
Vol. 4, No. 8, 2005

Checking Access to Protected Members in
the Java Virtual Machine

Alessandro Coglio, Kestrel Institute, Palo Alto, California, USA

This paper studies in detail how to correctly and efficiently check access to protected
members in the Java Virtual Machine. This aspect of type safety is not explained in
the official specification and, to the author’s knowledge, has been completely neglected
in the research literature. Nonetheless, it is a subtle aspect that is not straightforward
to implement correctly, as also evidenced by the presence of a bug in earlier versions
of Sun’s Java 2 SDK. This paper presents example programs that expose the bug,
along with a conjectural explanation for it. This paper also presents some corpus
measurements of the number of checks that can be performed using various techniques.

1 INTRODUCTION

Java [5] is normally compiled to a platform-independent bytecode language, which
is executed by the Java Virtual Machine (JVM) [7]. For security reasons [4], the
JVM must ensure type-safe execution (e.g. object references must not be forged from
integers), without relying on the type checking performed by Java compilers.

This paper studies in detail a narrow but interestingly subtle aspect of ensuring
type safety in the JVM: checking access to protected members (fields and methods).
Java compilers can easily check access to protected members and constructors1 by
looking them up in their declaring classes, which must be available in source or
bytecode form. Checking access to protected members in the JVM is more difficult
because of dynamic class loading. This aspect of type safety in the JVM is not
explained in [7] and, to the author’s knowledge, has been completely neglected in
the research literature.

Section 2 reviews some relevant features of the JVM. Sections 3 and 4 describe
the requirements on protected member access and how they can be checked. Section
5 reports on the incorrect checking of protected member access by earlier versions
of Sun’s Java 2 SDK, including example programs that expose the bug. Concluding
remarks are given in Section 6.

1In Java, constructors are not members. In the JVM, constructors are realized by instance
initialization methods, i.e. methods with the special name <init>, which are members.

Cite this article as follows: citation

CHECKING ACCESS TO PROTECTED MEMBERS IN THE JAVA VIRTUAL MACHINE

2 BACKGROUND

Some of the JVM features described in this section are slightly simplified for brevity
and ease of understanding; for instance, we only consider classes and not interfaces.
However, the results of the paper do not depend on the simplifications and apply
to the unsimplified JVM. For full details on the JVM features described here, see
[7, 6], as well as [10] for a formal treatment.

Class Loading

The JVM supports dynamic, lazy loading of classes. Lazy loading improves the
response time of a Java applet or application and reduces memory usage: execution
starts after loading only a few classes and the other classes are loaded on demand if
and when needed.

Classes are loaded into the JVM by means of class loaders, which can be user-
defined to realize customized loading policies. To load a class, the JVM supplies a
(fully qualified) class name C (e.g. edu.kestrel.Specware) to a loader L. L may itself
create a class c with name C, e.g. from a binary representation stored in the local
file system or fetched through a network connection. Alternatively, L may delegate
loading to another loader L′ by supplying C to L′. L′ may itself create c or delegate
loading to yet another loader L′′, and so on until some loader L∗ eventually creates
c.

The initiating loader of c is L, the first one in the delegation chain, which the
JVM supplies C to. The defining loader of c is L∗, the last loader in the delegation
chain, which creates c. Initiating and defining loader coincide when no delegation
takes place.

The JVM prohibits a loader from creating two classes with the same name,
but two different loaders may well create two classes with the same name. Classes
created by different loaders are always distinct (even though they may have the
same binary representation, including name), i.e. each loader has its own name
space. Thus, while at compile time a class is uniquely identified by its name, in
the JVM a class is uniquely identified by its name plus its defining loader, e.g.
〈edu.kestrel.Specware,L∗〉.

Accordingly, a (run time) package is uniquely identified by a name plus a loader,
e.g. 〈edu.kestrel,L∗〉, which includes 〈edu.kestrel.Specware,L∗〉 among its classes; as
a special case, an unnamed package is uniquely identified by just a loader. All the
classes in a package have the same defining loader, which is the loader that, together
with the name (unless the package is unnamed), uniquely identifies the package.

When a class is loaded, all its superclasses are loaded. So, the JVM satisfies
the invariant that the classes present in the machine are closed w.r.t. the superclass
relation.

56 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

2 BACKGROUND

The JVM maintains a cache of loaded classes in the form of a finite map from
names and loaders to classes. When a class c is loaded, the cache is extended with
an entry that associates c to its name C and its initiating loader L; if the defining
loader is L∗ 6= L, the cache is also extended with an entry that associates c to C
and L∗.

Resolution

Some bytecode instructions embed symbolic references to classes and members, e.g.
to invoke methods. These symbolic references are resolved to actual classes and
members before the embedding instructions are executed for the first time.

A class reference C is a class name. A member reference C . n :d consists of a class
reference C, a member name n, and a member descriptor d. A field descriptor is (a
textual representation of) a type, while a method descriptor consists of (a textual
representation of) zero or more argument types and a result type (possibly void); a
class type occurring in a descriptor is only a class name, without any defining loader
because descriptors are generated at compile time when loaders, which are run time
entities, are unknown.

The JVM resolves a class reference C that occurs in a class 〈X,L〉 by supply-
ing C to L, i.e. the defining loader of the class in which the reference occurs; the
resulting class c is the result of resolution. More precisely, before supplying C to
L for loading, the JVM looks up the loaded class cache. If there is an entry that
associates a class c to C and L, c is the result of resolution and no loading takes
place. Otherwise, loading takes place as described. This cache look up mechanism
ensures that resolving a name C via a loader L (i.e. from a class 〈X,L〉) consistently
yields a unique class, denoted by CL.

