A Specification of Java L oading and Bytecode Verification

Allen Goldberg
Kestre Inditute
3260 Hillview Av.
Palo Alto, CA 94304
goldberg@kestrel .edu

December 22, 1997

Abstract

This paper gives amathematical specification the Java Virtual Machine (JVM) bytecode verifier. The
specification isan axiomatic description of the verifier that makes precise subtle aspects of the VM
semantics and the verifier. We focus on the use of data flow anaysisto verify type-correctness and the use
of typing contexts to insure global type consistency in the context of an arbitrary strategy for dynamic class
loading. The specification types interfaces with sufficient accuracy to eliminate run-time type checks. Our
approach isto specify a generic dataflow architecture and formalize the JVM verifier as an instance of this
architecture. The emphasisin this paper is on readability of the specification and mathematical clarity. The
specification given is consistent with the descriptions in the Lindholm’sand Y ellin’s The Java™ Virtual
Machine Specification. It less committed to certain implementation choices than Sun’sversion 1.1
implementation. In particular, the specification does not commit an implementation to any loading strategy,
and detects all type errorsas early as possible.

1 Introduction

1.1 TheJava Virtual Machine

The Java compiler translates Java class definitions into platform-independent target language known asthe
Java Virtual Machine. The Java Virtual Machine (JVM) is atype-safe, stack-oriented abstract machine.
Type safety requires that programs with type errors must produce an error indication rather than execute
and produce an erroneous result. Type safety is an important property of alanguage becauseit aidsin
development and debugging, but particularly because the erroneous executions resulting from executing
programs with type violations can be exploited to introduce security flaws. JVM code (also called
bytecode), not Java™ source istransmitted when an “applet” is sent over the Internet and remotely
executed. Because the transmitted code cannot be trusted to be the unmodified output of a correct Java (or
other language) compiler, the code must be checked for consistency either prior to execution or by run-time
checking.

A JVM program consists of a collection of class (including interface) definitions that are dynamically
loaded into the execution environment. A program is type safe if each classistype consistent within itself
and with respect to other classes dready loaded into the environment. Thus we formulate the type safety
problem as: given a consistent global typing environment and a class file, determineif the classfileiswell-
typed given the current global typing environment. If it is, then extend the global typing environment with
the additional declarations and subtyping relationships derived from the class description.

The bytecode verifier performs static checks and dynamic checks. The static checks insure that a class
definition can be parsed to yield a constant pool and syntactically-correct code for each method. The
constant pool, which isasymbol table, has entries for each method and field defined in the class and for
each class, field, and method referenced in the method code. It also identifiesa class' direct superclass and
the interfacesit directly implements. For classfilesthat define interfaces, it identifies its direct
superinterfaces. The static checks performed insure that every literal referenced in the code of a method is
described by and is consistent with an entry in the constant pool for the class.

Thiswork is supported by DARPA contract F30602-96-C-0363

The type correctness of a class definition is difficult to verify because the WM isweakly typed. The VM is
a stack machine manipulating an operand stack, a set of local variables, or registers, and aheap containing
object ingances. The type of stack positions and local variables, like hardwareregisters, vary during
method execution. Thus, for example, for a method to be type safe, it must be the case that whenever a
floating add instruction £add is executed the top two stack elements must be typed as floating point
numbers. This check can be performed during execution, by labeling stack elements with type tags, but this
introduces an unacceptabl e run-time inefficiency. The dynamic checks of the verifier verify the type safety
and related properties of all possible execution paths of each method defined in the class. Providing such a
proof for all correct programsisan undecidable problem. Thereis, though, a decidable and efficient
method of computing a conservative estimate in which some programs that are type safe are incorrectly
rejected, along with all type inconsistent programs. Using a conservative approximation when it is clear
what subset is accepted is not problematical since then Java compilers can be designed to generate VM
code that falls outside of the subset of type-correct but rejected programs.

In the VM, when amethod isinvoked it executes with a new empty stack with actua parameters |oaded
into local variables; when it returns, either normally or because of an uncaught exception, control is
transferred to the calling method. The caller’s execution environment (in particular, its own operand stack
and local variables) isrestored and updated. Although methods may run concurrently, a method cannot
access or modify another method' s local variables or stack. Thus given a global typing context of signature
and subtyping information, bytecode verification can be performed independently on each method of the
class.

1.2 Dynamic Loading

Unfortunately, the complete global typing context of a classis generally not available when aclassis
verified. Onereason for thisisthat classes may reference the other recursively. More fundamentally, the
JVM specification permits a class to be loaded at the latest possible moment—when amethod of the classis
invoked.

Dean [D97] considers how to insure global type consistency in adynamically loaded environment. The key
condition is monotonicity of the global typing context. Intuitively, this meansthat only consistent additions
are made to the typing context as classes areloaded. The model of bytecode verification presented hereis
insures global type correctnessin the following sense. The verifier inputs a class definition and a global
typing context; it rejects a class definition that is either internally inconsistent or inconsistent with the
global typing context. If it accepts the class definition, it generates an extended global typing context. If the
global typing context is sequentially threaded to all invocations of the verifier, global consistency is
assured.

The Sun JDK 1.1 implements one strategy for dynamic loading and its bytecode verifier is specialized to
thisloading strategy. The JDK 1.1, when verifying of a class ¢, it will dynamically load any classes
referenced by c that arerequired to insure that all classes are correctly typed. It uses alazier strategy to
check interface types. In this paper, the bytecode verifier we specify is not committed to any particular
strategy for dynamic loading nor doesit rely on run-time checks to insure type safety.

1.3 Limitations

There are two limitations of this paper. It does not consider enforcement of restrictions specified by access
flags, such asprivate, protected, abstract, and £inal and excludesthe jsr and ret
instructions. While treatment of access flags are straightforward, jsr/ret adds significant complication to
the dataflow analysis.

