fail over to
the replica that has the least load, and hence will provide the
best performance in a failure case.

The FM proactively distributes the ranked list of failover
targets for this application to the client side. Rather than
making the client application aware of this list, the ranked list
is cached on the client side middleware, inside a forwarding

15

agent. The interceptor logic at the client side middleware is
responsible for intercepting any exception conditions. One
such exception condition is the connection failure to the
primary replica. When this exception is intercepted by the
middleware, it will consult the cached ranked list, and a
connection to the newly chosen backup will be made by the
middleware. At this stage, all new requests from the client
will be made to the newly promoted backup in the ranked
order list. To make this happen, the middleware on the client-
side will open a new endpoint to communicate with the newly
chosen backup.

Since F6MDA operates in a resource-constrained environ-
ment, the resource allocation for the server replicas uses
a resource-aware allocation technique based on backup re-
source overbooking [20]. This strategy leverages the prop-
erties of the primary-backup scheme, wherein the fact that a
backup replica does not impose the same load on a resource
as the primary is exploited to pack more backup replicas of
different applications within the available resources.

Scaling the Recovery Mechanism to Module- and Cluster-
level: Since F6MDA must provide fault tolerance across
nodes, modules and clusters, there must necessarily be coor-
dination among all the FMs on each node. F6MDA provides a
hierarchical scheme wherein among the FMs on the nodes of
a module, one such FM is chosen as a leader. In a similar
fashion, a cluster-level leader gets chosen from among all
the module-level leaders’ FMs. Ground stations are also
seamlessly made part of this logic. However, ground FMs are
never chosen as cluster leader because of the frequent loss of
connection of modules with ground stations.

Recall that besides the FM, each node also includes a number
of other platform actors. Any one of these entities may
fail and hence each one should be made fault-tolerant. It is
possible to use the same hierarchical fault tolerance scheme
for each platform actor. However, leader election for each
platform actor could lead to excessive messaging overhead on
an already resource-constrained environment; membership
protocols for every platform actor, and potentially inconsis-
tent leader election for each actor, i.e., a FM may become
a leader for a module but not necessarily its Deployment
manager.

To overcome these overheads and inconsistencies, F6MDA
delegates the leader election responsibility to the Opera-
tions Manager. Whichever Operations Manager becomes the
leader at either the module- or cluster-level will then delegate
the leader responsibilities for the corresponding roles to the
other platform actors in its node.

7. SECURITY
The enforcement of MLS by F6OS on the messages ex-
changed among actors is a form of Mandatory Access Control
(MAC), i.e., it cannot be bypassed. The spatial separation
among actors ensures that actors cannot communicate di-
rectly via shared memory or files, but only via messages. The
temporal separation among partitions prevents the formation
of covert timing channels among actors in different partitions;
two actors in the same partition should have the same security
labels or should be trusted/verified to not attempt to exploit
covert timing channels. The enforcement of MLS and of
spatial/temporal separation by F6OS depend on data internal
to F6OS (e.g., the labels assigned to actors and endpoints),
which can be set only by privileged system calls, which

themselves can be made only by platform actors, which
in turn process requests only from other platform actors4.
Ultimately, F6OS internal data is set from deployment plans
constructed by the system integrator. F6OS and platform
actors are part of the Trusted Computing Base (TCB), i.e.,
they are critical to enforce security.

A single-label actor can send and receive messages only with
its assigned label, and therefore cannot violate MLS. A multi-
label actor can potentially violate MLS (e.g., by re-labeling
and forwarding a message), but only within its assigned labels
(e.g., an actor with Secret and Top Secret labels may re-label
Top Secret data to Secret, but not to Unclassified). Thus,
multi-label actors are part of the TCB: they must be trusted
(i) to not violate MLS or (ii) to “legitimately” violate it. For
example, a camera-wrapping actor may serve requests from
actors that have different labels at different times, keeping
data associated with different requests separate and thus sat-
isfying MLS. An example of an actor that must legitimately
violate MLS is a downgrader that turns a Top Secret high-
resolution image into an Unclassified low-resolution version
of the image. The legitimacy of these violations depends on
the semantics of the data and must be verified by the system
integrator.

Since shared mission-specific resources are encapsulated in
actors, Discretionary Access Control (DAC) is not enforced
by F6OS, but by individual actors as part of their logic. For
example, a camera-wrapping actor may allow access only to
some actors by responding to messages from those actors
and rejecting messages from other actors. DAC, as the term
implies, is at the resource owner’s discretion (unlike MAC).
The restriction that platform actors process requests only
from other platform actors is also a form of DAC.