Both notations 〈C,L〉 and CL [7, 6] denote classes. The notation 〈C,L〉 denotes
the class with name C and defining loader L; in this notation, L is always the
defining loader of the class. The notation CL denotes the class associated to name
C and loader L in the loaded class cache; in this notation, L is either the initiating
or the defining loader of the class. If 〈C,L〉 is defined, then also CL is defined and
it is the case that 〈C,L〉 = CL.

A member reference C . n :d is resolved by first resolving the class reference C to
a class c and then searching for a member with name n and descriptor d declared
in c. If such a member m is found, that is the result of resolution. Otherwise, the
member is searched in the direct superclass of c, and so on until the member is found
in some superclass of c.

Bytecode Verification

After a class is loaded and before any of its code is executed, its methods go through
bytecode verification, one at a time. Bytecode verification is a (forward) data flow

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 57

CHECKING ACCESS TO PROTECTED MEMBERS IN THE JAVA VIRTUAL MACHINE

analysis [9] whose purpose is to statically establish that certain type safety properties
will be satisfied when instructions are executed at run time, so that the interpreter
or just-in-time compiler can safely omit checks of those properties for better perfor-
mance.

For example, the bytecode verifier checks that the iadd instruction, which adds
two integers together, will always operate on two integers, and not on other data
values such as floating point numbers or object references. As another example,
the bytecode verifier checks that the getfield instruction, which retrieves the value
stored in a field, will always operate on a reference to an object whose class is the
one referenced in the field reference embedded in the instruction or a subclass of it.

As previously explained in the description of resolution, a class reference C oc-
curring in a class 〈X,L〉 stands for the class CL. The same holds for a class type C
inferred by the bytecode verifier during the data flow analysis. At the time 〈X,L〉 is
verified, CL may or may not have been loaded yet. The bytecode verifier generally
avoids resolving (and loading) classes, thus supporting lazy loading. For example, if
it infers a type C as the target of a getfield whose embedded field reference is C . n :d,
C is not resolved because no matter what class CL will be, the referenced field will
be declared in CL or one of its superclasses and so the field access will be type-safe.
However, if the inferred target type is D 6= C, the bytecode verifier resolves D and
C to check that DL is a subclass of CL, written DL < CL.

Loading Constraints

When (instructions in) different classes exchange objects, they must agree on the
exchanged objects’ classes (i.e. names plus loaders) and not just class names (agree-
ment on names is automatically ensured by resolution). For example, consider a
class 〈X,L〉 creating an instance of a class named D and passing it to a method,
with argument type D, of a class 〈Y,L′〉. The instance belongs to DL but the method
will use it as an instance of DL′

. So, if L 6= L′, it must be DL = DL′
for type safety

to be maintained.

These constraints are checked when members are resolved. When a class 〈X,L〉
resolves a member C . n :d, if CL = 〈C,L′〉, for every class name D appearing in the
descriptor d the constraint DL = DL′

must hold. If any of DL and DL′
has not been

loaded yet, the JVM generates “DL = DL′
” as a syntactic constraint, adding it to

a set of pending constraints that are part of the state of the machine. The loaded
class cache and the loading constraints are maintained consistent by re-checking the
pending loading constraints every time the loaded class cache is updated.

The transitive closure of the pending constraints must be considered, e.g. if DL

and DL′′
are loaded but DL′

is not, the constraints DL = DL′
and DL′

= DL′′
are

(jointly, though not individually) violated if DL 6= DL′′
. The need to consider the

transitive closure is illustrated by the following example. A class 〈X,L〉 creates an
object of class DL and passes it to a method of a class 〈Y,L′〉; when the method

58 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

3 REQUIREMENTS ON PROTECTED MEMBERS

p

c{m}

s

+

KS

o

∗

KS

Figure 1: Restriction on protected access

is resolved, the constraint DL = DL′
is generated. The method in 〈Y,L′〉 does not

access the object (so that DL′
does not get loaded) but passes it to a method of a

class 〈Z,L′′〉; when the method is resolved, the constraint DL′
= DL′′

is generated.
Now 〈Z,L′′〉 accesses the object as if it had class DL′′

. Thus, it must be DL = DL′′

for type safety to be maintained.

It has been proposed in [10, 3] to use subtype constraints, next to the equality
constraints just described, to support lazier loading during bytecode verification.
When a class 〈X,L〉 is verified, instead of resolving D and C to check whether
DL < CL, the constraint “DL < CL” is generated. The transitive closure of equality
and subtype constraints must be considered. Subtype constraints are not part of [7],
but they are presented here because a similar idea will be described for protected
members in Section 4.

3 REQUIREMENTS ON PROTECTED MEMBERS

In the JVM, like in Java, every member has an associated access attribute: public,
private, protected, or default. The attribute determines the circumstances in which
the member can be accessed.

Let m be a member declared in a class c that belongs to a package p. If m is
public, it can be accessed by (code in) any class. If m is private, it can be accessed
only by c. If m has default access, it can be accessed only by any class that belongs
to p.