1.4 Outline of this Paper

The next section describes aspects of the VM type system relevant to this paper. Next, we specify a
generic data flow architecture. Then we instantiate the data flow architecture to the JVM type analysis
problem. We then consider the problem of verifying that object instances have been properly initialized.
We then discuss our plansto implement the specified verifier using the Specware system. Thisis followed

by a discussion of related work and some conclusions. The paper assumes familiarity with the JVM. The
reader isreferred to Lindholm’sand Yelin's The Java™ Virtual Machine Specification [LY 97].

2 TheJVM Type System

The JVM type system islargely derived from the Java language, but it also differs from Java in significant
ways.

2.1 Primitive Types

The complexity surrounding the primitive types derives from low-leve efficiency and portability issues.
The elements of the stack and local variables of the JVM are “words’ that hold at least 32 bit. 1ong and
double areheld in two consecutive words. On the other hand, in arrays and objects instances values that
can be stored with fewer than 32 bits may be packed into hits or bytes.

The types explicated in the JVM specification are:

byte, 8 hit signed two's complement integers,

short, 16 hit signed two's complement integers,

char, 16 hit unsigned integers representing unicode characters,

int, 32 bit signed two's complement integers,

long, 64 bit signed two' s complement integers,

float, 32 hit IEEE 754 floating point numbers,

double, 64 bit IEEE 754 floating point numbers,

returnAddress, denoting an instruction addresses within the method’ s code. Since we do not
treat jsr/ret, thistypeisnot used in the specification.

In addition, we define the following types:
e 1Long, representing the low-order 32 bits of a Long,
hLong, representing the high-order 32 bits of a 1ong,
1Double, representing the low-order 32 bits of adouble,
hDouble, representing the high-order 32 bitsof adouble,
Boolean, representing asingle bit quantity,
Void, used in method signatures to denote the return type of a method that does not return avalue.

Define SkPrTy={int, float, 1Long, hLong, 1Double, hDouble }. These are the type designations
of primitive types on the stack or in local variables.

Define SgPrTy={byte, short, char, int, long, float, double}. These arethe type designations
of primitive typesin fields and in method signatures.

Define ArrPrTy = SgPrTy({boolean}. These arethe primitive types that may appear as e ements of
arrays.

2.2 Reference Types

There are four kinds of reference types: classes, arrays, interfaces and the type null, thetype with asingle
value, thereference nul 1. Each object and interface type is uniquely named by its fully qualified name
together and the name of its class |oader [S97]. For the purposes of this paper, the structure of the name
space of classesis not relevant. Thusthe collection of class namesis denoted by an abstract set N. (Should
this paper be extended to check access constraintsimplied by the protected attribute, then the package
structure of the name space must be formalized.) The pre-defined class java . lang. object, loaded by
the system loader, isdenoted object intheset N. Let N, denote the set of non-array objects, and N; the

set of interfaces. Then N=N, UN,.

Define BaseArr Ty=ArrPrTy UN. BaseArr Ty defines the set of non-array types that may be elements of an
array. Define the set of array terms Arr Ty as the smallest set closed under the following rules.

e Iftisin BaseArrTy then theterm [t], read “ array of typet” isin ArrTy, and has dimension 1.
e Iftisin ArrTy and hasdimension i, then[t] in ArrTy, and hasdimension i+1.
e All termsin ArrTy have dimension at most 255.

The collection of reference types RefTy = NCArTT({null}. A stack typeisan element of the set SKTy =
SKPrTy URefTy. These are the types designations of stack elements and local variables.

In our specification, four binary subtype relations over N are used. a<ob for a, b& N, hastheintended
meaning that a directly extends b. a<; b for a, b&N; hasthe intended meaning that b isadirect
superinterface of a. The assertion a<x;object hastheintended meaning that a does not have direct

superinterfaces. Finaly, aximp b for a& N, and b &N, has the intended meaning that object type a directly
implements interface b. These three relations are called direct subtype relations. The fourth relation, the

indirect subtype relation, ax'b for a, b&N, hasthe intended meaning that (a,b) isin the reflexive transitive
closure <, UsiUximp. FOr any relationr, let TC(r) denote itsreflexive transitive closure. Findly, define
the set of signature types, SgTy = NUArr Type S gPrTy.

2.3 Global Typing Contexts and Name Resolution

Asthe JVM executes, it |oads class definitions. When a class getsloaded a constant pool for that classis
constructed. The constant pool specifiesif the classisan object class or an interface, the signature of fields
and methods of the class, the interfaces the classimplements, and its superclass or superinterfaces. It also
specifies the fully qualified name, the type of fields, and signature and return type of methods referenced by
the class. Theformer aretrested as assertions true of the defined class, the latter assumptions about other
classes that must be verified. When aclassis verified, the (internal) consistency of the method code is
checked against the type information in the constant pool. When the referenced classisloaded, it is
possible check the type consistency of the referenced methods and fields. To perform this verification a
global typing context of assertions and assumptions is maintained.

Let F denote the abstract set of field names and M, method names. A field signature assertion isaterm of
the form n.f:t whereneN isareference type name, f&F isafiddd nameandteSgTy. A method signature
assertion isaterm of theform n.f:a where neN, m& M isamethod name, and o isamethod signature of

theformt —r. Heret' isasequence of zero or more elements from SgTy, andr € SgTy(fvoid}. A
classassertionis aterm of the form n:class or n:interface. A sgnature assertioniseither afield signature
assertion, amethod signature assertion, or a class assertion.

An assertion set isa set containing signature assertions and direct subtype assertions.