To ease verification and certification, F6MDA aims at mini-
mizing the size and complexity of the TCB. F6OS is designed
with a micro-kernel approach in mind; platform actors are
factored out of F6OS, and mission-specific device drivers
should be put into application actors to the extent possible.
F6ORB includes only the needed CORBA and DDS features
because the F6ORB libraries in multi-label actors are part of
the TCB. F6COM focuses the analysis of a multi-label actor
on its multi-label components since single-label components
do not directly affect MLS. Our Isabelle/HOL formalization
of multiple-domain labels (mentioned in Section 2) is the
starting point of a formal approach to verify and certify
F6MDA that we intend to pursue.

8. MODEL-DRIVEN DEVELOPMENT
As described earlier, F6MDA provides a software platform
with well-defined APIs to applications. The development
process for applications is similar to that of other embed-
ded system applications: analysis, design, implementation,
verification and testing (preferably in spiral progressions).
The artifacts produced by the development process are the
applications and meta-data about the applications. The ap-
plications are integrated, subjected to verification and val-
idation (V&V), and deployed on the actual platform by a
system integrator, who is normally the cluster owner or its
representative. This is illustrated in Figure 11.

4With two exceptions: (1) the actor-level Fault Management Actor can send
messages to the Fault Manager, as explained in Section 6; and (2) the ground
Operations Manager can receive commands (e.g., to upload deployment
plans) by some trusted application that includes suitable user authentication.

16

Figure 11. Application development and system integration
for F6MDA

The application meta-data includes the following elements:
• Manifest of the files for components constituting the appli-
cation.
• Interface definitions for all data structures, topics, and
interfaces used in the application.
• Resource needs of the application components (CPU time,
memory footprint, network bandwidth, etc.).
• Timing specifications for all component operations.
• Fault characterization, i.e., expected anomalies and fault
mitigation strategies.
• Manifest of external library dependencies (e.g., POSIX
math library).
• Deployment plan for the application.

The application meta-data is used in a number of ways:
(1) to generate part of the implementation code (that gets
eventually linked into the final application), (2) to combine
with integrator-provided security information (specifically
security labels) to form the final deployment meta-data, (3)
to configure the fault management system, (4) to set policies
for QoS driven resource management, and (5) to support both
design-time and run-time verification and certification.

Note that the application developer may supply only the
object code (not the source code) of the application. The
object code is not necessarily trusted; it may attempt to
make privileged F6OS system calls. Since a well-behaved,
component-based application interacts only with its own
components or with specific service actors via well-defined
interfaces, the application object code is first checked for
unauthorized calls5. Next, the developer-supplied meta-data
is used to re-generate the interface code (i.e., the client
and server stubs) that glue the application code to F6OS
and middleware libraries. Then, the application executable
is produced using trusted compilers and linkers. Finally,
the produced executable and the deployment meta-data is
subjected to a V&V regime.

The extensive nature of the V&V and the use of trusted tools
in the integration phase provides a path towards certification.
Furthermore, F6OS makes certain security guarantees regard-
less of the behavior of the actors and the correctness of the
application V&V process.

The above development process can be realized in two ways:
1. The conventional process: The application developer con-
structs all the software using an implementation language
(e.g., C++), and (potentially) uses middleware libraries to

5Note that even if unauthorized system calls are made at run-time, they will
fail due to security checks performed by F6OS, as described in Section 2.

access the services provided by F6OS. Technically the de-
veloper can develop applications using the core F6OS APIs
provided by the F6OS libraries, but this involves a lot of low-
level coding and re-building functionality that is provided
by the middleware libraries. The developer delivers the
application (as source or object code) and the meta-data, as
required by the integrator.
2. The model-driven process: The application developer
performs the architecting and the high-level specification of
the application using model-based tools (e.g., an architecture
modeling language with graphical tool support), uses the
tools to generate the infrastructure (‘glue’) code needed to
integrate the application logic with the F6OS SDK libraries,
and adds the ‘business logic’ of the application using con-
ventional interactive development environment (e.g., a tool
like Eclipse). In this scheme, the developer uses the well-
established, conventional code development style for imple-
menting the core application functionality, and all the low-
level, glue code is auto-generated from the models. The
models can be used to instantiate architectural design patterns
that solve specific design problems (e.g., primary/backup
replication for fault management). The developer delivers the
application (as source or object code) and the models of the
application (from which the glue code and the meta-data will
be re-generated by the system integrator).

