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Abstract

Bytecode verification is the main mechanism to enforce type safety in the Java
Virtual Machine. Since Java security is based on type safety, inadequacies
and ambiguities in the official specification of bytecode verification can lead to
incorrect implementations where security can be broken. This paper analyzes
the specification and proposes concrete improvements. The goal of this work
is to increase the understanding, assurance, and usability of the Java platform.

1 Introduction

Bytecode verification is the main mechanism to enforce type safety in the Java Vir-
tual Machine (JVM)!. Its purpose is to establish that certain type safety properties
are always satisfied when bytecode is run. Therefore, the interpreter or just-in-time
compiler can omit checks of such properties, resulting in better performance.

Because Java security is based on type safety [Gon99], correct implementation of
bytecode verification is of paramount importance to the security of an implementa-
tion of the JVM. Holes in bytecode verification constitute potential points of attack
exploitable by malicious programs (e.g., applets from remote sites of the Internet).

The official specification of the JVM [LY99], which includes a description of
bytecode verification, is written in informal English prose. While this specification
is mostly rather clear, it does contain some inadequacies and ambiguities. Their
presence is particularly problematic for security-critical features such as bytecode
verification, because erroneous interpretation can lead to erroneous implementation.

This paper exposes and analyzes the inadequacies and ambiguities in the official
specification of bytecode verification in Section 2. It then proposes concrete improve-
ments in Section 3. Concluding remarks are given in Section 4. For brevity, the
official JVM specification is denoted by “JS”. Individual chapters or (sub)sections
of it are denoted by appending their number, e.g., “JS3.1”. Some knowledge of JS
is assumed.

IThe other mechanisms, which complement bytecode verification, are resolution, class loading,
as well as residual run-time checks (e.g., of array indices).



The goal of this paper, like others in the field, is to improve the understanding,
assurance, and usability of the Java platform.

2 Analysis

JS4 describes the format of valid class files. Class verification is the process of check-
ing that a byte sequence constitutes a valid class file. Class verification is described
in JS4.9.1 as consisting of four passes. Passes 1 and 2 are in charge of checking the
format of the class file, excluding those byte subsequences that constitute methods’
code. The boundaries of these subsequences are identified during passes 1 and 2,
but it is pass 3’s responsibility to verify that each of them encodes valid code for
an individual method. Pass 4 consists of the checks performed by resolution, i.e.,
that symbolic references to classes, fields, and methods are correct; even though
it may not take place before execution, pass 4 is considered logically part of class
verification.

Bytecode verification is pass 3. So, it is a part of class verification. In fact, it
is the most interesting and delicate part; the rest of class verification is relatively
straightforward and does not present major difficulties.

Bytecode verification is described in JS4.8 and JS4.9. JS4.8 presents constraints
that a byte sequence must satisfy in order to represent valid method code. They are
divided into static and structural constraints. JS4.9 explains, in a quite algorithmic
way, how such constraints are checked. These descriptions are now analyzed.

2.1 Static Constraints

JS4.8.1 presents static constraints, which a byte sequence must satisfy in order
to represent a sequence of correct bytecode instructions with correct opcodes and
operands. All the instructions’ operands are covered by the list of constraints in
JS4.8.1, and the requirements are quite straightforward.

There is one requirement, though, that seems out of place. It states that the new
instructions cannot be used to create an instance of an interface or of an abstract
class.

This is true, but it is given in the context of restrictions on new’s operand. Since
new references a class by name, the class should be resolved in order to determine
whether it is an interface, an abstract class, or a non-abstract class. So, unlike all
the other constraints given in JS4.8.1, this one cannot be checked on the operand
alone.

Further evidence that the requirement is out of place is gathered from the fol-
lowing two observations. The first is that the specification of the new instruction in
JS6 states that an exception is thrown if the resolved class is abstract or if it is an
interface. This means that this check is done at run time.

The second observation is that other instructions that reference classes, fields, or
methods in their operands also require checks similar to this one. For example, the
getfield instruction requires the resolved field to not be static. This requirement
is given as a run-time check in the specification of getfield in JS6, not as a static
constraint in JS4.8.1. The same holds for the other instructions.



2.2 Structural Constraints

Static constraints constitute the straightforward part of bytecode verification. On
the other hand, structural constraints, presented in JS4.8.2, constitute the interest-
ing part, whose goal is to verify that certain type safety properties are satisfied when
the code is executed. Structural constraints apply to instruction sequences. So, they
assume that static constraints are satisfied. Remarks about structural constraints
follow.