When a class cisloaded, an assertion set I, isextracted from its constant pool and each assertion in 7 is
added into a global assertion set I Thetyping assertionsin 7 are determined as follows.
e |f cisan object class, then theassertion c:classisin 7I¢. If cisan interface then the assertion
c:interfaceisin I¢. Classfiles define either classes or interfaces, not arrays or the null reference

type.
e If cisclass (other than object) itsdirect superclassis specified by an entry of the constant poal. If

thenameiss, then thecx,sisin I¢. If cisan interface, then no superclass assertions are made.
e If cisaninterface, for each of its direct superinterface s the assertion cx;sisin I¢. If chasno
superinterfaces the assertion cxjobject isin It

e If cisan object class, for each interface s that ¢ implements, the assertion C<impSisin I.

e For each field name, f, with typet defined, not inherited in ¢, thefield signature assertion c.f:itisin
I

e For each method m defined, not inherited, in ¢, with signature and return type o, the method
signature assertion n.fioisin I¢.

If I"isan assertion set define a< - b if the pair (a,b) isin the reflexive trangtive closure of the union of
the subtype assertionsin I
An assertion set I"isinconsistent if any of following conditions hold.
1. aclassel'and azinterfacesr”
a<obée I' and ether asinterfacesr"or b:interface<r”
axib&rlrand a:classer”.
a<ib&rl, b#object, and b:classerl”
aximpb€ I’ and ether ainterface<rlor b:class&r
a<ob €&l axob’ €Mand b=b’.
Thereisan n such that object s, N 0Or object /N or object <imp N.
<"r containsanon-trivial directed cycle.
ax'b afit >relbft »r'erand r=r’.
Suppose a; <0 & EL, ap<o 3ET ..., 8nsoobject €l ayximp bEl, b< b, and b’ . m.c& I but

thereisnoi such that a.m.c & I In words, I'isinconsistent if a class a; implements an interface b,
all of the superclasses of a; have been loaded, and some method that is defined or inherited in
interface b, isnot defined or inherited by a;.

© o N O 0k~ WD

=
©

An assumption set isa set containing signature assertions and assertions of the form a<xb. When aclasscis
loaded, an assumption set A, is extracted from its constant pool. Each assertion in A is added into a global
assumption set A. The assertionsin A; are determined as follows.

e |Ifin some method of c afield f, defined in class d, isreferenced, then the constant pool has an entry
with the name of the defining class, field name and itstypet. Then the field signature assertion c.f:t
isinAc.

e If in somemethod in c amethod defined in class d is referenced, then the constant pool has an entry
with the name of the defining class, field name and signature . Then the method signature
assartion c.fioisin A

e Furthermore, as methods of ¢ are verified assertions of the form axb are added to the assumption
Set.

A namen & Nisclosed with respect to an assertion set 7if the following conditions are met.
e Ifnisobject,thennisclosed.

e For neN, other than object, nisclosed if
e thereisexactly one b such that the assertion n<o.b &7, and b isclosed, and
o for each beN, such that aximpb&rl bisclosed.
e Forn&eN, nisclosed if
e ninterface&e I,
e and for each b&N; such that n<b, bisclosed.

Let A be the set signature assertionsin A and A the subtypes assertionsin A If I"isan assertion set and A
an assumption set, the pair (7 A) isinconsistent if any of the following are true.

1. [isaninconsistent assertion set.

2. cmocAand either c:classelor ciinterfacecl” but c.m.o &I (A field or method mis asserted to
be declared in the class c. The class ¢ has been introduced to the typing context as evidenced by the
assertion c:class&rl” However, the method misnot declared or hasincorrect signature or return
type)

3. T'UAsisaninconsistent assertion set. (Note because of condition (10), an incons stency assertion
set ismay become consistent with the addition of signature assertions. Thus 7"UAs cond stent
doesn’t imply 7" consistent.)

4. Thereflexive trandtive closure of A Ux" containsanon-trivial directed cycle.
5. axbé&A, ainterface&r; aisclosed with respect to I but (a,b) & <"

6. ayxbcA, adasselbclasserl, aixoa €, d<o 83E1 ..., 8n50 object € but b=g for some
i=1,..,n.

7. asbe&A, acclassel; biinterface&r; ais closed with respect to 7™ but (a,b) & <
A consistent pair (7 A) isatyping context.

In Sun’s JDK 1.1.4 implementation, when an interface class gets resolved, al of its superinterfaces are
loaded, if necessary, and resolved. In other words, before an interface method can execute, itsinterface
class must be closed. This specification is consistent with alazier strategy in which may alow ainterface to
be loaded, and initialized without |oading a superinterface, as long asthere are no referencesin the already
loaded classes to methods or static fields defined in the superinterface. With thislazy loading Srategy it
may be that a class that purports to implement an interface but does not, because it failsto implement a
method defined a superclass of the interface. If the superinterfcae is subsequently loaded atype error will

be reported.

3 A Data Flow AnalysisArchitecture

Dataflow analysisis a methodology used to establish assertions at program pointsthat are invariant over
all program executions. A typical assertion that may be computed by flow analysisis “the value of variable
r at program point p isaconstant.” Assertions are represented by elements of a meet semi-lattice.
Intuitively, the meet operation of two lattice points a and b represents what can be maximally asserted if
along one control flow path aistrue, and along another b istrue. For each statement in the program, a
transfer function is defined that maps an e ement of the lattice representing an assertion true prior to
execution of the statement to a lattice point representing an assertion true after execution of the statement.
The basic idea of flow analysisisto symbolically execute via the transfer function the program over the

| attice structure using the meet operation to merge the properties true about different execution pathsto the
same program point. Thisis computation is a fixed-point computation over the lattice structure that
terminates when gtability isreached. Under suitable conditions, the least fixed-point solution is
characterized as the meet-over-all-paths solution. This means the assertions associated with a program
point at the termination of the algorithm are sharpest invariants true of every execution sequence that
reaches that point. To instantiate the data flow architecture to a problem, the control flow graph, the lattice
and the transfer functions are specified. This paper is organized around the specification of these
parameters.