If m is protected, things are slightly more complicated. First, m can be accessed
by any class belonging to p, as if it had default access. In addition, it can be accessed
by any subclass s of c that belongs to a package different from p, with the following
restriction: if m is not static, then the class o of the object whose member is being
accessed must be s or a subclass of s, written o ≤ s (if m is static, the restriction
does not apply: m can be always accessed by s). The relationship among c, s, o,
m, and p is depicted in Figure 1, where the double-line arrow labeled by + denotes
one or more direct superclasses and the double-line arrow labeled by ∗ denotes zero
or more direct superclasses.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 59

CHECKING ACCESS TO PROTECTED MEMBERS IN THE JAVA VIRTUAL MACHINE

The restriction on protected access (i.e. that o ≤ s if s < c and s does not
belong to p) ensures that a protected member m declared in c is accessible, outside
the package p of c, only (on objects whose classes are) inside the part of the class
hierarchy rooted at the accessing (sub)class s [1, Sect. 3.2] [2]. In particular, s
cannot access m in a part of the class hierarchy rooted at a (sub)class s′ 6= s in a
different branch. See [1, Sect. 3.2] [2] [5, Sect. 6.6.7] for examples.

The restriction on protected access prevents almost arbitrary access to protected
instance members of objects [12]. Suppose that m is a protected instance field
declared in c. Without the restriction, any class x could read the content of the
field m of any object of class c, using the following trick: define a subclass s of c
(the trick works only if c is not final, hence the “almost” adverb above); declare a
method in s that takes an object of class c as argument and returns the content of
its m field; and have x call this method. The restriction on protected access prevents
this situation, because s can access the field only if c ≤ s, which is impossible since
s < c.

The access rules are described in [7, Sect. 5.4.4]. The restriction on protected
access is described in the specification of the getfield, putfield, invokevirtual, and
invokespecial instructions in [7, Chapt. 6]. The access rules for members in the JVM
correspond to the access rules for members and constructors in Java [5, Sect. 6.6].

The access rules do not include any requirement on the accessibility of c. One
might expect, for instance, that if m is public then it can be accessed by a class x
not belonging to p only if c is also public. However, c may not be the class directly
referenced by x: x may reference a class c′ that inherits m from c (i.e. m is found in
c, starting the search from c′). It is sufficient that c′ can be accessed by x (i.e. c′ and
x are in the same package or c′ is public), regardless of whether c can be accessed
by x or not.

Because of dynamic dispatch, the method actually invoked on an object may
differ from the method that the reference resolves to. However, access control checks
only apply to the resolved method, not the dynamically invoked one. While Java
compilers check that an overriding method does not restrict the access attribute
[5, Sect. 8.4.6.3], the JVM does not check that: [7] does not explicitly require the
check and it is easy to verify that, for instance, SDK 1.4 does not perform the check.
Anyhow, this restriction on overriding methods does not always ensure that access to
the resolved method implies access to the overriding method [11]: if both methods
are protected and are declared in different packages, then classes in the resolved
method’s package that are not subclasses of the overriding method’s declaring class
can access the resolved method but not the overriding method.

4 CHECKING THE REQUIREMENTS

Most access rules are checked during resolution. For example, when a getfield is
executed for the first time, the embedded field reference is resolved and the access

60 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

4 CHECKING THE REQUIREMENTS

attribute of the resulting field is checked against the class where getfield occurs: if
access is disallowed, an exception is thrown; otherwise, getfield retrieves the field’s
content.

The restriction on protected access requires additional checking. Suppose that
the getfield occurs in a class s, that the field reference resolves to a non-static,
protected field declared in a superclass c of s, and that c and s belong to different
packages, as in Figure 1. Whether the field access is allowed depends on the class o
of the target object, which may be different each time the getfield is executed. The
following subsections describe various strategies to check whether o ≤ s. While [7]
states the requirements on protected member access, it does not explain how they
can be checked.

Run Time Checking

The class of an object is always available through a reference to the object, in order
to support the semantics of the instanceof and checkcast instructions. In typical
implementations of the JVM, the storage for an object includes a reference to the
object’s class.

The simplest strategy to check the restriction on protected access is to have
getfield, putfield, invokevirtual, and invokespecial do it each time they are executed.
This run time check is performed only if the referenced member is protected and
declared in a superclass of the current class (i.e. the one where the instruction occurs)
that belongs to a different package.

The first edition of [7] describes, in Chapter 9, an optimization for JVM imple-
mentations: certain instructions are replaced by quick, internal pseudo-instructions
the first time they are executed. For instance, the first time a getfield is executed,
it is replaced by the getfield quick pseudo-instruction: instead of a field reference,
getfield quick embeds implementation-dependent information (typically, an offset)
that is determined when the field is resolved and that is used to access the target
object’s field more quickly than going through the (resolved) field reference.

A similar rewriting approach could be used in a JVM implementation to more
efficiently check protected member access at run time. The first time a getfield is
executed and the field reference is resolved, there are two cases: if the resulting
field is not protected or is not declared in a superclass of the current class that
belongs to a different package, getfield is replaced by getfield quick; otherwise, it
is replaced by getfield quick prot. This new pseudo-instruction embeds the same
implementation-dependent information as getfield quick; in addition, its execution
includes the run time check that o ≤ s, where o is the class of the target object
and s is the current class. An analogous strategy can be introduced for putfield,
invokevirtual, and invokespecial.

