Type Safety in the JVM: Some Problems in
JDK 1.2.2 and Proposed Solutions

Alessandro Coglio and Allen Goldberg

Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304
{coglio, goldberg}@Qkestrel.edu

1 Introduction

We are currently developing mathematical specifications for various components
of the JVM, including the bytecode verifier [2,4, 7], the class loading mechanism
[8], and the Java 2 security mechanisms. We are also deriving a complete imple-
mentation of the bytecode verifier [2] through Specware [10], a system developed
at Kestrel Institute that supports provably correct, compositional development
of software from formal specifications.

In the course of our formalization efforts, we have uncovered subtle bugs
in Sun JDK 1.2.2 that lead to type safety violations. These bugs are in the
bytecode verifier and relate to the naming of reference types. We found that in
certain circumstances these names can be spoofed by suitable use of delegating
class loaders. Since the JVM specification [6] is informal English prose, we cannot
crisply characterize these bugs as errors in the specification or just in one or more
implementations. However, some of these bugs are consistent with a reasonable
interpretation of the specification. We have verified that the bugs exist in Sun
JDK 1.2.2 (on both Solaris and Windows NT). Some are fixed in Sun JDK 1.3
Beta by restricting access to system packages.

Overall, these flaws raise the issue of a more precise specification of the
bytecode verifier and the loading mechanisms, and increased assurance of type
safety properties. Besides fixes for all these bugs, we have devised a more general
approach to insuring type safety that has additional advantages, including lazier
class loading.

2 Types in the JVM

According to [6], a class in the JVM is identified by its fully qualified name (FQN)
plus its defining loader. In fact, classes are in correspondence with instances
of class java.lang.Class, and the only way to create new Class instances
is through the defineClass methods of class java.lang.ClassLoader. These
methods call internal JVM code that carries out actual class creation from byte
arrays in classfile format. This code enforces the constraint that a class loader
cannot create two classes with a same FQN. Thus it is possible to identify a class
by its FQN plus its defining loader.



However, the bytecode verifier, when verifying a class, essentially uses just
FQNs. In a few cases, it actually resolves class names and makes use of the Class
instances they resolve to. In particular, the bytecode verifier sometimes needs
to merge, that is find the first common superclass of two class names. The two
class names are resolved, thus loading the classes and their superclasses, and their
ancestry searched to find their first common superclass. The bytecode verifier
also resolves names to check assignment compatibility (i.e., subtype relationship)
between two class names.

The use of FQNs and occasional use of actual classes guarantee type safety
only under certain assumptions. Examples of these assumptions are the loading
constraints introduced in the Java 2 Platform [6,5] to avoid the type safety
problems exactly arising from the violation of the assumptions they enforce
[9]. Simply stated, loading constraints ensure that classes exchanging objects
(through their methods and fields) agree on the actual types (and not only on
the FQNs) of such objects.

As it turns out, loading constraints do not cover all the assumptions needed
to guarantee type safety. An example occurs when checking a stack position
that contains the type (FQN) that results from merging two classes: the byte-
code verifier assumes that the FQN in the stack position resolves (using the
defining loader of the analyzed class as the initiating loader) to the actual first
common superclass. Another example occurs when checking type constraints
for the invokespecial instruction: the bytecode verifier assumes that an FQN
of any superclass of the current class resolves to the actual superclass. Fur-
thermore the bytecode verifier assumes that the FQNs java.lang.0bject and
java.lang.String resolve to the “usual” system classes. It is in fact possible
to construct programs where these assumptions are violated, thus causing name
spoofing and type safety failures. For reasons of space, here we only describe one
of the bugs. Further details, including runnable programs, can be found in [1].

As in [6] and [5] we use the notation NZ to denote the class associated to
name N and loader L when loading of NV is initiated by L, i.e., L is an initiating
loader of N. Furthermore (N, L) denotes the (unique) class with FQN N and
defining loader L.

3 The merging bug

[6, Sect. 4.9.2] describes how, during data flow analysis of a method’s code,
the types assigned to stack positions and local variables along different control
paths are merged. In order to merge two distinct class names Subl and Sub2,
the corresponding classes are loaded by invoking the loadClass method of the
defining loader L of the class whose method is being verified, with argument
Subi first, then Sub2. The ancestry of the classes Sub1” and Sub2” is then
searched to find the first common superclass. If the first common superclass
found is (Sup, Lo) then the bytecode verifier writes the FQN Sup in the merged
stack position. Suppose that, after the merging point, an instruction accesses
a field or method of a class named Sup in the field or method reference. Since



the bytecode verifier has deduced that the stack position indeed contains a class
with FQN Sup, the check for assignment compatibility will succeed, as described
in [6, Sect. 4.9.1]. This is correct only assuming that Sup’ = (Sup, L), i.e., that
loading of FQN Sup initiated by L results in the actual superclass of Sub1’ and
Sub2l.