2.2.1 Terminology

The terms “static” and “structural”, applied to the constraints given in JS4.8.1
and JS4.8.2, respectively, sound a little confusing and misleading. Both kinds of
constraints are meant to be checked statically, without executing the code—in this
case, prior to executing the code. So, using the adjective “static” only for the first
kind of constraints does not seem ideal.

With a stretch, one could interpret structural constraints as requirements that
must be satisfied at run time, even though they are checked statically, at verification
time. However, static constraints must be satisfied at run time as well. This point
about structural constraints referring to run time versus verification time is revisited
in Section 2.2.2.

2.2.2 Undecidability

Many of the structural constraints express facts that must hold when certain in-
structions are executed. For example, when getfield is executed, the top of the
operand stack must contain a reference to an object whose class is (a subclass of)
the one specified by the instruction’s operand.

However, establishing this kind of properties, taken literally, is undecidable.
As it is well-known in program analysis, only conservative approximations can be
algorithmically computed. Certainly, these structural constraints are meant to be
checked only approximately. This supports the view that structural constraints, as
stated, apply to run time and not to verification time, as mentioned in Section 2.2.1.

But structural constraints are given in the context of the format of valid class
files, i.e., in JS4. So, it would seem more appropriate to provide constraints that
can be computed, and that can be used as a public definition of valid class files.
This is discussed in more detail in Section 3.2.2.

2.2.3 Redundancy

The first constraint of the list states that each instruction must be executed with an
appropriate number and type of values in the operand stack and local variables. The
notion of “appropriate” can be determined by the specification of the instruction
given in JS6. For example, getfield requires the top of the operand stack to contain
a reference to an instance of the class specified by the instruction’s operand.

It turns out that the same requirement on getfield is stated explicitly by a
separate structural constraint in the list. However, it is clearly redundant, because
it can be derived from the first one.

Another constraint in the list states that no instruction must pop more values
from the operand stack than it contains (i.e., no stack underflow must occur). Again,



this is a simple consequence of the first constraint: each instruction requires the
presence of a certain number of values in the operand stack, and only those values
are popped.

As a matter of fact, it could be argued that even the first constraint of the list is
redundant. The specification of instructions given in JS6 includes the types of the
values that each instruction expects to find in the operand stack and local variables.
As explained in JS6.1, it is the task of bytecode verification to ensure that these
expectations are met. So, the first constraint of the list, as stated, does not really
say anything new.

2.2.4 Lack of Explanation

The motivation for several of the structural constraints is type safety. However,
some constraints in the list do not appear directly related to type safety, and no
explicit motivation is given for them in JS4.8.2.

An example is the constraint stating that no uninitialized object can be present
in the operand stack or local variables when a backward branch is taken. It also
states that no uninitialized object can be present in a local variable in code protected
by an exception handler.

Other examples are the constraints related to subroutines: subroutines cannot
be called recursively; the instruction following a jsr may be returned to only by a
single ret; each return address can be returned to at most once; etc.

Yet another example is the constraint requiring that, if an instruction can be
executed along different execution paths, the operand stack must have the same size
prior to execution of the instruction.

Actually, some explanation for these constraints can be derived from JS4.9. This
is discussed in Section 2.3.

2.2.5 Contradiction

There are two structural constraints that contradict each other. The first says that
fields of an uninitialized object cannot be accessed; the object must be initialized
first. But the second says that the code of a constructor can store values into
some fields of the object that is being initialized—which, strictly speaking, is still
uninitialized.

2.2.6 Possibly Out of Place

A structural constraint states that the invokespecial instruction must reference
an instance initialization method, a method in the current class, or a method in a
superclass of the current class. Checking if the method belongs to a superclass of
the current class requires resolving the method and the class. Along the same line
of reasoning for the constraint on new discussed in Section 2.1, it could be argued
that this property must be checked at run time, not at verification time.

A structural constraint requires each method return instruction (such as ireturn
and freturn) to match the method’s return type. This is a simple check that does
not involve type analysis?. So, this could well be a static constraint among those in

20f course, type analysis is required to check that the operand stack always has a value of
the right type when the instruction is executed. However, this is implied by the first structural
constraint in the list, namely that each instruction must be executed with an appropriate number



JS4.8.1.