The model-driven process is outlined in Figure 12.

Figure 12. Model-driven development for F6MDA

The F6 Model-driven Development Kit (F6MDK) includes
the tools for model-driven development, including a domain-
specific modeling language and its supporting visual model-
ing environment, the various software generators that produce
code and other implementation artifacts, and model-driven
tools for model analysis and verification. Other model-driven
tools can be used as well. For instance, the business logic
of applications can be developed using Simulink/Stateflow
and the resulting models (and the code generated from them)
integrated into the final application.

The rationale for F6MDK is as follows. The model-driven
approach can increase the productivity of the developer (as it
will generate the infrastructure code that is hard and error-
prone to write). It also offers an opportunity to analyze
the system based on the models. Knowing the component
interaction patterns and the resource needs (e.g., CPU and
memory), interesting properties like end-to-end latency can
be determined based on the models. Models can also be
converted into a discrete-event simulation model that can

17

assist in estimating system performance. The model-driven
approach also provides a basis for integrated V&V. Meta-data
added to the model elements can be exploited for safety and
security analysis at design-time and at run-time.

9. RELATED WORK
An approach to objects based on time-triggered (periodic)
and event-triggered (sporadic) methods has been presented
in [21]. The approach described is implemented in the form
of object structures, and many concepts are similar to our
approach. However, there are two differences: we rely on
a novel operating system as the underlying platform, and we
build a framework on top of that to provide specific services
for component interactions and scheduling.

Kuz et al. presented a component model called CAmkES
in [22]. They built their system on the L4 micro kernel.
CAmkES does not provide temporal partitioning. Instead,
it is designed to be a low-overhead system that can run on
small computing nodes by enforcing static components (i.e.,
a singleton and not a session-based component) and static
bindings. We had to also enforce similar restrictions in our
framework to keep the component interactions simple and
predictable.

Delange et al. recently published their work on POK (Poly-
ORB Kernel) [23]. It uses AADL specifications to auto-
matically configure and deploy processes and partitions to a
QEMU based emulated computing node. We are currently
working on obtaining details about this project. DIANA [24]
is a new project for implementing an avionics platform called
Architecture for Independent Distributed Avionics (AIDA)
using Java as the core technology. One of the challenges
in using Java is the threading model, which requires their
Java virtual machine, called PERC Pico, to handle the thread
scheduling itself (instead of the operating system). This
adds another layer of scheduling above the operating system.
Hence, they do not provide a one-to-one mapping between
a Java thread and an APEX process. Another issue with
using Java mentioned in their paper is the complexity in
estimating and bounding memory usage per thread, which is
a critical requirement for F6MDA. Finally, they also mention
that the errors signaled by PERC Pico are hard to diagnose
and correct [24]. This is partially due to the extra layer
imposed by the Java virtual machine.

Lakshmanan and Rajkumar presented a distributed resource
kernel framework used to deploy real-time applications with
timing deadlines and resource isolation in [25]. Their system
consists of a ‘partitioned’ virtual container built over their
Linux/RK platform. They have reported that their framework
provides temporal resource isolation because they ensure that
the timing guarantees provided to each independent applica-
tion do hold irrespective of the behavior of other applications,
by using CPU as a reserved resource. However, to the best
of our knowledge, they do not support process and partition
management services as specified for F6OS. Moreover, their
framework does not support a component model.

Note that a component model for hard real-time systems has
been developed in our earlier work [26]. That work merged
the concepts of CCM with those of ARINC-653, and as such
it should considered a precursor of this work.

10. CONCLUSIONS
Fractionated spacecraft require a new class of information
architecture. This paper presented a layered design for such
an architecture: F6MDA. The architecture is based on an op-
erating system that provides essential resource management
functions and includes a novel combination of other capa-
bilities: time and space partitioning, privileged operations
for platform services, multi-level security for information
flows, and secure transport capability. This layer is used
by a middleware layer that provides higher-level abstractions
for synchronous and asynchronous communication based on
restricted implementations of the CORBA and DDS speci-
fications. In the top layer, a component model defines a
framework for applications built from distributed interacting
components. The architecture addresses the cross-cutting
aspects of fault management and multi-level security across
applications. A prototype implementation of the F6MDA
design is in progress.

ACKNOWLEDGMENTS
This work was supported by the DARPA System F6 Program
under contract NNA11AC08C. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect
the views of DARPA. The authors thank Paul Eremenko,
Program Manager for his support of the project, Richard A.
Golding of KTSi and Olin Sibert of Oxford Systems for their
invaluable input and guidance during the design process.