A meet semi-latticeisatupleL = (U, &, /7,) whereU isauniverse of elements, = apartial order on U,
/7.U xU — U, iscalled the meet operation, and_£ €U isthe bottom element satisfying the axioms:

e L isreflexive, anti-symmetric and transitive

e L xforeachxeU,

e Xx£ 7 for each xeU,

o foreachxandy, x/7y =x, x/7y £y, and for all asuchthat a=xandacy,a= x/7y.
A descending chain is sequence of strictly decreasing elements of U. If all descending chainsin alattice are
finite then the | atti ce satisfies the descending chain condition. A function f:UxU — U isdistributive if for
al a binU, f(as7 b) = f(a)/7f(b).
A data flow problem consists of a

e adirected graph, called the control flow graph, G=(V, E) with a distinguished entry vertex, init,

e ameet semi-lattice, L =(U, &, /7) with amaximal element, 7, satisfying the descending chain
condition;

o for each edgee of G afunction TF-U—U that isdigributive over L, and

e aninitial valuei €U initializing the data flow at node init.

Let P(v) be the set of paths from theinitial vertex to v. The meet-over-all-paths solution to a datafl ow
problemisamap M :V—L so that M(V)=/ 7, cpu) TF(i) where TF isextended from edges to paths by
composition.
Theorem. The following algorithm converges and computes the meet-over-all paths to the datafl ow
problem:

O=)v.ifv=initthenielse T;

while there exist an edge e=(v, w) such that TF. (O(v)) ZO(w) do

OW) —Omw) 17 TFe (O(V));
return O;

Proof. See[Mu97] and [K73].
The algorithm can, of course, be refined into efficient implementations.

3.1 Product and Stack L attices

The product lattice L = L; x - x L, of meet semi-latticesL; = (U;, 5, 7%, L;)isameet semi-lattice whose
universeis U; x -+ x U, The partid order and meet operations are defined componentwise, eg. <a; ,
a,> =<b, , -, b>iffg5bforeachi. 1 =<4y, -, Lp>

The coalesced product latticeL = L; x - xL, of meet semi-latticesL; = ((U;, 5, /7, £) isameet semi-
lattice whose universeis{+} U U; {11} x - xUp-{£,}. Thepartia order is defined componentwise,
<@, ~,a8> &<by, -, b>iff a5 bifor eachi. If foranyi, g /7 b=, <ag , =, &> r7<by , -, by>
=_,. On other values the meet operation is defined componentwise.

Define select:Lxi:{1..n} —L; to bethe projection function, select(<a, , -, a,>,)= a_ Define
update:Lxi:{1..n}, Li—L to updatetheith component, update(<ay , -, a,>,i,b)=<ay,,a.1, b, a1, -,
a>.

Fact 1. Select isdistributive in its first argument, update is distributive in its first and third arguments.

SupposelL = (U, 5, /7, £)isameet-semi lattice. Consider stacks of maximum size s, s>0 whose e ements
are taken from U. Such a stack isitself ameet semi-lattice, denoted Stack(L, s). The universe of Stack(L, s)
are dl stacks of sizeup to swith £ adjoined,; Define st iff size(s)=size(t) & top(s) = top(t) and,
inductively, pop(s) Zpop(t). The meet operation is defined similarly. top and pop are the usual stack
operations extended so that top, push and pop yield (in the appropriate lattice) if any of itsargumentsare
L. Also, define top(empty)= <, pop(empty)=_£, and push(x, t)=, if Size(t)=s.

Fact 2. pop is distributive, i.e. pop(s/7t)=pop(s)/7 pop(t). Also, push is distributive in both arguments.
Fact 3. The composition of distributive functionsis distributive.

Note that the type Boolean isameet semi-lattice with falseas £, false= true, and xX/7y=x&y.

Fact 4. if L isalatticewith atop element 7, and f:L— L and p:L— Boolean aredistributive and then sois

[7, ifx=T,
a0 = {f(x), ifpX),
lL, otherwise

4 |nstantiation of the Dataflow Architecturetothe JVM

4.1 Control Flow Graph

The control flow graph, G=(V, E), for aJVM method has a vertex for each ingruction and edges dencting
control flows between instructions. With the exception of the pair of instructions jsr and ret
construction of the flow graph from the classfileis straightforward and not formally specified in this paper.
This paper doesnot treat jsr/ret, indructions that we believe are best formalized using inter-procedura
dataflow methods. We assume the existence of a function that produces a control flow graph from a method
in aclassfile. Such afunction must perform the static checks to insure that the code and its exception table
are well-formed, must process wide ingtructions, and must determine control flow edges corresponding to
caught exceptions. It isnot necessary to explicitly model exceptions that are not caught within the method
since these simply terminate execution of the method. An instruction’ s affect on the stack and on local
variables depends on whether an exception israised or not. Thus, transfer functions are associated with
edges, not with vertices. Edges from a statement to exception-handling code are called exception edges,
non-exception edges are called normal edges.

4.2 Thelatticefor the JVM

In this section, we define alattice, L, used for the dataflow analysis of VM programs. L=({L4,L;)) isthe

coalesced product of two lattices, with 7 adjoined as atop element. Ly representing the global typing
context and L; the types of thelocal variables and stack e ements.

The universe of Ly are consistent global typing contexts together with £, which denotes the inconsistent
global typing context. Given two consistent typing contexts (77, A1) and (13, Ag), define (73, Al = (12, A2)
if 7327 and A,CA;. Define (17, As) 77 (T2, Ao) tobe (I UL, AU A,) if (T 0T, AU A) isconsistent and
L otherwise.