Another structural constraint is that execution never falls off the bottom of the
instruction sequence. This is also rather simple to check and does not involve type
analysis. Basically, the last instruction of the sequence must be one that cannot
transfer control to the non-existent following one, directly or indirectly®. Some static
constraints in JS4.8.1 ensure that the operand of each control transfer instruction
(e.g., branches) points to an instruction in the code, and not outside it or in the
middle of an instruction. For these reasons, the requirement that execution cannot
fall off the end of code would fit well as a static constraint among those in JS4.8.1.

2.2.7 Heterogeneity

A final remark is that the structural constraints listed in JS4.8.2 are somewhat
“heterogeneous”. Most of them state properties that must hold when certain in-
structions are executed. Others state, instead, requirements relating all possible
executions: for example, that the instruction following a jsr can be returned to by
a single ret.

Heterogeneity is not necessarily bad. However, it certainly contrasts with the
homogeneity of static constraints, which are all about instruction opcodes and
operands®.

2.3 Verification Algorithm

JS4.9 sketches an algorithm for bytecode verification. The first part of JS4.9.2
essentially explains how to check static constraints and is quite straightforward. A
mildly interesting point is that the explanation includes checking that execution
cannot fall off the end of code. This supports the view of this requirement as a
static constraint, as argued in Section 2.2.6.

The second part of JS4.9.2 explains how to check a decidable approximation of
structural constraints, by means of a data flow analysis [NNH98]. This description is
followed, in JS4.9.3 through JS4.9.6, by some clarifications concerning the treatment
of certain instructions. Remarks about these descriptions follow.

2.3.1 Merging of Operand Stack Types

Type information for the operand stack consists of a sequence of types, modeling
the size and contents of the operand stack. The algorithmic description of the data
flow analysis in JS4.9.2 prescribes that type information for the operand stack can
be merged only when sizes are the same.

Though not the only possibility [Cog01b], this is certainly a sensible strategy
that simplifies the analysis. In any case, it provides some explanation for one of
the structural constraints mentioned in Section 2.2.4, namely that the operand stack
must have the same size along all execution paths. So, that structural constraint is in
some sense a “forward reference” to the data flow analysis algorithm. This somewhat
challenges the view that structural constraints are just undecidable requirements
that must hold at run time, as opposed to describing a computable approximation.

and type of values.

3The “indirect” case applies to jsr: control can be transfered to the following instruction when
returning from the called subroutine.

4With the exception of the requirement on new discussed in Section 2.1.



This means that undecidable requirements and decidable approximations are mixed
in JS4.8.2.

2.3.2 Reference Types

The algorithmic description of the data flow analysis talks about “reference types”
that are assigned to operand stack positions and local variables, propagated through
control flow paths, merged, etc. However, it fails to make it explicit whether these
reference types are just names or names plus class loaders®.

Given that class loaders are runtime objects, the only way for the algorithm to
know the identities of the loaders would be to actually load the classes. This is in
contrast with the general principle, stated in several points of JS, that classes may
be loaded lazily, if and when they are required for execution.

Therefore, the most reasonable interpretation of the “reference types” used in
the algorithm is that they are only names. However, it turns out that this lack of
clarity is the origin of some type safety bugs [CG01, TH99].

2.3.3 Interface Types

The first edition of JS prescribes that the result of merging two reference types is
their first common superclass or superinterface. This works fine for classes, but
the first common superinterface of two interfaces may not be unique, because of
multiple inheritance.

Therefore, in the second edition of JS the statement has been changed to just
say that the result of merging two reference types is their first common superclass.
Since java.lang.0Object is considered a superclass of every interface, the result of
merging two interfaces is always java.lang.0Object.

But this requires a special treatment of java.lang.0bject when it is the target
of an invokeinterface instruction. Since java.lang.0bject may derive from
merging two interface types, bytecode verification should allow invokeinterface
to operate on it. Otherwise, bytecode produced by Java compilers would be rejected.

Normally, invokeinterface is only allowed to operate on a class that imple-
ments the interface referenced by invokeinterface or on a subinterface of it—and
java.lang.0bject is none of them. In order to maintain type safety, a run-time
check is necessary when an invokeinterface instruction is executed.

Two observations apply to this treatment of interface types. The first is that it
is not particularly clean. The second is that JS does not make clear the implications
of this approach, e.g., that run-time checks are necessary for invokeinterface.