REFERENCES
[1] O. Brown and P. Eremenko, “The Value Proposition for

Fractionated Space Architectures,” AIAA Paper 2006-
7506, 2006.

[2] Model Driven Architecture (MDA) Guide V1.0.1, OMG
Document omg/03-06-01 ed., Object Management
Group, Jun. 2003.

[3] D. E. Bell and L. J. LaPadula, “Secure computer sys-
tems: Mathematical foundations,” MITRE, Technical
Report 2547, Volume I, 1973.

[4] C. Watkins and R. Walter, “Transitioning from federated
avionics architectures to integrated modular avionics,”
in Digital Avionics Systems Conference, 2007. DASC
’07. IEEE/AIAA 26th, oct. 2007, pp. 2.A.1–1 –2.A.1–
10.

[5] G. Birkhoff, Lattice Theory, 3rd ed., ser. Colloquium
Publications. American Mathematical Society, 1967.

[6] Olin Sibert et al., “Multiple-domain labels,” in prepara-
tion.

[7] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL
— A Proof Assistant for Higher-Order Logic. Springer-
Verlag, October 2011. [Online]. Available: http:
//www.cl.cam.ac.uk/research/hvg/Isabelle

[8] A. Franchi, A. Howell, and J. Sengupta, “Broadband
mobile via satellite Inmarsat BGAN,” IEE Seminar
Digests, vol. 2000, no. 67, pp. 23–23, 2000. [Online].
Available: http://dx.doi.org/10.1049/ic:20000547

[9] The Common Object Request Broker: Architecture and
Specification Version 3.1, Part 1: CORBA Interfaces,
OMG Document formal/2008-01-04 ed., Object Man-
agement Group, Jan. 2008.

18

http://www.cl.cam.ac.uk/research/hvg/Isabelle
http://www.cl.cam.ac.uk/research/hvg/Isabelle
http://dx.doi.org/10.1049/ic:20000547

[10] Data Distribution Service for Real-time Systems Specifi-
cation, OMG Document formal/2007-01-01 ed., Object
Management Group, Jan. 2007.

[11] CORBA/e Adopted Specification, OMG Document
formal/2008-11-06 ed., Object Management Group,
Nov. 2008.

[12] Object Management Group, DDS for Lightweight CCM
Version 1.0 Beta 2, OMG Document ptc/2009-10-
25 ed., Object Management Group, Oct. 2009.

[13] W. R. Otte, D. C. Schmidt, A. Gokhale, and J. Willem-
sen, “Infrastructure for Component-Based DDS Appli-
cation Development,” in To Appear in the Proceedings
of the Tenth International Conference on Generative
Programming and Component Engineering (GPCE’11),
Oct. 2011.

[14] The Common Object Request Broker: Architecture and
Specification Version 3.1, Part 3: CORBA Component
Model, OMG Document formal/2008-01-08 ed., Object
Management Group, Jan. 2008.

[15] N. Budhiraja, K. Marzullo, F. B. Schneider, and
S. Toueg, “The Primary-backup Approach,” in Dis-
tributed systems (2nd Ed.). New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1993, pp. 199–
216.

[16] Deployment and Configuration of Component-based
Distributed Applications, v4.0, Document formal/2006-
04-02 ed., OMG, Apr. 2006.

[17] W. R. Otte, D. C. Schmidt, and A. Gokhale, “Towards
an Adaptive Deployment and Configuration Framework
for Component-based Distributed Systems,” in Pro-
ceedings of the 9th Workshop on Adaptive and Reflective
Middleware (ARM ’10), Bengarulu, India, Nov. 2010.

[18] N. Mahadevan, S. Abdelwahed, A. Dubey, and G. Kar-
sai, “Distributed Diagnosis of Complex Systems us-
ing Timed Failure Propagation Graph Models,” in AU-
TOTESTCON, 2010 IEEE. IEEE, 2010, pp. 1–6.

[19] J. Balasubramanian, S. Tambe, C. Lu, A. Gokhale,
C. Gill, and D. C. Schmidt, “Adaptive Failover for Real-
time Middleware with Passive Replication,” in Proceed-
ings of the 15th Real-time and Embedded Applications
Symposium (RTAS ’09), San Francisco, CA, Apr. 2009,
pp. 118–127.