The lattice L, specifies information about the type and initialization status of each stack position and local
variable of a method. L; = ({Lax, Lvar)) isa coalesced product lattice of the lattice Ly representing the
operand stack, and L, representing the local variables. Ly =Sack(L,, S) where sisthe maximum stack size
for the method which is given in the class definition. Ly iSthe n-fold product (not coal esced) lattice of L,
where nisthe number of local variables used by the method, which isa so given in the class definition.

JVM semanticsissuch that if alocal variable has an inconsi stent typing then verification failsonly if the
variableis used. On the other hand if a stack element has an inconsi stent typing then verification fails,
regardless of whether the stack value isreferenced. Thisdifferenceis reflected by defining Ly isa
coalesced product and L, asa product lattice.

L. isthe lattice used to represent the type and initialization status of individua local variables and stack
positions. To mativate the construction of L., consider the problem of typing alocal variable at a program
point. Suppose following one execution path to that point the variable contains areference to class c;, and
following some other path areference to class c,. For the method to be well typed, any subsequent use of
that variable mugt treat the variable as having atype c that widens both ¢; and c¢,, and isthe most specific
type that does so. That is, ¢ should be the least common supertype of ¢; and c,. This suggests that the class
hierarchy be reflected within L.. However, there are two difficulties with this. First, because classes are
loaded dynamically, when the method is verified the least common supertype of ¢; and ¢, may not be
known. Second, if either one or both of ¢; and ¢, are interfaces, thereis no least common supertype. The
alternativeis to type variables and stack positions as consistent sets of compile-time types with the
interpretation that the variable may hold a value consigtent with any type in the set. Suppose, for example, a

stack position istyped as{s, ..., S} for 5 €N. If that stack position is used in the context where a value of
typeteN isrequired then the assertions § <t i=1,..., k are added to the typing assumptions.

A subset of SIkTy isinconsigent if it contains two distinct terms such that

e oneof thetypetermsisa primitive type (a consistent set with a primitive type term must be a
singleton);

e oneis[t] and the any non-array type other than object or;

e onetermis|[t] theother [g and {s, t} isincondstent.

The elements of the universe of L. are consigent subsets of SIkTy. isadjoined and denotes an
inconsistent typing. For s, t in the universe of L different from ., define sct iff tcsand s/t assut if sut
isconsistent and £ otherwise.

Since only afinite number of classes are ever loaded into the JVM, L satisfies the descending chain
condition.

4.3 Dataflow Initialization

We assume object isthe only pre-loaded class. Thus, when the JVM is started up the global typing
environment (7, As)= ({object:class}, £7). With respect to verification, loading aclass c requires

updating (I, Ag) to (I, As) 77 (I, Ao)- If (I's, Ac)= L, the class cisrejected and the typing context
restored. Then for each method m of c the dataflow analysis is executed. The dataflow analysisisinitialized
by assigning alattice value to the vertex init in the control flow graph. The lattice value is determined by
the global typing context, and the signature of the method. Recall that when a method isinvoked its
parameters are placed in local variables, starting at variable 0. The initia valuel isdefined as

I=({gl), wherelg=(Ic, Ag), = ((ak hvar)): lsk= empty, la=d{ti}, ..., {t&, £, ..., L). Thetypest,,..., t
are the types of the parameters of m. Notet; isthetype of this if misnot a static method. Also, the types
long and double arereplaced by hl.ong, 1Long and hDouble, 1Double respectively. The data flow

algorithm is executed. A verification failureisindicated if thelattice value £ isassigned to any vertex in
the control flow graph. Otherwise, the datafl ow algorithm associates an lement |,, of the lattice L with each
vertex of the control flow graph. From this result, an updated global typing context is obtained by taking

the meet of the global typing context at each vertex. i.e. (I's, Ac) =/ hinv pProject(ln,1). If (I, Ag) is

updated to be £ verification fails. Otherwise (7, Ag)isused toinitialize the dataflow analysis for the next
method of the class c. This procedureisiterated until al the methods are analyzed. The final global typing
context is then passed to the next classthat isloaded.

To adhere to the datafl ow framework, the global typing context is part of the lattice, and so thereisan
instance of the global typing context stored for each node of the contral flow graph. In an actual
implementation, it is only necessary to maintain a single global typing context.

4.4 Transfer Functions

In the dataflow framework, the transfer functions formalize the typing rules for each JVM ingruction. The
bytecode verifier constructs a transfer function for each instruction from the instruction’ s opcode and
operand, and from the constant poal. In this section we define afew generic distributive functions that are
useful building blocks for constructing transfer functions.

The transfer function associated with the edge (v, w) expresses a typing rule for the instruction at vertex v.
The typing rule for exception edges differs from the one for normal edges. If an exception israised, JVM
semantics dictate that all the values on the stack are popped, and that the object representing the exception
is pushed onto the stack. The local variables are untouched. The transfer function for exception edges need
also to make some additional checks as described in section5.

Aswith typing rules, the transfer functions specify enabling conditions on the typing environment, i.e. on

the lattice value associated with the vertex. If the condition is not satisfied, the transfer function yields -,
indicating that the method is not well typed. If the condition is satisfied, then the lattice valueis
transformed according to the semantics of theinstruction. Thus, transfer functions are generally of the form
of thefunction gin Fact 4 of section 3.1. Since the global typing context will not contain complete

information about subtype relations on classes, the expected enabling conditions cannot be checked.
Instead, the transfer function adds subtyping assertions to the assumption set of the typing context.

