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Abstract. The Java Virtual Machine (JVM) has a novel and powerful mechanism
to support lazy, dynamic class loading according to user-definable policies. Class
loading directly impacts type safety, on which the security of Java applications is
based. Conceptual bugs in the loading mechanism were found in earlier versions of
the JVM that lead to type violations. A deeper understanding of the class loading
mechanism, through such means as formal analysis, will improve our confidence
that no additional bugs are present.

The work presented in this paper provides a formal specification of (the relevant
aspects of) class loading in the JVM and proves its type safety. Our approach to
proving type safety is different from the usual ones since classes are dynamically
loaded and full type information may not be statically available. In addition, we
propose an improvement in the interaction between class loading and bytecode
verification, which is cleaner and enables lazier loading.

1 Introduction

The Java Virtual Machine (JVM) has a novel and powerful class loading
mechanism. Class loading is the process of obtaining a representation of a
class (declaration), called a class file, and installing that representation within
the JVM. The JVM allows lazy, dynamic loading of classes, user-definable
loading policies, and a form of name space separation using loaders. According
to both the Java and JVM specifications [12,15] distinct loaded classes may
have the same name, and within an executing JVM each loaded class is
identified by its name plus the class loader that has loaded it.

One of the key properties of the JVM, from both a security and software
engineering perspective, is type safety. If the JVM confuses distinct classes,
type safety problems can result. Ensuring type safety requires a fairly so-
phisticated mechanism. The reason is that on one hand it is impossible to
determine, prior to execution, the actual loader of a class because loaders
can delegate class loading to each other according to the program logic of
user-written code. On the other hand, loading a class before it is required for
execution is undesirable. Saraswat first publicly reported [17] name spoofing
problems due to deficiencies in the mechanisms employed by earlier versions
of the JVM.
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The Sun solution [14] to such problems employs a constraint mechanism.
Constraints on the disambiguation of names to ensure type safety are posted
when necessary. As classes are loaded the constraints are checked.

The main result of this paper is to provide formal arguments that the
Sun approach is sufficient to prove type safety. We formalize the operational
semantics of a simplified JVM that uses this approach. The operational se-
mantics models class loading, resolution, bytecode verification, and execution
of some selected instructions.

Our model of the JVM departs from Sun’s regarding how the bytecode
verifier checks subtype relationships. Sun’s bytecode verifier performs the
checks by loading certain referenced classes, while our verifier uniformly posts
constraints. These subtype constraints are checked when classes are load-
ed, analogously to the constraints mentioned above. The advantage of our
approach is lazier class loading and clearer interaction between verification
and class loading.

Because a class loader is a runtime object, a reference to a class (in a class
file) is just a name and cannot include the loader. Disambiguation of such
a name is needed, but can only occur when the referenced class has been
loaded. This implies that traditional approaches to proving type safety, in
which a static type semantics is extracted from the source code and related
to the dynamic semantics, cannot be applied. Instead, our type safety proof
relates the dynamic semantics with static type information, currently loaded
classes, and currently posted constraints (which express requirements on not-
yet-loaded classes).

Our analysis led us to identify bugs in the current Sun implementation
of the JVM, some of which relate to inadequacies in the JVM specification
[15]'. The bugs result from the failure of the bytecode verifier to properly
disambiguate names. For a full description of these bugs see [4], where it
is also shown how the bugs are avoided by having the verifier post subtype
constraints.

The remainder of the paper is organized as follows. In the next section we
present relevant JVM concepts. Section 3 gives an overview of our approach.
Section 4 describes our formalization. Section 5 states the safety properties
and gives proofs. Section 6 discusses related work, and section 7 states con-
clusions.

The current paper is a full version of the paper [16].

2 Background

2.1 Class objects

A class file is typically produced by compiling a Java class (declaration): the
class file contains essentially the same information, except that the code of

! Some of these bugs were independently discovered and reported in [18].



each of its methods is compiled to bytecode, i.e. an assembly-like language that
uses an operand stack and a register array, both local to the method. The
registers are also referred to as local variables. The JVM executes bytecode.

The internal representations of classes in an executing JVM are objects of
the system class named Class, and they are called class objects. We will use
0bj, CILd and Cls to denote the class objects for the system classes named
Object, ClassLoader and Class. For convenience, we will not distinguish
between a class and its corresponding class object in the informal discussion
below.