However, getfield quick prot would not be very quick. Even though the run time
check is only performed for protected fields declared in superclasses belonging to

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 61

CHECKING ACCESS TO PROTECTED MEMBERS IN THE JAVA VIRTUAL MACHINE

c′{m}

CL

∗
_gGGGGGGGG

GGGGGGGG

s

+

KS

::tttttttttt

$$J
JJ

JJ
JJ

JJ
J

DL

∗

KS

∗

`h JJJJJJJJJJ

JJJJJJJJJJ

o

∗

KS

∗

6>tttttttttt

tttttttttt

Figure 2: Relationship among all the involved classes

different packages, the overhead could be significant in certain programs.

In addition, [7, Sect. 5.4.4] states explicitly that the restriction on protected
access should be checked as part of bytecode verification. In general, type safety in
the JVM could be completely ensured via run time checks, but execution would be
painfully slow. The purpose of static checking in the JVM is to increase performance.
The following strategies check the restriction on protected access statically.

Eager Resolution

When analyzing a getfield, putfield, invokevirtual, or invokespecial, the bytecode veri-
fier could resolve the embedded member reference and, if needed, check the restric-
tion on protected access using the statically inferred target type.

Suppose that the class under verification is s = 〈S,L〉, the embedded member
reference is C . n :d, and the inferred target type is D. If the member reference resolves
to a protected member m declared in a class c′ ≥ CL that belongs to a package
different from s and such that c′ > s, the bytecode verifier checks that DL ≤ s. If
D 6= S, this subtype check can be performed by resolving D or, according to the
proposal described at the end of Section 2, by generating the subtype constraint
DL < SL; if D = S, no resolution or constraint is necessary because SL = s. The
check that DL ≤ s is in addition to the check that DL ≤ CL, which is always needed,
regardless of whether m is protected and of where it is declared. Since at run time
the class o of the target object always satisfies o ≤ DL, it is always the case that
o ≤ s if DL ≤ s. The relationship among all these classes is depicted in Figure 2,
where the single-line arrows denote resolution (i.e. the target class is the result of
resolving the name of the target class from the source class).

This static check is less precise than a run time check, because it might always be

62 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

4 CHECKING THE REQUIREMENTS

o ≤ s even if DL ≤ s does not hold. However, less precision is the inevitable price to
pay for better performance. In addition, the static check is as precise as the compile
time checking in Java: the type statically inferred at compile time corresponds to
the type statically inferred by the bytecode verifier. Besides soundness, the only
requirement on bytecode verification is that code generated by Java compilers is
accepted; if the restriction on protected access is satisfied in some Java code, it is
also satisfied in the bytecode generated from that Java code.

The problem with this strategy is that every member reference from getfield,
putfield, invokevirtual, and invokespecial is eagerly resolved in order to determine
whether the member is protected and declared in a superclass of s that belongs to a
different package. The additional check that DL ≤ s is performed if and only if that
is the case. Resolution may involve class loading and thus be a costly operation.
Furthermore, eager resolution counters lazy loading.

As mentioned in Section 1, Java compilers check access to protected members
and constructors by looking them up in their declaring classes. This effectively
corresponds to the eager resolution strategy just described for the JVM. At compile
time all classes are available and no dynamic loading is involved; thus, the strategy
is adequate for compilation.

Limited Resolution

There are cases in which the restriction on protected access can be checked by the
bytecode verifier without eagerly resolving the referenced member. In addition, in
certain cases member resolution is guaranteed to cause no loading. For the remaining
cases, the member reference can be resolved as described in the previous subsection.

Current Class as Target Type

Resolving the class name S from a class s = 〈S,L〉 results in s itself because the
loaded class cache associates s to S and L when s is created, i.e. SL = s.

If the bytecode verifier infers the class name S as the target of a getfield, putfield,
invokevirtual, or invokespecial that occurs in s, there is no need to resolve the embed-
ded member reference because s ≤ s, regardless of whether the member is protected
and of where it is declared. In other words, resolution can be soundly avoided if the
inferred target type coincides with the name of the class under verification.

Necessary Condition for Subtype Check

Consider a getfield, putfield, invokevirtual, or invokespecial occurring in a class s, with
embedded member reference C . n : d. Since the member resulting from resolution
must have name n and descriptor d, a necessary condition for m to be protected
and declared in a superclass of s that belongs to a different package is that some

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 63

CHECKING ACCESS TO PROTECTED MEMBERS IN THE JAVA VIRTUAL MACHINE

superclass of s, belonging to a different package, declares a protected field with name
n and descriptor d.

This necessary condition can be checked by inspecting the superclasses of s,
without resolving the member reference. Since the classes loaded into the JVM
are closed under the superclass relation, inspecting the superclasses of s does not
cause any loading. If no superclass of s declares a protected member with name n
and descriptor d or every superclass that declares it belongs to the same package
as s, it is impossible that the member resulting from resolution will be protected
and declared in a superclass of s that belongs to a different package. Thus, the
additional subtype check (i.e. that DL ≤ s) needs not be performed.

Resolution not Causing Loading

As mentioned before, resolving the class name S from a class s = 〈S,L〉 results in s
itself without any loading taking place. In addition, resolving the direct superclass
name R of s results in the direct superclass RL without any loading taking place,
because when s is loaded RL is loaded too.

So, if the class name referenced by a getfield, putfield, invokevirtual, or invokespe-
cial is S or R, the resolution of the member will cause no loading. This is a property
that is satisfied because of the way the JVM is designed; no special action by the
bytecode verifier is required.

Conditional Subtype Constraints

Instead of eagerly resolving a member reference and then checking the restriction
on protected access if needed, the bytecode verified could generate a conditional
subtype constraint. The condition of the constraint expresses that the referenced
member is protected and declared in a superclass of the current class that belongs
to a different package.