Transfer functions may be specified by describing their behavior on the sub-lattices of L, For the stack
lattice, the enabling condition tests whether the top k e ements of the stack exist and satisfy type constraints

derived from the ingtruction. Define TypMatch=3kPrTy(fobject, single, doublel, doubleh

[object]) A[t]| teSkPrTy}. Thenewly introduced “types’ single, doublel, doubleh areusedin
stack manipulation ingtructions such as dup are only concerned with whether atypeisrepresented in a

single or doubleword. single will match (i.e. is x) any single word type such as int or any RefTy;
doublel will match IDouble and 1Long, and doubleh will match hDouble and hLong. Recall,
Sack(TypMatch, s) are sacks of size s (the maximum stack size for the method) whose e ements are from
TypMaitch. Let chkStk: Stack(TypMatch), Lgx — Boolean.

chkSk (p, I) < p= empty vsize(p) < size(l) & (Vx & top(l)) top(m) s X) & chkSk(pop(p), pop(l)).

Note object stistrueiff tcRefType. It isnot difficult to prove that chkSk is distributive in its second
argument. Condder, for example, the aastore ingruction; it requires the top of the stack to betyped as s,

int, [t] wheret and s are reference types and sxt. The call to chkStk with first argument <object,int,
[object]> checksthe appropriate enabling condition for the aastore instruction. The transfer function
updates the L lattice by popping its three top elements off the stack, and updates the global typing
environment with the addition of subtyping assertionsto the assumption set. In this case the typing for the
top stack element isa set that contains reference types, {si,..., S, and the third argument is a set containing
arrays of references {[t], ... [tm]}. The subtype assertions that must be added to the global typing

assumption set are those in the set {norm(s< t)| s &sy,..., s}, tjE{ty,..., tm}}. A term in SgTy may denote
an array type, but global typing contexts do not contain such terms. Thus, if s, t& SgTy, and sstisto be
asserted, then st isfirst normalized, via the function norm, to a subtype assertionsin N. For example,

normalization reduces null< stotrue, object <[] totrue, [[a]] <[[b]] to axb, and[a] x[[b]] to
false.

Assuming chkStk has verified the type stack, the transfer function to update the stack, are composed from
push, pop, top perhaps binding popped val ues to variables, so they can be pushed back on the stack. One
other function, element-type, which maps a set of array types to a set of the corresponding e ement types, is
also needed. We give three examples of transfer functions that update the stack representation. Nearly all
transfer functions can be defined as Smple compositions of the functions defined.

Instruction chkstk pattern Transfer function
fadd int, int A x.pop (x)
aaload e Tt ix.let
int, [{] e-t= element-type (top (pop (x))
in
push(e-t, pop (pop (x)))
. . ix.let
dup_x1 single, single tl=top (1),
t2=top (pop (1))
in

push(tl, push(t2, push(tl, pop(pop(l))))

4.4.1 Instructionson Primitive Types

Many JVM instructions, including all of the arithmetic operations, manipulate primitive types on the stack.
Thetransfer functionsfor these ingtructions are the identity on global type, and local variable lattices, and
modify the stack using the methods described above.

10

Load and store instructions for primitive values are also straightforward, using methods to verify and
update local variables that are ana ogous to the methods described for stacks. One subtlety is that
instructions that writeinto alocal variable that holds one word of adouble or 1ong, must aso update the

other word to ..

4.4.2 Object Creation and Manipulation Instructions

4.42.1 Array Instructions

Thetransfer function for aaload was given above. The transfer function for the anewarray instruction
pushes the type of the array onto the stack. The type is determined by lookup into the constant pool. The
baload instruction will pop either [boolean] or [byte] off the top of the stack and replace it with an
int. Other array operations are straightforward.

4.4.2.2 Non-array Instructions

Thenew instruction creates anew object instance. The next section describes how flow analysisis used to
track that newly-created objects are properly initidized. Transfer functions for field access instructions,
suchasgetfield, are easily constructed using data in the constant pool. These transfer functions add
subtype assertions to the global assumption set.

Of the four method invocation ingructions, the invoke special ingruction isthe most complex. This
instruction is used for invoking instance initiaization methods, private methods, or amethod of a
superclass of the current class. Thetyping of thisingruction is dependent on which case arises. Case
discrimination is statically determined by its operand. The operand of the instruction indexes the congtant
pool and retrieves a class, ¢, method, m, and signature, o, If the method nameis<init> then the
instruction is used for method initialization. Typing of instance initialization methodsis discussed in the
next section. If the method hasthe private access flag, then thisisan invocation of a private method.
Otherwisg, it isthe invocation of a superclass method. Although this paper has not treated access flags, this
context isthe most complex situation where they are used and so we consider them here.

In each casg, the top of the stack should contain an object reference followed by the parameters. Type
checking the parametersisthe samein each case. The type constraints on the methods's pararameters are
derived from the signature o and are enforced using the techniques describe above. The differenceis
varying subtyping requirements on the current class, cc, (i.e. the classthat is currently being verified, the
class ¢, and the object reference on the top of the stack. For an <init> invocation, the type of the object
reference must be an uninitialized object. For invocation of a superclass method, the subtype assertion

cC=C isadded to the global type assumptions. If the method isprivate, the assertions ccsc and c<cc are
added. For superclass and private invocations, for each reference typet the set of types for top of the stack,

t<xc isadded to the global type assumptions.

5 Object Initialization

A further objective of the bytecode verifier isto insure that accepted programs do not use an object instance
unlessit has been properly initialized. In the Java programming language, invoking a constructor method
allocates memory for anew class instance and initializes its fields according to user-specified code. In the
JVM, allocating memory for anew class instance is achieved by the new instruction. The new object’s
fields areinitialized by executing a method called <init> compiled from a Java constructor for the class.
The bytecode verifier assuresthat objects that have been allocated with new but not yet initialized by
invoking <init> cannot be used.