However, such an assumption can be violated if for example Ly is the system
class loader and L is a user-defined class loader that delegates to Lo (by invoking
findSystemClass) the loading of FQNs Subl and Sub2 but not of Sup. The
following situation is arranged (Merger is the class being verified):

(Sup, Lo)
(Subl, Ly) <—— (Merger, L) (Sub2, Lo)
(Sup, L)

A thin arrow from a class (identified by its name and defining loader) to another
indicates that the source of the arrow resolves the FQN of the target to the
target. A double arrow indicates that the source is a subclass of the target.
Suppose that class Merger contains the following code:

Subl s1 = new Subl();

Sub2 s2 = new Sub2();

Sup s;

if (s1 !'= null) s = sl; // this test just serves to
else s = s2; // create two merging paths

s.m(); // type unsafe!

This code passes verification for the reason described above. If (Sup, L) has a
method m with the right descriptor, at runtime the method call goes through be-
cause Sup resolves to (Sup, L). However, the object stored in s has class (Sup, Lo)
(as well as class (Subl, Lg)). If (Sup, Ly) is different from (Sup, L), the effect of
the method call is undefined. In typical implementations, it will probably call
some unrelated method that happens to have the same index, thus causing type
unsafety.

This may be interpreted as a bug in the JVM specification, rather than the
implementation. Although [6] does not crisply state that types are denoted by
FQNs in the bytecode verifier (it typically just talks about “reference types”),
that seems to be the intended meaning, or at least the most reasonable inter-
pretation. In any case, future editions of [6] should clarify this point. This bug
also exists in JDK 1.3 Beta.

A possible solution to the problem is to keep information, when merging two
FQNs Subl and Sub2, about the actual first common superclass (Sup, Lo) (not
only its FQN Sup). When checking assignment compatibility with the FQN Sup



(referenced in the runtime constant pool), the FQN is resolved and the resulting
Class instance is compared with the one obtained from merging. In this way
there can be no confusion. Interestingly, inspection of the bytecode verifier code
in JDK 1.2.2 shows that information about the actual first common superclass
is indeed maintained and accessible. However, it is not used to prevent this
problem. Alternatively, to avoid early loading of Sup by L, a loading constraint
Sup” = Sup’® can be added by the bytecode verifier to the set of globally
maintained loading constraints.

4 A general solution

As previously mentioned, the bytecode verifier makes use of FQNs, occasionally
resolving them to actual classes. This resolution results in premature loading of
classes. We now propose a design for the bytecode verifier (and related parts of
the JVM) that (1) avoids premature loading and (2) allows a cleaner separation
between bytecode verification and loading. This cleaner separation also promotes
a better understanding of how bytecode verification and other mechanisms (such
as loading constraints) cooperate to insure type safety in the JVM.

In the design we propose, the bytecode verifier uniformly uses FQNs, never
actual classes. The intended disambiguation is that FQN N stands for class
NT where L is the defining loader of the class under verification (note that, at
verification time, class N¥ might not be present in the JVM yet). The bytecode
verifier never causes resolution (and loading) of any class.

The result of merging two FQNs is a set containing the two FQNs. More
precisely, the bytecode verifier uses (finite) sets of FQNs (and not just FQNs)
to type stack positions and local variables containing reference types [2,4,7].
Initially (e.g., in the local variables containing method invocation arguments)
sets are singletons. Merging is set union. The meaning of a set of FQNs typing a
local memory is that the local memory may contain an instance of a class whose
FQN is in the set. No relationship among the elements of the set is intended.

When a set of FQNs is checked for assignment compatibility with a given
FQN N, for each element M of the set different from N, a subtype loading
constraint MY < N¥ is generated. The meaning of such constraint is that class
M*™ must be a subclass of class N*. The constraint is added to the global state of
the JVM, and checked for consistency with the loaded class cache. If either class
has not been loaded yet, the constraint is just recorded. Whenever the loaded
class cache is updated, it is checked for consistency with the current subtype
loading constraints. This is very similar to the equality loading constraints of the
form NZ = N introduced in the Java 2 Platform. In fact, subtype constraints
complement equality constraints.

Checking the consistency of the loaded class cache and loading constraints
that include both subtype constraints and equality constraints is neither difficult
nor inefficient. A naive algorithm will transitively close both subtype and equality
constraints and then check that when the loaded class cache is updated none of
the constraints in the transitive closure is violated. An efficient algorithm will



use a union-find data structure to store equivalence classes of classes asserted to
be the same and track the asserted subtype dependencies of the classes.