For example, consider a member reference C . n :d embedded in a getfield, putfield,
invokevirtual, or invokespecial that occurs in a class s = 〈S,L〉. Suppose that D is the
inferred target type of that instruction, with D 6= S. The bytecode verifier generates
the conditional subtype constraint

“if ProtCond(C . n :dL, SL) then DL < SL”

The condition ProtCond(C . n :dL, SL) holds if and only if the member to which
C . n :d resolves via L (i.e. the member with name n and descriptor d found searching
from CL) is protected and declared in a superclass of SL that belongs to a different
package.

Conditional subtype constraints are integrated with the unconditional (equality
[7, 6] and subtype [10, 3]) constraints in the JVM. The satisfaction of pending

64 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

4 CHECKING THE REQUIREMENTS

constraints is re-checked whenever classes are loaded and members are resolved. It
is necessary to consider the transitive closure of all the constraints, conditional and
unconditional.

Even though conditional subtype constraints avoid premature loading altogether,
their generation, maintenance, checking, and integration with the other loading con-
straints require additional machinery in the JVM that would not be needed other-
wise. Thus, there is a trade-off between eager resolution and conditional subtype
constraints.

Corpus Measurements

The 3,915 classes (and interfaces) in the java and javax packages of SDK 1.4 require
68,621 static checks for protected members. That is the total number of triples
(s, C . n : d, D) where s is a class in the java or javax package, C . n : d is a reference
embedded in a getfield, putfield, invokevirtual, or invokespecial occurring in s, and
D is one of the types inferred at that instruction by the bytecode verifier2. Other
counts are possible, e.g. the total number of pairs (i, D) where i is an occurrence of
getfield, putfield, invokevirtual, or invokespecial in some class in java or javax and D
is one of the types inferred at i; however, what seems important in the data below
is the relative percentages, which are probably largely invariant to the exact count
used.

Of the 68,621 checks:

• 30,598 (45%) can be checked as explained in Subsection “Current Class as
Target Type” because the target class coincides with the current class;

• 31,571 (46%) do not cause any loading because the class referenced in the
member reference is the current class or its direct superclass, as described in
Subsection “Resolution not Causing Loading”;

• all 68,621 can be checked as explained in Subsection “Necessary Condition
for Subtype Check” because the necessary condition for the restriction on
protected access does not hold.

Of course, there is overlap among these three sets of checks.

A reasonable implementation of the bytecode verifier could perform those checks
as follows:

• 30,598 of the total 68,621 (45%) by recognizing that the target class coincides
with the current class;

2While many bytecode verifiers, including the one in SDK, infer only one type for every instruc-
tion (by merging types from converging paths), the measurements reported here were taken with
a bytecode verifier that infers multiple types, for increased precision.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 65

CHECKING ACCESS TO PROTECTED MEMBERS IN THE JAVA VIRTUAL MACHINE

• 1,085 of the remaining 38,023 (1% of the total, 3% of the remaining) by rec-
ognizing that the referenced class is the current one or its direct superclass, so
that resolution does not cause any loading;

• all the remaining 36,938 (54% of the total) by inspecting the superclasses and
discovering that the necessary condition does not hold.

Thus, no eager resolution or conditional subtype constraint is necessary.

5 A BUG IN EARLIER VERSIONS OF SDK

The checking of protected member access in earlier versions of SDK is incorrect; see
[8], which includes a list of affected versions. There are programs where the access
to a protected member is illegal but allowed, and programs where the access is legal
but disallowed.

Illegal Programs Accepted

Consider the program in Figure 3, consisting of three classes c = 〈p.C,L〉, s =
〈q.S,L〉, and d = 〈q.D,L〉, where L is some loader whose attributes are irrelevant to
this example; c belongs to the package p = 〈p,L〉, while s and d belong to q = 〈q,L〉.
The classes are declared in three files (compilation units) C.java, S.java, and D.java.
The relation among these three classes is depicted in Figure 4, where the unlabeled
double-line arrows indicate direct superclasses and, as in Figure 2, the single-line
arrow denotes resolution.

The program must be compiled in two steps. First, the field declaration in D.java
is uncommented and the three files are compiled, via “javac -d . *.java” (the option
“-d .” puts the class files in subdirectories p and q, as needed for execution). Then,
the field declaration in D.java is commented out and D.java is re-compiled, via “javac
-d . D.java”. An attempt to compile the three files together with the field declaration
in D.java commented out would cause an error because the field accessed by q.S is
protected and declared in the superclass p.C that belongs to a different package, but
the type q.D of the target object is neither q.S nor a subclass of it.

When the program is run, via “java q.S”, the number 3 is printed on screen.
However, the access is illegal: the field, inherited by d, is protected and declared in
the superclass c of s in a different package, but the class d of the target object does
not satisfy d ≤ s.