[20] J. Balasubramanian, A. Gokhale, F. Wolf, A. Dubey,
C. Lu, C. Gill, and D. C. Schmidt, “Resource-Aware
Deployment and Configuration of Fault-tolerant Real-
time Systems,” in Proceedings of the 16th IEEE Real-
time and Embedded Technology and Applications Sym-
posium (RTAS ’10), Stockholm, Sweden, Apr. 2010, pp.
69–78.

[21] K. Kim, “Object structures for real-time systems and
simulators,” Computer, vol. 30, no. 8, pp. 62–70, Aug
1997.

[22] I. Kuz, Y. Liu, I. Gorton, and G. Heiser, “CAmkES: A
component model for secure microkernel-based embed-
ded systems,” Journal of Systems and Software, vol. 80,
no. 5, pp. 687–699, 2007.

[23] J. Delange, L. Pautet, and P. Feiler, “Validating safety
and security requirements for partitioned architectures,”
in Ada-Europe ’09: Proceedings of the 14th Ada-
Europe International Conference on Reliable Software
Technologies. Berlin, Heidelberg: Springer-Verlag,
June 2009, pp. 30–43.

[24] T. Schoofs, E. Jenn, S. Leriche, K. Nilsen, L. Gauthier,

and M. Richard-Foy, “Use of PERC Pico in the AIDA
avionics platform,” in JTRES ’09: Proceedings of the
7th International Workshop on Java Technologies for
Real-Time and Embedded Systems, 2009, pp. 169–178.

[25] K. Lakshmanan and R. Rajkumar, “Distributed resource
kernels: OS support for end-to-end resource isolation,”
Real-Time and Embedded Technology and Applications
Symposium, IEEE, vol. 0, pp. 195–204, 2008.

[26] A. Dubey, G. Karsai, and N. Mahadevan, “A component
model for hard real-time systems: CCM with ARINC-
653,” Software: Practice and Experience, vol. 41,
no. 12, pp. 1517–1550, 2011. [Online]. Available:
http://dx.doi.org/10.1002/spe.1083

Abhishek Dubey is a Research Sci-
entist at the Institute for Software In-
tegrated Systems at Vanderbilt Univer-
sity. He has nine years of experience
in software engineering. He conducts
research in theory and application of
model-predictive control for managing
performance of distributed computing
systems, in design of fault-tolerant soft-
ware frameworks for scientific comput-

ing, in practice of model-integrated computing, and in fault-
adaptive control technology for software in hard real-time
systems. He received his Bachelors from the Institute of
Technology, Banaras Hindu University, India in 2001, and
received his M.S and PhD from Vanderbilt University in 2005
and 2009 respectively. He has published over 20 research
papers and is a member of IEEE.

William Emfinger is a Graduate Re-
search assistant at the Institute for Soft-
ware Integrated Systems at Vanderbilt
University. He has 2 years of work
experience with real time systems for
sensing applications. He intends to focus
on real time systems for high-criticality
and high-security applications. He re-
ceived his B.E. in Electrical Engineer-
ing and Biomedical Engineering from

Vanderbilt University in 2011, and is currently pursuing a
Ph.D. in Electrical Engineering and Computer Science from
Vanderbilt University.

Aniruddha Gokhale is an Associate
Professor in the Department of Electri-
cal Engineering and Computer Science
at Vanderbilt University, Nashville, TN,
USA. His primary research interests are
in investigating novel model-driven en-
gineering (MDE) solutions for systems
problems pertaining to distributed real-
time and embedded systems. He has
more than fifteen years experience in

middleware technologies. Dr. Gokhale has published over
100 technical papers. He obtained his B.E (Computer Engi-
neering) from University of Pune, 1989; MS (Computer Sci-
ence) from Arizona State University, 1992; and D.Sc (Com-
puter Science) from Washington University in St. Louis,
1998. Prior to joining Vanderbilt, he was a member of
technical staff at Lucent Bell Laboratories, NJ, USA. Dr.
Gokhale is a Senior Member of IEEE and Member of ACM.

19

http://dx.doi.org/10.1002/spe.1083

Gabor Karsai is Professor of Electrical
and Computer Engineering at Vanderbilt
University and Senior Research Scientist
at the Institute for Software Integrated
Systems. He has over twenty years of
experience in software engineering. He
conducts research in the design and im-
plementation of advanced software sys-
tems for real-time, intelligent control
systems, and in programming tools for

building visual programming environments, and in the theory
and practice of model-integrated computing. He received his
BSc and MSc from the Technical University of Budapest, in
1982 and 1984, respectively, and his PhD from Vanderbilt
University in 1988, all in electrical and computer engineering.
He has published over 160 papers, and he is the co-author of
four patents.