2.2 Resolution and loading

Bytecode instructions use (fully qualified) names to reference classes. Class
resolution is the process of replacing these symbolic references with (pointers
to) actual class objects in the executing JVM. Resolution causes loading of
the class and checking of the access control modifiers of the loaded class.

Bytecode instructions reference fields and methods by name, including
the name of the class where they are expected to be declared. Field and
method resolution is the process of replacing these symbolic references with
(pointers to) actual fields and methods. It requires first resolving the class
in which the field or method is declared, then checking the presence of the
field or method in the resolved class, and finally checking its access control
modifiers.

(Class) loaders are objects of subclasses of class CILd. By overriding cer-
tain methods of class CILd, user-defined class loaders can implement arbitrary
loading policies.

Class CILd contains a defineClass method. It is a final method and
thus cannot be overridden in subclasses of class CILd. This method takes
a class file (in the form of a byte array) as argument, and returns a newly
created class object, unless the class file has an invalid format — in which case
an exception is thrown. The creation of the new class requires resolution of
all its superclasses. If the defineClass method is invoked on a loader and a
class object is returned, then the loader is called the defining loader of the
resulting class.

Class CILd contains a loadClass method, which may be overridden in
subclasses. This method takes a class name (in the form of a string) as argu-
ment, and returns a class object (or throws an exception). The user’s code
in this method can implement arbitrary loading policies. Typically the code
will fetch a class file in some way (e.g., from the local file system, or a net-
work connection) and then invoke defineClass with the resulting class file
as argument. However, user’s code can delegate loading by calling loadClass
upon another loader. If the loadClass method is invoked by the JVM on a
loader and a class object is returned, then the loader is called an #nitiating
loader of the resulting class. The defining loader of a loaded class is also
regarded as an initiating loader of the class.



Therefore, a loaded class may have many initiating loaders but only one
defining loader.

When a class name needs to be resolved within an executing class, the
defining loader of the executing class is used as initiating loader for the class
(name) to be resolved.

2.3 A simple example

Let us use an example to explain some basic concepts and issues regarding
classes, loaders, and type safety.

public class C { // Class C with defining loader [;.
public void m() {
(new D()).n(new T()); // Load classes D and T} and
} // pass a T object as argument.
}
public class D { // Class D with defining loader [>.
public void n(T t) { // Receive a T} object as argument.
(new EQ()) .k(t); // Load class E and
// pass the T object as argument.
int i = t.f; // Load class T> and fail since T} # T5!
}
}
public class E { // Class E with defining loader [;.
public void k(T t) { // Receive a T} object as argument.
Object o = t.f; // Operation succeeds.
}
}
public class T { // Class T1 with defining loader [;.
Object f;
}
public class T { // Class T> with defining loader [>.
int f;
}

Figure 1: A simple example

Assume that we have a subclass MyLd of class CILd, two distinct objects
l; and Iy of class MyLd, and five classes C, D, E, T} and T3, satisfying the
following:

— Classes C, D, E, T} and T> have names C, D, E, T and T, respectively.
— Classes C, E and T3 have defining loader /1, and classes D and 7> have
defining loader I-.



— Using loader /; as initiating loader for names D and T yields the classes D
and T, respectively, while using loader 5 as initiating loader for names E
and T yields classes E' and T5, respectively. This means that [; delegates
to > the loading of a class named D, and that /> delegates to [; the loading
of a class named E.

Figure 1 shows classes C', D, E, Ty and T>. We consider execution starting
with the m() method. Initially, only class C' is loaded. The others are loaded
when they are needed, i.e. at their first active use (see below)?2.

Starting at the m() method, the JVM first resolves names D and T, loading
classes D and T} using [; as initiating loader for names D and T, respectively.
Then it creates objects of these classes. The n(T t) method is then invoked
with an object of class 77 as argument.

Class D has defining loader l5. Within the n(T t) method, name E is
resolved, loading class E using [, as initiating loader for name E. Then the
k(T t) method is invoked with the object of class T} as argument.

Class E has defining loader /;. Within the k(T t) method, the execution
of the field access t.f causes resolution of class name T, using /; as initiating
loader. The resulting class is T} . The field access succeeds because the resolved
class of the formal parameter t is the same as that of the actual value it holds.

Returning back to the n(T t) method, the execution of the field access
t.f causes resolution of class name T, using l» as initiating loader. The re-
sulting class is T5. Now execution will throw an exception (and prevent field
access) because the JVM detects that the class T1 of the actual value in the
formal parameter t does not match the class T, of the formal parameter t.