Another example of illegal program that gets accepted is in Figures 5, 6, and 7,
where there are two classes named C, one in C.java in the current directory and the
other in a homonymous file in a subdirectory dir1. The class Main creates a class
loader L1 of class DelegatingLoader1 and a class loader L2 of class DelegatingLoader2
and uses the latter to load SL2 . L2 delegates the loading of IL2 to L1 and the loading

66 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

5 A BUG IN EARLIER VERSIONS OF SDK

***** C.java:
package p;
public class C {
protected int f = 3;

}

***** S.java:
package q;
public class S extends p.C {
public static void main(String[] args) {
System.out.println((new D()).f);

}
}

***** D.java:
package q;
public class D extends p.C {
// public int f;

}

Figure 3: Illegal program accepted

c

s

KS

// d

[c>>>>>>>

>>>>>>>

Figure 4: Classes in Figure 3

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 67

CHECKING ACCESS TO PROTECTED MEMBERS IN THE JAVA VIRTUAL MACHINE

of any class whose name differs from S and I to the system class loader L0, while it
loads SL2 from the subdirectory dir2. L1 delegates the loading of any class whose
name differs from I and C to L0, while it loads IL1 and CL1 from the subdirectory dir1.
L0 always loads classes from the current directory. See the SDK API documentation
for details.

This program must be compiled in multiple steps. First, extends C in J.java is
commented out and the files in the current directory are compiled, via “javac *.java”.
Then, the files in the subdirectories are compiled, via “javac */*.java”. Finally,
extends C in J.java is uncommented and the file is re-compiled along with C.java,
via “javac J.java C.java”. An attempt to compile all the files together would cause
an error because of the cyclic inheritance between C and J and/or because of the
duplicate class declaration for C. The reason to re-compile also C.java, besides J.java,
after uncommenting extends C, is to prevent the compiler from using dir1/C.java
instead and causing an cyclic inheritance error.

The relation among the first five classes in Figure 5 is depicted in Figure 8 (the
other classes comprising the program are not shown because they do not contribute
to the illustration of the problem). Since L2 delegates to L1 the loading of IL2 ,
the direct superclass of 〈S,L2〉 is 〈I,L1〉. The direct superclass of 〈I,L1〉 is 〈C,L1〉,
because L1 does not delegate the loading of CL1 . Since L1 delegates to L0 the
loading of JL1 , the direct superclass of 〈C,L1〉 is 〈J,L0〉. The direct superclass
of 〈J,L0〉 is 〈C,L0〉, because L0 does not delegate loading. The reference C from
〈S,L2〉 is resolved to 〈C,L0〉, because L2 delegates to L0 the loading of CL2 . Note
that the intermediate class 〈I,L1〉 between 〈S,L2〉 and 〈C,L1〉 is necessary to create
the situation in which 〈S,L2〉 has a superclass named C that differs from the class
that the reference C resolves to; without the intermediate class, the reference C in
〈S,L2〉 would resolve to the direct superclass 〈C,L1〉. The intermediate class 〈J,L0〉
between 〈C,L1〉 and 〈C,L0〉 is necessary to create the situation in which 〈S,L2〉 has
two distinct superclasses both named C; without the intermediate class, the direct
superclass reference C in 〈C,L1〉 would resolve to the same class, causing a cyclic
inheritance error.

When the program is run, via “java Main”, the number 3 is printed on screen.
However, the access is illegal: the field is protected and declared in the superclass
〈C,L0〉 of 〈S,L2〉 in a different package3, but the class 〈C,L0〉 of the target object
does not satisfy 〈C,L0〉 ≤ 〈S,L2〉. The homonymous public field declared in 〈C,L1〉
is not accessed.

Legal Programs Rejected

Consider the program in Figures 9 and 10, where there are two classes named C,
one in C.java in the current directory and the other in a homonymous file in a

3As explained in Section 2, at run time an unnamed package is uniquely identified by a loader
and all the classes in a package have the same defining loader. Since L0 6= L2, the classes 〈C,L0〉
and 〈S,L2〉 belong to different (unnamed) packages.

68 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

5 A BUG IN EARLIER VERSIONS OF SDK

***** C.java:
public class C {
protected int f = 3;

}

***** J.java:
public class J extends C {
}

***** dir1/C.java:
public class C extends J {
public int f;

}

***** dir1/I.java:
public class I extends C {
}

***** dir2/S.java:
public class S extends I {
public static void m() {
System.out.println((new C()).f);

}
}

***** Main.java:
public class Main {
public static void main(String args[])
throws Exception {
DelegatingLoader1 loader1 = new DelegatingLoader1();
DelegatingLoader2 loader2 = new DelegatingLoader2(loader1);
Class s = loader2.loadClass("S");
Object[] arg = {};
Class[] argClass = {};
s.getMethod("m",argClass).invoke(null,arg);

}
}

Figure 5: Another illegal program accepted (part 1 of 3)

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 69

CHECKING ACCESS TO PROTECTED MEMBERS IN THE JAVA VIRTUAL MACHINE

***** Loader.java:
import java.io.*;

public abstract class Loader extends ClassLoader {
private String directory;
protected Loader(String dir) {
directory = dir;

}
protected Class loadClassFromFile(String name)
throws IOException {
File target = new File(directory + "/" + name + ".class");
int bytecount = (int) target.length();
byte[] buffer = new byte[bytecount];
FileInputStream f = new FileInputStream(target);
f.read(buffer);
f.close();
return (defineClass(name, buffer, 0, bytecount));

}
}

***** DelegatingLoader1.java:
import java.io.*;

public class DelegatingLoader1 extends Loader {
public DelegatingLoader1() {
super("dir1");

}
public Class loadClass(String name)
throws ClassNotFoundException {
try {
Class prevLoaded = this.findLoadedClass(name);
if (prevLoaded != null)
return prevLoaded;

else if (name.equals("I") || name.equals("C"))
return this.loadClassFromFile(name);

else
return this.findSystemClass(name);

} catch (IOException e) {
throw new ClassNotFoundException();