2.3.4 Object Initialization

Bytecode verification must ensure that objects are initialized before they are used.
In order to do that, the data flow analysis algorithm must use a special type for the
reference to a newly created, uninitialized object. This special type is changed to a
regular class type after the constructor is invoked. Since several copies of the object
reference can be stored in the operand stack or local variables before invoking the
constructor, all the occurrences of the special type must be changed.

5As stated in JS5.3, a class or interface in the JVM is identified by its (fully qualified) name
plus its defining loader.



After an object of a class is created and before the object is initialized, another
object of the same class could be created. The algorithm must distinguish between
types for references to the first object and types for references to the second object.
The solution prescribed in JS4.9.4 is to use the index of the new instruction (i.e.,
its position in the code) as part of the special type for uninitialized objects. In this
way, since different objects are created by different instructions, they have different
types assigned to them.

A potential source of trouble is a new instruction being part of a loop. If it is
possible to go through the loop without initializing the object, how can the algorithm
distinguish between objects created during two different iterations of the loop? To
avoid this problem, JS4.9.4 prescribes that the algorithm must make sure that
no type for an uninitialized object exists in the operand stack or local variables,
whenever a backward branch is taken. For analogous reasons, it prescribes that
no type for an uninitialized object must exists in a local variable in instructions
protected by an exception handlerS.

This provides some explanation for the structural constraints mentioned in Sec-
tion 2.2.4, about absence of uninitialized objects when backward branches are taken
and in code protected by exception handlers. The discussion in Section 2.3.1 ap-
plies to them: they are forward references to the algorithm and they somewhat mix
undecidable constraints with decidable approximations.

But the main point is that these restrictions on (types for) uninitialized objects
are completely unnecessary. This is described in detail and formally proved in
[Cog01c].

Intuitively, the reason is the following. Consider, for example, how the data
flow analysis computes type assignments for the instructions of a loop. Starting
from the first instruction of the method, a type for an uninitialized object can be
only introduced by a new instruction. After it, the type can be copied around. If a
backward branch is taken to an instruction preceding the object creation instruction,
the types assigned to the branch instruction are merged with those at the target
of the branch. Since the latter do not include the same type for the uninitialized
object, such a type disappears as a result of merging. So, when the new instruction
is reached again, there is no copy of the type for the uninitialized object introduced
during the first iteration, and hence no confusion can arise.

2.3.5 Subroutines

Subroutines constitute the trickiest aspect of bytecode verification. The reason is
that, in order to perform accurate type inference, the flow of control determined by
subroutines must be taken into account. However, subroutines may not be textually
delimited and may be exited implicitly by branching or throwing exceptions (i.e.,
not by a ret).

Here, “accurate type inference” means type inference that is both correct (i.e.,
does not allow type safety to be broken) and not excessively approximate. On
one hand, simple-minded treatments of subroutines would ensure correctness but
would reject programs produced by compilers. On the other hand, more elaborate
treatments would accept all compiled programs, but would raise the risk that type

6No restrictions are given on the operand stack because the stack is emptied when an exception
is thrown—the thrown exception is then pushed onto the stack.



safety could be broken, if the properties and implications of such treatments are not
fully understood.

A detailed discussion of these issues can be found in [Cog01a], which also includes
a thorough analysis of the treatment of subroutines described in JS4.9.6 and JS4.8.2,
along with its motivations. Replicating this analysis here would make this paper
inappropriately long: the reader is referred to [Cog0la].

In a nutshell, the main points are the following. In JS4.9.6 an approach to verify
bytecode with subroutines is sketched. The structural constraints in JS4.8.2 that
refer to subroutines can be considered to provide further information about the
approach.

But the overall description omits important details, such as how to merge lists
of jsr targets (which are associated to instructions, as prescribed in JS4.9.6) from
converging control flow paths.

Some aspects of the approach, such as keeping track of modified variables by
means of bit vectors, are explicitly motivated in JS4.9.6. Other aspects of the ap-
proach, such as prohibiting recursive subroutine calls, are not explicitly motivated.
It turns out that the reason behind some of these unexplained restrictions is to
guarantee type safety. However, others turn out to be unnecessary to this purpose.

In addition, the approach ends up rejecting bytecode that can be produced by
compilers. For example, in Java 2 SDK 1.2 for Solaris bytecode verification rejects
code produced by the compiler; see [Cog0la] for details.