We observe that in the execution just described no exception is thrown
until the field access t.f in the n(T t) method is attempted. The reason is
that the JVM cannot check whether the class 75 of the formal parameter t
matches the class T} of the value it holds until the class T is loaded. In fact,
the JVM would not throw an exception if the field access t.f in the n(T t)
method were not present.

The usual approach to proving type safety is to show that during execution
values stored in variables always conform to the types statically assigned to
these variables. In our example, this means showing that, after the n(T t)
method is invoked, the T; object passed as argument conforms to “the type
statically assigned to formal parameter t of n(T t)”. However, the JVM
cannot determine what the class the name T denotes, until the name T is
actually resolved in class D. In fact, if the class were loaded at the time when
the n(T t) method is invoked, the JVM would be able to detect that the
value does not conform to the loaded class.

The bug reported by Saraswat [17] led to type violations in earlier versions
of the JVM. In reference to the example in Figure 1, the earlier versions of

2 The JVM specification allows loading of a class to happen at any time no later
than its first active use. In this example, we assume that loading of a class happens
exactly at its first active use.



the JVM did not check the equality of classes T} and T> when executing the
field access t.f in the n(T t) method. The result of such field access was
unpredictable, since it operated on an object of the wrong type.

The Sun solution to Saraswat’s bug, which checks the equality of classes
T, and T» when executing the field access t.f in the n(T t) method in
Figure 1, introduce two internal data structures into the JVM called loaded
class cache and loading constraints [14].

2.4 Loaded class caches and loading constraints

The JVM resolves referenced class names to loaded classes. The results of the
loading process are stored in a JVM data structure called the loaded class
cache. The loaded class cache maps an initiating loader and a class name
to a loaded class. Recall that a reference to a class is resolved by using the
defining loader of the current class as the initiating loader of the referenced
class; so the loaded class cache records how a class name is disambiguated.

When a class name needs to be resolved, the JVM, before loading with
a given initiating loader, checks the loaded class cache. If a class has been
loaded for that initiating loader and that class name, the JVM returns the
already loaded class as the result. Thus resolution will always give consistent
results. If the loaded class cache has no entry for the initiating loader and
class name then loading is carried out. If a class is returned, the loaded class
cache is updated with a new entry for the just loaded class. If instead an
exception is thrown, resolution fails.

In the sequel, we call a pair ([, ¢n) of an initiating loader [ and a class
name cn a loading request.

A loaded class cache is a finite map from loading requests to loaded classes:

{<l17 cn1> = CL, e, (lTH Cnn) = Cn}.

A loading constraint is a triple (1,1’ cn) consisting of two loaders [ and [’
and a class name cn. A loading constraint as above expresses the requirement
that using [ and I’ as the initiating loaders for name ¢n, must yield the same
(loaded) class if they both succeed. Loading constraints are generated by
the JVM when fields and methods are resolved. Such constraints enforce
that classes exchanging objects (through field access and method invocation)
agree on the actual classes (and not only the names) of the exchanged objects.

An executing JVM maintains a loaded class cache and a set of loading
constraints. These two data structures are checked for mutual consistency
whenever either one is updated. Whenever an update causes a violation of a
loading constraint w.r.t. the loaded class cache, an exception is thrown, thus
causing a failure of the operation that triggered the update.

In the example in Figure 1, a loading constraint (l;,l5,T) is generated
when the n(T t) method is resolved (from C') during execution of the ex-
pression (new D()) .n(new T()). The loader [; is the defining loader for class



C, which is used as an initiating loader for name T within the m() method.
The loader [ is the defining loader for class D, which will be used as an
initiating loader for name T within the n(T t) method, when T is resolved
from D. Class T} is loaded for the loading request (/1,T) in the execution of
the instruction new T(). The loading constraint is checked only when class
T, is loaded for the loading request (l2, T), during the execution of the field
access t.f within the n(T t) method.

2.5 Bytecode verification

Type-safe execution requires that each instruction operates on data with
appropriate types. In order to reduce the number of runtime checks and thus
to improve efficiency, most type-safety requirements are checked statically. In
the JVM, the code of each loaded class is verified prior to execution of any
of its methods, by a JVM component called the bytecode verifier. Bytecode
verification should assign types to operand stack elements and local variables
for each instruction, consistently with the types required by the instructions
in the method. However, in order to avoid premature loading, the bytecode
verifier only assigns class names, instead of class types, to local variables and
operand stack elements. Therefore, the bytecode verifier only makes “partial”
checks on class types; such checks are in fact complemented by the loading
constraint mechanisms at runtime.