}
}

}

Figure 6: Another illegal program accepted (part 2 of 3)

70 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

5 A BUG IN EARLIER VERSIONS OF SDK

***** DelegatingLoader2.java:
import java.io.*;

public class DelegatingLoader2 extends Loader {
private DelegatingLoader1 loader1;
public DelegatingLoader2(DelegatingLoader1 loader1) {
super("dir2");
this.loader1 = loader1;

}
public Class loadClass(String name)
throws ClassNotFoundException {
try {
Class prevLoaded = this.findLoadedClass(name);
if (prevLoaded != null)
return prevLoaded;

else if (name.equals("S"))
return this.loadClassFromFile(name);

else if (name.equals("I"))
return loader1.loadClass(name);

else
return this.findSystemClass(name);

} catch (IOException e) {
throw new ClassNotFoundException();

}
}

}

Figure 7: Another illegal program accepted (part 3 of 3)

〈C,L0〉

〈J,L0〉

KS

〈C,L1〉

KS

〈I,L1〉

KS

〈S,L2〉

KS

__

Figure 8: First five classes in Figure 5

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 71

CHECKING ACCESS TO PROTECTED MEMBERS IN THE JAVA VIRTUAL MACHINE

***** C.java:
public class C {
protected int f;

}

***** I.java:
public class I extends C {
}

***** dir/S.java:
public class S extends I {
public static void m() {
System.out.println((new C()).f);

}
}

***** dir/C.java:
public class C {
public int f = 5;

}

***** Main.java:
public class Main {
public static void main(String args[])
throws Exception {
DelegatingLoader loader = new DelegatingLoader();
Class s = loader.loadClass("S");
Object[] arg = {};
Class[] argClass = {};
s.getMethod("m", argClass).invoke(null, arg);

}
}

Figure 9: Legal program rejected (part 1 of 2)

subdirectory dir. The class Main creates a class loader L of class DelegatingLoader
(class Loader is the same as in Figure 6) and uses it to load SL. L delegates the
loading of any class whose name differs from S and C to the system class loader L0,
while it loads SL and CL from the subdirectory dir. L0 always loads classes from the
current directory.

Since there are two classes with the same name, this program must be compiled
in two pieces, one with C.java and the other with dir/C.java. For example, the two
commands “javac *.java” and “javac */*.java” accomplish the task.

The relation among the first four classes in Figure 9 is depicted in Figure 11 (the
other classes comprising the program are not shown because they do not contribute
to the illustration of the problem). Since L delegates to L0 the loading of IL, the
direct superclass of 〈S,L〉 is 〈I,L0〉. The direct superclass of 〈I,L0〉 is 〈C,L0〉, because

72 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

5 A BUG IN EARLIER VERSIONS OF SDK

***** DelegatingLoader.java:
import java.io.*;

public class DelegatingLoader extends Loader {
public DelegatingLoader() {
super("dir");

}
public Class loadClass(String name)
throws ClassNotFoundException {
try {
Class prevLoaded = this.findLoadedClass(name);
if (prevLoaded != null)
return prevLoaded;

else if (name.equals("S") || name.equals("C"))
return this.loadClassFromFile(name);

else
return this.findSystemClass(name);

} catch (IOException e) {
throw new ClassNotFoundException();

}
}

}

Figure 10: Legal program rejected (part 2 of 2)

L0 does not delegate loading. Even though 〈C,L0〉 is an (indirect) superclass of
〈S,L〉, the reference C from 〈S,L〉 is resolved to 〈C,L〉, because L does not delegate
the loading of CL. Note that the intermediate class 〈I,L0〉 between 〈S,L〉 and 〈C,L0〉
is necessary to create the situation where 〈S,L〉 has a superclass named C that differs
from the class that the reference C resolves to.

The class 〈C,L0〉 is a superclass of 〈S,L〉 that belongs to a different package and
declares a protected field. However, the program is legal because the field accessed
by 〈S,L〉 is the public one in 〈C,L〉. So, the number 5 should be printed on screen.
Instead, when the program is run, via “java Main”, it is rejected with a verification
error for 〈S,L〉.

〈C,L0〉

〈I,L0〉

KS

〈S,L〉

KS

// 〈C,L〉

Figure 11: First four classes in Figure 9

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 73

CHECKING ACCESS TO PROTECTED MEMBERS IN THE JAVA VIRTUAL MACHINE

Likely Cause of the Bug

The buggy versions of SDK handle other cases correctly. For example, if new D()
is replaced with new C() in Figure 3, a verification error correctly signals that the
field cannot be accessed, because it is protected and declared in a superclass in a
different package, but p.CL ≤ s does not hold. (In order to compile S.java with new
C() in place of new D() it is first necessary to make the field in C.java public, then
compile the two files, then change the field back to protected, and finally re-compile
C.java.)

It is likely that the bytecode verifier in the buggy versions of SDK uses the
following strategy to check accessibility of protected members. Suppose that the
member reference in the current class s with defining loader L is C . n : d. The
bytecode verifier inspects the superclasses of s to see if any of them has name C.
If none of them has name C, access is considered legal. Otherwise, a member with
name n and descriptor d is searched in that class and its superclasses. If one is found
but it is not protected, access is considered legal. If it is protected, the package of
the class where the member is declared is compared with the package of s. If they
are the same, access is considered legal. Otherwise, the inferred target type D is
checked to satisfy DL ≤ s.