The incompleteness of the description and the failure to clarify how some of the
indicated restrictions serve to guarantee type safety, open the potential to incorrect
interpretation leading to implementations where type safety could be broken. In
addition, the complexity of the approach translates into complexity of the imple-
mentation, which requires more effort and is more susceptible to bugs and attacks.
Last but not least, the rejection of bytecode produced by compilers is undesirable,
as discussed in Section 3.2.2.

3 Improvements

In my opinion, there are two main ways in which the official specification of bytecode
verification should be improved. First, the scope of bytecode verification should be
clarified. Second, a precise characterization of it should be given.

3.1 Scope

The goal of bytecode verification is to statically establish that certain type safety
properties always hold at run time. In this way, the interpreter or just-in-time
compiler can omit checks of such properties, resulting in better performance.

The exact type safety properties that bytecode verification must establish can be
determined from the specification of bytecode instructions in JS6. That specification
includes statements using “must”, such as “the top of the stack must contain a
value of type int”. As explained in JS6.1, the meaning of “must” is that the
execution engine expects the expressed requirements to hold, and it is the task of
class verification to make sure they indeed hold”.

"There are a few exceptions to this statement, i.e., specifications of instructions in JS6 that use
“must” for checks intended to be performed at run time. An example is the aastore instruction.



Some of these requirements are ensured by the resolution process. An example
is that the method symbolically referenced by a method invocation instruction must
exist, have the indicated argument and return types, and be accessible to the class
where the method invocation instruction is.

Other requirements are ensured by checking the static constraints on method
code given in JS4.8.1. An example is that the index of a local variable, used as
an operand of an instruction, must be within the range of local variables for the
method.

The remaining requirements are the type analysis portion of bytecode verifica-
tion. An example is that the top of the operand stack must contain a value of type
int when certain instructions are executed.

There are a few complications about the requirements ensured by the type anal-
ysis. These complications and their solutions are now discussed.

3.1.1 Disambiguation of Reference Types

As discussed in Section 2.3.2, JS fails to clarify whether bytecode verification should
use names only or names plus loaders. The most reasonable interpretation, which
has the advantage of allowing lazier class loading, is that bytecode verification uses
names only.

This is correct as long as there is an intended disambiguation for class names,
accompanied by mechanisms to enforce that the disambiguation in a method is con-
sistent with the one in another method with which objects are exchanged. Consider
the following example. A method m; has an argument of type C (a class name),
whose intended disambiguation in m; is a class ¢ (identified by the name, C, plus a
loader). Now, suppose that another method mo calls m, passing an object of type
C to it. If C is disambiguated to a class ¢’ in mo, it must be the case that ¢ = ¢'.
Otherwise, type safety could be broken.

In the first edition of JS, these issues were not mentioned. Type safety bugs
related to these issues were found in earlier implementations of the JVM [Sar97,
DFW96].

Those bugs were corrected by the introduction of loading constraints [LB98§], de-
scribed in JS5. Loading constraints ensure that classes exchanging objects, through
methods and fields, agree on the actual classes of these objects, not only on their
names. Loading constraints are external to bytecode verification. They are part of
the class loading mechanisms, which complement bytecode verification to enforce
type safety, together with resolution and residual run-time checks.

Formal evidence that bytecode verification can use names only and leave to
loading constraints the task of avoiding ambiguities between classes with the same
name, is given in [QGCO00].

3.1.2 Merging of Reference Types

JS4.9.2 prescribes that the result of merging two class names C and D is (the name of)
their first common superclass. This requires resolving C and D to actual classes, and

Its specification says that the type of the object to store must be assignment-compatible with the
component type of the array. However, the same specification states that a run-time exception
is thrown if that is not the case. So, despite the use of “must”, it is clear that it is not the task
of bytecode verification to ensure that property. The same applies to the other few instructions
where “must” is used for a run-time check.



then traversing their ancestry to find their first common superclass. An immediate
drawback of this approach is premature class loading. A more serious drawback is
that type safety can be broken [CGO1].

It turns out that it is possible to avoid this premature loading by assigning finite
sets of names, instead of just names, to local variables and operand stack positions
[Gol98, Qia99]. Merging of {C} and {D} yields {C,D}. This also prevents type safety
from being broken [CGO1].

The use of sets of names also provides a cleaner treatment of interfaces. Interface
names are treated exactly like class names®. Since merging is set union, multiple
inheritance of interfaces does not constitute a problem, and there is no need to use
java.lang.0bject as the result of merging. Therefore, no special treatment of
java.lang.0bject is necessary and hence no run-time checks must be performed
when invokeinterface is executed.