William R. Otte is a Ph.D. student
in the Department of Electrical Engi-
neering and Computer Science (EECS)
at Vanderbilt University. His research
focuses on distribution and compo-
nent middleware for distributed real-
time and embedded systems, and in
particular techniques to ensure correct,
predictable, fault tolerant, and adapt-
able deployment and configuration of

component-based applications. In addition, he is interested
in techniques for run-time planning and adaptation for com-
ponent based applications, as well as specification and en-
forcement of application quality of service and fault tolerance
requirements. He received a B.S. in Computer Science and
Mathematics from Vanderbilt University in 2005, his M.S. in
Computer Science from Vanderbilt University in 2008, and
is expected to be awarded a Ph.D. in Computer Science from
Vanderbilt University in December, 2011.

Jeffrey Parsons is a Research Engineer
at the Institute for Software Integrated
Systems at Vanderbilt University, where
he has worked for nine years. He has
over twelve years experience with mid-
dleware and generative programming,
and his interests also include model-
based design of component systems. He
received a B.S in Computer Science
from Washington University in St. Louis

in December 1998 and an M.S. in Computer Science from the
same institution in August 2002.

Csanád Szabó is a Research Engineer
at the Institute for Software Integrated
Systems at Vanderbilt University. He
worked for eight years in the industry
in various roles and dealt with topics on
networking, mobility management and
embedded systems. Two years ago he
returned to the research, he worked first
on an emotional engine modeling project
and joined ISIS recently where he is ac-

tive in modeling and simulation of distributed and embedded
systems. He received his M.S. in Electrical Engineering from
the Technical University of Budapest in 2001.

Alessandro Coglio is a Principal Sci-
entist at Kestrel Institute, where he has
been working on formal methods, the-
orem proving, specification languages,
provably correct refinement, program
generation, the Java Virtual Machine,
smart cards, cryptography, and software
for fractionated satellites. Prior to join-
ing Kestrel in 1998, Mr. Coglio was a
Consulting Researcher at the University

of Genoa (Italy), where he worked on theorem proving,
discrete event systems, Petri nets, and artificial emotions. Mr.
Coglio received a degree in Informatics Engineering in 1996
from the University of Genoa.

Eric W. Smith is a Computer Scien-
tist at Kestrel Institute, with expertise in
theorem proving, formal methods, and
security. He has over a decade of ex-
perience in formal verification of soft-
ware and hardware, in both academia
and industry, and he is an expert user of
the ACL2 theorem prover. In 2011, he
received his Ph.D. in Computer Science
from Stanford University. His disserta-

tion work focused on automatic formal equivalence checking
of cryptographic programs, including block ciphers and cryp-
tographic hash functions.

Page 1 of 1

10/31/2011file://C:\Users\pbose\Documents\2011\Personal\Bose.gif

Prasanta Bose is a Principal Scien-
tist at the Advanced Technology Center,
Lockheed Martin Space Systems. He
leads the distributed autonomous sys-
tems group. His research is focused
on software and systems architectures
of complex systems that leverage prin-
ciples from cross-disciplinary fields of
communications, computation and con-
trol and their model-driven engineering

for safety and security. He received his PhD in Computer
Science from University of Southern California and his MS
in Electronics and Communications from Indian Institute of
Science, Bangalore.

20

	Abstract
	1 Introduction
	2 The Operating System: F6OS
	Threads and Actors
	Partitions and Scheduling
	System Calls
	MLS and Labels
	Actor Communications: Secure Transport and Networking
	File And Auditing Services

	3 The Middleware: F6ORB
	Synchronous and Asynchronous Point-to-Point Communication
	Anonymous Publish/Subscribe

	4 The Component Model: F6COM
	Component Configuration Meta-Data
	Component Attributes
	Threads
	State Variables
	Local Interfaces
	Ports
	Contracts
	Triggers
	Component Life Cycle
	Component Interactions
	Asynchronous Interaction
	Synchronous Interaction
	Relationship with CORBA Component Model (CCM)

	5 Platform Actors
	Operations Manager
	Deployment Manager
	Dictionary Manager
	Certificate Manager

	6 Fault Management
	System Assumptions and Fault Model
	Fault Management System

	7 Security
	8 Model-driven Development
	9 Related Work
	10 Conclusions
	 Acknowledgments
	 References