In the bytecode compiled from Figure 3, the getfield in class s references q.D . f :
int, because during the first step of compilation (when the field declaration in D.java
is uncommented) the compiler resolves the field reference to the field declared in
D.java. During the bytecode verification of s, the strategy conjectured above finds
that no superclass of s has name q.D, thus erroneously concluding that the access
is legal.

In the bytecode compiled from Figure 5, the getfield in class 〈S,L2〉 references
C . f : int. During the bytecode verification of 〈S,L2〉, the strategy conjectured above
finds that the superclass 〈C,L1〉 of 〈S,L2〉 has name C and that it contains a field
with name f and descriptor int. Since the field is not protected, the strategy erro-
neously concludes that the access is legal. Apparently, the strategy iterates through
superclasses upwards (i.e. from subclass to superclass); otherwise, it would find the
protected field in class 〈C,L0〉 first and correctly conclude that the access is illegal.

In the bytecode compiled from Figure 9, the getfield in class 〈S,L〉 references
C . f : int. During the bytecode verification of 〈S,L〉, the strategy conjectured above
finds that the superclass 〈C,L0〉 of 〈S,L〉 has name C and contains a protected
field with name f and descriptor int. Since 〈S,L〉 and 〈C,L0〉 belong to different
(unnamed) packages (because L 6= L0), the strategy erroneously concludes that the
access if illegal.

On the other hand, if new D() is replaced with new C() in Figure 3, the getfield
in class s references p.C . f : int. During the bytecode verification of s, the strategy
conjectured above finds that the superclass c of s has name p.C, has a field with
name f and descriptor int, and belongs to a different package from s. Thus, the
strategy checks whether c ≤ s (the inferred target type of the getfield is clearly p.C,

74 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

6 CONCLUSIONS

which resolves to c, because the direct superclass of s has name p.C), which is not
the case, thus correctly concluding that the access is illegal.

6 CONCLUSIONS

This paper illustrates how to check protected member access in the JVM, which is
not explained in [7] and, to the author’s knowledge, has been completely neglected
in the research literature. This aspect of enforcing type safety in the JVM is rather
subtle and its correct implementation is not straightforward, as also evidenced by
the bug in earlier versions of SDK exposed in this paper.

The best way to correctly and efficiently check protected member access seems
to be the following: first, use the strategies described in Subsection “Limited Res-
olution” of Section 4; then, deal with the remaining checks by eagerly resolving
member references or by generating conditional subtype constraints.

If the classes in the java and javax packages of SDK 1.4 are representative of
typical Java programs in the usage of protected members, the results reported in
Subsection “Corpus Measurements” of Section 4 suggest that all or most checks can
be performed without any eager resolution or conditional subtype constraints. Any-
how, there is a trade-off between eagerly resolving member references and generating
conditional subtype constraints: the former is simpler and requires less machinery
in the JVM, while the latter supports lazier class loading.

REFERENCES

[1] Ken Arnold, James Gosling, and David Holmes. The JavaTM Programming
Language. Addison-Wesley, third edition, 2000.

[2] Lawrence Brown. Protected access. In Data Structures Course Notes, avail-
able at http://www.apl.jhu.edu/Classes/Notes/LMBrown/resource/Protected-
Access.pdf.

[3] Alessandro Coglio and Allen Goldberg. Type safety in the JVM: Some problems
in Java 2 SDK 1.2 and proposed solutions. Concurrency and Computation:
Practice and Experience, 13(13):1153–1171, November 2001.

[4] Li Gong. Inside JavaTM 2 Platform Security. Addison-Wesley, 1999.

[5] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language
Specification. Addison-Wesley, second edition, 2000.

[6] Sheng Liang and Gilad Bracha. Dynamic class loading in the JavaTM virtual
machine. In Proc. 13th ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’98), volume 33, number 10 of
ACM SIGPLAN Notices, pages 36–44, October 1998.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 75

CHECKING ACCESS TO PROTECTED MEMBERS IN THE JAVA VIRTUAL MACHINE

[7] Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specification.
Addison-Wesley, second edition, 1999.

[8] Sun Microsystems. Sun alert notification #50083, January 2003. Available at
http://sunsolve.sun.com/search/document.do?assetkey=1-26-50083-1.

[9] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Pro-
gram Analysis. Springer-Verlag, Berlin, 1998.

[10] Zhenyu Qian, Allen Goldberg, and Alessandro Coglio. A formal specification
of Java class loading. In Proc. 15th ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA’00), volume 35,
number 10 of ACM SIGPLAN Notices, pages 325–336, October 2000.

[11] Anonymous Reviewer. Private communication, March 2005.

[12] Frank Yellin. Private communication, August 2002.

ABOUT THE AUTHORS

Alessandro Coglio has been a Computer Scientist at Kestrel In-
stitute since 1998, working on formal methods and their application
to Java. He has also been a Computer Scientist at Kestrel Tech-
nology LLC since 2001, working on technology transfer. Prior to
joining Kestrel, Mr. Coglio was a Consulting Researcher for the De-
partment of Informatics, Systems, and Telecommunications of Uni-
versity of Genoa (Italy), working on theorem proving, Petri nets,
discrete event systems, and artificial emotions. Mr. Coglio received
a Master degree in Computer Science Engineering from University of
Genoa in 1996. His thesis, in the field of theorem proving, was in col-
laboration with Stanford University (Palo Alto, California), where
he spent two months in 1996. During his middle- and high-school
years, one of Mr. Coglio’s pastimes was programming videogames
in Assembly.

76 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