Thenew instruction initializes the fields of the object with default values for each type. Thus, type safety is
assured, even if <init>isnot caled. Nonetheless, the security of the JVM is dependent upon executing a
proper initialization sequence, since user-defined classes such as extensionsto the classLoader, must

11

meet security-critical interface requirements, that are at least partially satisfied by insuring proper
initidization.

The lifecycle of object creation isfollows. Firs, in some method m, anew instance of class cis created by
execution of anew instruction with the name c asits operand. Theinstruction places areference to the
newly-created-but-not-yet-initialized object on the top of the stack. Thereference can be stored in local
variable, duplicated on the stack, but may not haveitsfields referenced or updated, its method invoked, be
passed as an argument in amethod call, assigned as the value of a field of some other object, or be
otherwise “used” until an <init> method of classciscalled with thereference asthe this parameter.
Finally, the called <init> method must itself call an <init> method of ¢'s superclass (assuming c is not
the class object), or another <init> method for ¢ with different signature, before it may use the object
or return normally.

A method may invoke the same new instructions many times, or there may be many new instructionsin
the code, so thetask of pairing callsto <init> with executions of new is, in generad, intractable. To make
the problem tractable, the JVM rejects programs that have two simultaneous uninitialized instances
allocated by the same textual occurrence of the new instruction.

Datafl ow methods are well-suited to performing these checks. Define anew type term uninit(i, c) wherei is
the index of anew instruction within a given method, and c is the name of the class allocated by that
instruction. In addition, we define needs-super as a new type term. Both uninit(i, ¢) and needs-super arein
SKTy. The definition of an inconsistent subset of KTy is extended so that any non-singleton set containing
uninit(i, c) or needs-super isinconsistent.

In our formulation, the enabling condition of the typing rule for thenew c instruction at location i requires
that there are no instances of {uninit(i, ¢)} on the stack or in local variables. Thisformulation isnot in strict
adherence to JVM semantics. JVM semantics requires that when a backward branch is executed there are no
instances of {uninit(i, c)} on the stack or in local variables. Our rule seems simpler and more to the point.
The transfer function for new pushes {uninit(i, c)} onto the stack representation.

The enabling condition of the typing rule for the subcase of the invoke special instruction, used to
invoke an <init> method from class c requires uninit(i, c) or needs-super asthetypeof itsthis
argument. If this isuninit(i,c), then the method must be an <init> method of classc. If thisis
needs-super then the method must be an <init > method of the current class or itsdirect superclass. The
dataflow analysis of the called <init> method isinitialized so that the type of local variable zero, which
receivesthe this argument isneeds-super. If cisobject, and so hasno superclass, the type of local
variable zeroisinitialized to object.

The transfer function for the <init> method subcase of the invoke special instruction pushes {c}
onto the representation of the stack. If the this argument isuninit(i, c) then all occurrences of {uninit(i,
)} on the stack and in local variablesis updated to {c}. If the “this“ argument is needs-super then all
occurrences of needs-super are updated to {c}. The typing rules are summarized in the table below.

12

I nstruction Typing Conditions Transfer Function
new C Thereisno occurrences of uninit(i,c) on | Push {uninit(i,c)} ontothe
at location i the representation of the stack or local representation of the stack.

variables,

invoke_special
invoking an
<init> method

e The argument list must be correctly
typed.

e The this argument mus have type
uninit(i,c) or needs-super.

e If this isuninit(i,c), then the
method must be an <init> method of
classc.

o If this isneeds-super then the

c.<init>
initidized so that
local variable O
has type needs-
super. Other
local variables
hold the types of
the argument list.

Upon return from
<init>,{c}is
pushed on stack
and each
occurrence of
{uninit(i,c)} or
{needs-super} is
updated to {c}

method mugt be an <init > method of
the current class or its direct superclass.

return There are no occurrences of

needs-super.

In addition, JVM semantics require that there must never be an uninitialized class instance in alocal
variable protected by an exception handler or afinally clause. “finally” isa Java construct that compiled in
the VM asa“subroutine.” Thisrequiresthat the transfer function on any exception edge imposes the
condition that there are no occurrences of uninit(i,c) or needs-super in the sets representing the types of
local variables. It also imposes the same condition on certain edges exiting j sr instructions, but that is
beyond the scope of this paper.

6 Specware

This paper has given in informal mathematical notation, areasonably precise formalization to the core
functionality of the bytecode verifier. It has only loosaly described functions that extract from aclassfilea
control flow graph, and transfer functions. We plan to specify all of this using the Specware system
available from Kestrel Inditute.

Specware] S195] supports the formal devel opment of programs from specifications. In Specware, basic
specifications are theories in high-order logic. Complex specifications are composed from basic
specifications using high-level module operations that include parameterization. Thus constructions such as
instantiating the generic data flow architecture to the JVM, and constructing product and stack lattices from
other lattices are nicely expressed in Specware.

The unit of refinement istheinterpretation, atheorem-preserving trandation of the vocabulary of a source
specification into the terms of a target specification. Specware makes available atheorem prover to prove
interpretations correct and to prove putative properties of the specification. Specware supports the
generation of code in Lisp and C++.

Thus, using Specware, provably-correct code can be generated from our specification. The required
theories and proofs are currently under development. Implementing the specification is largely a matter on
selecting data structures and refining the dataflow algorithm into more efficient forms, for example by
maintaining aworkset of the vertices that require updating [CP88].

7 Related Work

The application of dataflow analysisto typeinferenceisan old idea, used in SETL, a weakly-typed, high
level language with sets, maps, sequences, etc. as data types [Te74].