In this design, the result of bytecode verification of a class is therefore not
just a yes/no answer, but also a set of subtype constraints that explicitly and
clearly express the assumptions made by the bytecode verifier to certify the class.
Furthermore, the bytecode verifier is a well-defined, purely functional piece of
the JVM that does not depend on the current state of JVM data structures.

Let us now see how this approach avoids the merging bug. When verifying
the code in Merger, the creation (and initialization) of the two instances of class
Sub1 and Sub2 has the effect of typing the local variables as {Sub1} and {Sub2}.
After the merging point, the type on top of the stack is {Subl,Sub2}. Since
the call of method m references class Sup (through the costant pool), subtype
constraints Sub1l < Sup’ and Sub2l < Sup’ are generated. When the code
is eventually executed, before the method is called all of Sub1’, Sub2”, and
Sup” will have been loaded. Since subtype constraints are violated, the JVM
will throw an exception preventing resolution of the method (and therefore its
invocation).

Our approach also allows a cleaner treatment of interface types in the byte-
code verifier. Since an interface can have more than one superinterface, two given
interfaces may not have a unique first common superinterface. According to [6],
the result of merging two interface FQNs is therefore java.lang.0bject, which
is indeed a superclass of any interface. However, this requires a special treatment
of java.lang.0Object when checking its assignment compatibility with an inter-
face FQN: the bytecode verifier just passes the check because java.lang.0bject
might derive from merging interfaces, even though java.lang.0Object itself is
not assignment-compatible with an interface. This “looseness” does not cause
type unsafety because the invokeinterface instruction performs a search of the
methods declared in the runtime class of the object on which it is executed. If
no method matching the referenced descriptor is found, an exception is thrown.
This runtime check does not impose any additional runtime penalty. Our scheme
is cleaner in that it provides a uniform treatment of classes and interfaces.

In [8] we provide formal arguments that this design of the bytecode verifier,
together with (subtype and equality) loading constraints, guarantees type safety
in the JVM. In that paper we formalize the operational semantics of a simplified
JVM that includes class loading, resolution, bytecode verification, and execution
of some instructions, and we prove type safety results about it.

Our approach of having a self-contained bytecode verifier that generates con-
straints is similar in spirit to [3]. However, they do not consider multiple class
loaders. Their bytecode verifier generates, besides subtype constraints, several
other kinds of constraints, e.g. for fields and methods referenced in the code
being verified. We only generate subtype constraints because the others can be
checked at runtime (as specified in [6]) without performance penalty or prema-
ture loading.



References

10.

. Alessandro Coglio and Allen Goldberg. Type safety in the JVM: Some problems

in JDK 1.2.2 and proposed solutions. http://www.kestrel.edu/java, 2000.
Alessandro Coglio, Allen Goldberg, and Zhenyu Qian. Towards a provably-correct
implementation of the JVM bytecode verifier. In Proc. OOPSLA’98 Workshop on
Formal Underpinnings of Java, 1998.

Philip W. L. Fong and Robert D. Cameron. Proof linking: An architecture for
modular verification of dynamically-linked mobile code. ACM SIGSOFT Software
Engineering Notes, 23(6):222-230, November 1998. Proceedings of the ACM SIG-
SOFT Sixth International Symposium on the Foundations of Software Engineering.

. Allen Goldberg. A specification of Java loading and bytecode verification. In Proc.

5th ACM Conference on Computer and Communications Security, 1998.

Sheng Liang and Gilad Bracha. Dynamic class loading in the Java™ virtual
machine. In Proc. Conf. on Object-Oriented Programming, Systems, Languages,
and Applications, pages 36—44. ACM Press, 1998.

Tim Lindholm and Frank Yellin. The Java™ Virtual Machine Specification.
Addison-Wesley, 2nd edition, 1999.

Zhenyu Qian. A formal specification of Java™ virtual machine instructions for
objects, methods and subroutines. In Jim Alves-Foss, editor, Formal Syntar and
Semantics of Java™. LNCS 1523, Springer-Verlag, 1998.

Zhenyu Qian, Allen Goldberg, and Alessandro Coglio. A formal specification of
Java class loading. http://www.kestrel.edu/java, 2000.

Vijay Saraswat. Java is not type-safe. Technical report, AT&T Research, 1997.
http://www.research.att.com/vj/bug.html.

Yellamraju Srinivas and Richard Jillig. Specware: Formal support for composing
software. In B. Moeller, editor, Proceedings of the Conference on Mathematics of
Program Construction, pages 399-422. LNCS 947, Springer-Verlag, Berlin, 1995.