3.1.3 Subtype Relation

Occasionally, during bytecode verification, a reference type C is the target of a
method invocation instruction whose operand specifies D as the class or interface
of membership for the method to be invoked. While the existence of the method
is checked during resolution, bytecode verification must ensure that C is a subtype
of D. JS4.9.1 prescribes that the two names are resolved in order to check that the
desired subtype relation holds. But this results in premature loading.

A better approach is to generate a subtype constraint of the form C < D [Gol98,
QGCO00, CGO1]. Subtype constraints are checked if and when classes are loaded.
This is analogous to the treatment of the loading constraints introduced in [LB98].
In fact, these two kinds of constraints can be integrated in the overall class loading
mechanisms and formal arguments can be provided that type safety is guaranteed
[QGCO00].

3.1.4 Protected Fields and Methods

A subtle and often neglected point of bytecode verification is related to protected
fields and methods. The specifications of the instructions to access fields and meth-
ods include the following requirement: if the referenced field or method is protected,
and is declared either in the current class (i.e., the one whose code performs the field
or method access) or in one of its superclasses, then the class of the object whose
field or method is being accessed must be either the current class or a subclass of
it.

This requirement derives from an analogous requirement stated in the specifica-
tion of the Java programming language [GJSB00]. It has to do with the principle
that protected fields or methods of an object can only be accessed from outside their
package by code that is responsible to implement that object.

Anyhow, this requirement should be somehow checked by bytecode verification.
Otherwise, additional run-time checks would be needed. This is not explicitly men-
tioned in JS4.8 or JS4.9, but it can be derived from JS6.

8In fact, whether a name denotes a class or an interface can be only determined by resolving
the name. For instance, if a method has an argument of type R, that could denote a class as well
as an interface.

10



A straightforward solution is to resolve the field or method, see if it is protected
and declared in the current class or in a superclass, and in that case check that the
class type assigned to the operand stack position in question is the current class or
a subtype of it.

To avoid premature loading, the last check could be replaced by the generation of
a subtype constraints. But the subtype constraint must be satisfied only if the field
or method is protected and declared in the current class or a superclass. Otherwise,
it does not need to hold, and it is actually wrong to require it to hold.

The solution is to generate a “conditional” subtype constraint, whose condition
contains information about the field or method [CogOlb, Cog0lc]. Conditional
subtype constraints can be integrated with the unconditional ones and checked
lazily, if and when classes are loaded and fields or methods are resolved.

3.2 Characterization

The summary of the discussion above is that the type safety properties that byte-
code verification must guarantee can be derived from the specification of instructions
given in JS6. In addition, bytecode verification can be made a purely functional
component of the JVM. It is activated by passing a byte sequence as input, pur-
ported to be method code, accompanied by some context information such as the
method’s signature. The returned answer is either failure or success. In the latter
case, some subtype constraints, conditional or unconditional, can also be generated.
Bytecode verification never needs to load any class.

If the rectangular space of Figure 1 represents all possible code (i.e., all byte se-
quences), the larger, solid-line oval delimits the code that is acceptable by bytecode
verification. This consists of all byte sequences satisfying the following two require-
ments: first, they must represent sequences of well-formed instructions; second, the
instruction sequence must satisfy the type safety properties derived from JS6.

3.2.1 Sequences of Well-Formed Instructions

The first requirement essentially amounts to satisfaction of the static constraints
given in JS4.8.1. Static constraints give a precise and computable characterization
of which byte sequences represent sequences of valid instructions.

While they can be derived from the specification of instructions in JS6, it may
be useful to collect them all in one place of JS—currently, JS4.8.1.

In my opinion, the only necessary or desired improvements are removing the
constraint about new discussed in Section 2.1 and adding the two constraints about
return instructions and execution not falling off the end of code, both discussed
in Section 2.2.6. Also, based on the arguments in Section 2.2.1, the term “static
constraints” could be replaced by something like “well-formedness constraints”.