Most closdly related to our work isthe work of Qian [Q97] who isaso formalizing JVM semantics and the
behavior of the bytecode verifier. We believe our formulation is crisper; for example, ours makesit clear

13

how type information from different control flow pathsis merged and the requirement of distributivity of
transfer functions. Wetreat arrays and all primitive types, and are explicit about stack overflow. He treats
the jsr/ret indructions. The dVM [C97] defines an interpreter for the JVM using ACL 2, a functional
language with an associated proof system. The dVM insures type safety at runtime using type tags and so
does not yet address the bytecode verifier.

The English, official JVM specification by Linholm and Y ellin is quite precise and well organized. We
found an obfuscation on page 130 where the merging of the typing of the stack and local variablesis
described. “If both local variables contain a reference, then the merged state contains areference to the first
common superclass of the two types.” The statement is technically correct assuming that “class’ excludes
interfaces. For interfaces, the first common superclass of the two interfacesi; and i, is
java.language.object. Thisisin fact what the code does, but then should avaluetyped as ocbject
be used in a context where a common superinterface of i, and i, isrequired, type checking should fail. Of
course, it doesn’t. The verifier lets this case through and run-time checks are used to insure type safety.
Both this paper and Qian [Q97] recognized that if the bytecode verifier uses sets of types to characterize the
possible types of local variables, then runtime checks can be avoided. However, thereis not much gained in
doing so because invoking an interface method requires a search of the method table of the this pointer's
object class. The type test corresponds to searching the table but not finding a name/s gnature match.

Saraswat in his paper “Javaisnot type safe” [S97] describes a bug in the VM due to class name spoofing.
It suggests that aformal specification of namespaces management and loading, particularly in a muti-
threaded environment, should be pursued. Dean initiated such a study in [D97].

The Kimera project [K97] has uncovered bugs in the VM using mutation analysis. They have written their
own bytecode verifier. They take VM programs mutate them and run both verifiers. If they get different
results then a potential bug site has been exposed. Thistesting approach nicely complements formal
method approaches.

Nipkow in his paper “Java-light istype safe — definitely” [N97] presents a formalization of the Javatype
system, an operational semantics for a sgnificant subset of Java, and a proof of type soundness using

| sabelle/HOL. We have not considered an operational semantics for the VM and have not proved atype
safety result. However since the type system of Java and the VM are closaly related, hisrules
characterizing a well-formed typing environment closely correspond to our definition of a consistent
global typing context.

8 Conclusions

We claim our specification is clear and explicit about key issues in the semantics of the VM. At the same
time, the specification is directly implementable by either manua or automated methods. Furthermore our
specification isnot committed to aloading strategy and does not require run-time checks on interface types.

The use of the bytecode verifier to establish that object instances are properly initialized illustrates the
flexibility of dataflow analysis. We believe that there are other analysis tasks specific to Java that require
dataflow analysis. These include:
e Program optimizations that reduce the number of array bound checks. or null de-referencing.
e Constraintson classloaders. A significant feature of Javaisthat it Java permits user-defined class
loaders. However, this haslead to bugs because these |oaders did not satisfy interface requirements.
These interface requirements can be verified by an extended bytecode verifier.
e Finer type analysisfor security or other applications. Type systems are a good vehicle to specify
security models. Dataflow analysisis an effective mechanism to statically verify conformance to
these models. [V97]

Thus, it is desirable to design a bytecode verifier that permits extension. Our specification and the code that
derives from it have the necessary modul arity and locality to support such extensions. By making
“monotonic” additions or refinements to the lattice, the safety guarantees of the verifier can be maintained
while adding new functionality.

14

9 References

[CP88] Cai, J., and Paige, R., “Program derivation by Fixed-Point Computation,” Science of Computer

[D97]

[C97]

[K73]
[K97]
[LY9T]
[Mu97]

[N97]

[Q97]

[S97]
[SI99)]

[Ter4]

(V7]

Programming Vol. 11, 1988/89, pp. 197-261.

Dean, D. “The Security of Static Typing with Dynamic Linking,” Proceedings of the Fourth ACM
Conference on Computer and Communications Security, April, 1997.
http://www.cs.princeton.edu/sip/

Cohen, R. “The Defensive Virtual Machine Specification 0.5,”
http://www.cli.com/software/djvm/index.html

Kildall, G. *A unified Approach to Global Program Optimization,” POPL, 1973.

The Kimera project, http://kimera.cs.washington.edu/

Lindholm, T. and Ydlin, F. The Java™ Virtual Machine Specification, Addison Wesley, 1996.
Muchnick, S., Advanced Compiler Design & Implementation, Margan-Kaufmann, 1997.

Nipkow, T. and von Oheimb, D. “Java-light is Type-Safe — Definitely” To appear POPL98,
http://www4.informatik.tu-muenchen.de/~ni pkow/pubs/popl 98.html

Qian, Zhenyu “A Formal Specification of Java™ Virtua Machine Ingructions,” (Draft),
http://www.i nformati k.uni-bremen.de/~gian/abs-fsjvm.html

Saraswat, V. “Javaisnot type safe,” http://www.research.att.com/~vj/bug.html

Srinivas, Y. V. and Jillig R., *“Specware™: Formal Support for Composing Software,”
Proceedings of the Conference on Mathematics of Program Construction, Kloster Irsee, Germany,
July 1995. Kestrel Ingitute Technical Report KES.U.94.5,
http://mww.kestrdl.edu/HTML/publications.html

Tennenbaum, “Automatic Type Analysisin aVery High Level Language,” Thesis, New Y ork
University 1974.

Volpano, D., “A Type-Based Approach to Program Security,” Int’l Joint Conference on the
Theory and Practice of Software Development, LNCS 1214, Lille France, April 1997, pp. 607-621.

15