3.2.2 Type Safety Properties

The second requirement for acceptable code, i.e., the type safety properties that
must be guaranteed at run time, can be stated precisely. They essentially depend
only on the semantics of bytecode instructions. Unfortunately, it is undecidable
whether an instruction sequence satisfies this characterization or not. So, bytecode
verification must be a decidable approximation of this characterization, indicated
by the mid-size, dashed-line oval in Figure 1: the oval delimits accepted code.
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Figure 1: Characterizing bytecode verification

A desideratum is that any code produced by correct compilers is accepted by
bytecode verification. It would be disappointing if, after successfully compiling
a Java program, the JVM rejected the resulting class files. Compiled code (i.e.,
produced by compilers), is delimited by the smaller, dotted-line oval in Figure 1.
So, the containment relationship among the ovals must be as indicated in the figure.

From a point of view, any choice of the accepted-code oval is fine, as long as it is
contained in the acceptable-code oval and contains the compiled-code oval. Failure
of either containment would cause type unsafety or rejection of compiled code.

While acceptable code can be characterized precisely based on the specification
of instructions, compiled code depends on how compilers are implemented. Even if
all current compilers used common compilation strategies, future compilers might
use new strategies to generate better code. Therefore, the compiled-code oval is a
moving target, and hence not very suitable to “universal” characterization.

The best approach is to give a precise characterization of accepted code. All im-
plementors of the JVM should write bytecode verification algorithms that exactly
recognize the specified subset. The specification of accepted code would also become
a contract between developers of compilers and of the JVM: as long as a compiler
produces code that falls inside the subset, that code is accepted by bytecode verifi-
cation.

The definition of the accepted-code subset must embody an optimal trade-off
between two criteria. The first criterion is that bytecode verification should be as
simple and efficient as possible. The second criterion is that it should accept as
much code as possible. Privileging the first could limit future compilers or reject
code from current compilers; privileging the second could make implementations
more susceptible to errors and hence to attacks exploiting the errors.
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Based on the above considerations, the following are the necessary or desired
improvements for JS, in my opinion. First of all, the notion of structural constraints
should be purified of those forward references to the computable approximation
about operand stack size (Section 2.3.1), uninitialized objects (Section 2.3.4), and
subroutines (Section 2.3.5). Redundant constraints should also be eliminated. The
contradiction regarding whether a constructor can store values into fields of an
uninitialized object should be resolved, perhaps by disallowing that, because it
simplifies verification [Cog0lb, Cog0Olc]. Also, based on the arguments in Section
2.2.1, the term “structural constraints” could be replaced by something like “typing
constraints”.

In this way, these constraints would express all the type safety properties that
acceptable code must satisfy. Note that these properties are “homogeneous” in some
sense—see discussion in Section 2.2.7. While these can be derived from JS6, it may
be useful to collect them all in one place of JS—currently, JS4.8.2.

More important, the algorithmic description in JS4.9 should be made much more
complete and precise. It should be pointed out that the algorithm is an approxima-
tion of the undecidable constraints. The improved treatments of object initialization
(Section 2.3.4), merging of reference types (Section 3.1.2), subtype relation (Section
3.1.3), and protected members (Section 3.1.4) should be incorporated. A solution
to the problem, mentioned in Section 2.3.5, of compiled bytecode being rejected
because of the treatment of subroutines, is given in [CogOla]: this solution should
be also incorporated. A formal description that fulfills all of these criteria is given
in [Cog01b].

Finally, it should be made clear how bytecode verification cooperates with the
other type safety mechanisms of the JVM. Issues include the use of class names
in bytecode verification and the disambiguation of them to classes, as well as the
generation of subtype constraints as opposed to loading classes.

4 Conclusion

The topic of Java bytecode verification has attracted the interest of several re-
searchers. As a result, there has been a large number of publications on the sub-
ject [CGO1, CGQI8, CLIY, FC00, FCO1, FM99a, FM99b, FM99c, Fre9d8, Gol9s,
HT98, Jon98, KNOO, Nip01, O’C99, Pus99, PV98, Qia99, Qia00, Req00, RR9IS,
SA99, SSBO1, Yel99]. These works have greatly contributed to the clarification of
key issues in bytecode verification, including pointing out some inadequacies in JS
and proposing improvements.

To my knowledge, this paper is currently the only work to provide a comprehen-
sive analysis of the official specification of bytecode verification and a comprehensive
plan for improvement. Some details of the analysis and improvements (e.g., sub-
routines) are covered in other papers that are explicitly referred from this paper.

The need and desire to improve JS, in particular the description of class ver-
ification, “ideally to the point of constituting a formal specification”, is explicitly
stated in the Appendix of JS. This paper contributes to that goal.
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