The following is the bytecode of the m(), n(T t) and k(T t) methods in
Figure 1. The comments on the right give the class names assigned by the
bytecode verifier to some elements in the operand stack at some program
points.

method m()
pl: new(D)
p2: new(T) // [--,D]
p3: invokevirtual(D,n,T,void) // [-+,D,T]

method n(T)

rlz.éétfield(T,f,int) // [, T
r2: ... // [, int]

method k(T)

ql: getfield(T,f,0Object) /] [T
qQ2: ... // [---,0bject]



Intuitively, the instruction new(D) creates a new object of class D and
pushes (a reference to) it onto the operand stack®. Thus, bytecode verification
assigns the name D to the top element in the operand stack at program point
p2 after that instruction. The instruction new(T) at program point p2 works
in a similar way.

The instruction invokevirtual(D,n,T,void) dynamically selects the n(T)
method based on the class of the second top object on the operand stack,
and invokes the method with the top element in the operand stack as argu-
ment. The instruction contains a class name D indicating the class in which
the method is to be found, and a class name T indicating the class of the
argument. Bytecode verification uses this information to check the consis-
tency of the class names assigned to the top stack positions. In this case, it
checks whether the class names D and T are the ones assigned to the top two
elements in the operand stack. Note that this static consistency check is not
sufficient to guarantee type safety: this is the reason why the executing JVM
will generate a loading constraint (I, [»,T), as explained in Section 2.4.

The instruction getfield(T,f,int) fetches the int value of the field £
in the top object of the operand stack and pushes it onto the operand stack.
The instruction contains a class name T indicating the class in which the field
is to be found. Again bytecode verification uses this information to check the
consistency of the class name assigned to the top stack position. In this case,
it checks whether class name T is the one assigned to the top element in the
operand stack. At the next program point r2, bytecode verification assigns
type int to the top element of the operand stack.

Bytecode verification analyzes getfield(T,f,0bject) in a similar way
as getfield(T,f,int). The only difference is that the class name Object is
assigned to the top element of the operand stack at program point g2.

2.6 Another example

Let us now consider an example involving subtypes. This example provides
some motivation for the subtype constraints that will be introduced and
explained in the next sections.

We assume that we have a subclass MyLd of class CILd, two distinct
objects [; and I5 of class MyLd, and five classes C, D, Ty, T> and S, satisfying
the following:

— Classes C, D, Ty, T> and S have names C, D, T, T and S respectively.

— Classes C, D and T have defining loader /;, and classes T> and S have
defining loader I,.

— Using loader [; as initiating loader for names D, T and S yields the classes
D, Ty and S, respectively, while using loader I as initiating loader for

3 For simplicity, we ignore the issue of object initialization in this example. In other
words, we assume that the bytecode instruction new creates a fully initialized
object.



name T yields class 75, respectively. This means that [; delegates to I;
the loading of a class named S.

Note that S is a subclass of 75, and not of 77, because resolving name T with
Iy (which is the defining loader of S) as initiating loader yields T5.

public class C { // Class C with defining loader [;.
public void m() {
(new D()) .n(new S(Q));

}
}
public class D { // Class D with defining loader [;.
public void n(T t) {
Object o = t.f;
}
}
public class T { // Class T\ with defining loader [;.
Object f;
}

public class T { // Class T> with defining loader I».
int f;
}

public class S extends T { // Class S with defining loader [>.

}

Figure 2: Another example

Figure 2 shows classes C, D, Ty, T and S. We assume that initially, only
class C is loaded, and consider execution starting with the m() method.

Based on analogies with the previous example, one might expect execution
to happen as follows. First, classes D and S are loaded. According to the
JVM specification, when a class is loaded, all its superclasses are also loaded.
Therefore, when S is loaded T3 is also loaded.

Next, an object of class D and one of class S are created, and method
n(T t) is invoked upon the D object, passing the S object as argument. The
field access t.f causes resolution of name T from class D, which results in
class Ty . At this point, field access should fail because S is not a subclass of
T;.

However, that is not quite what happens in the JVM. Before method
m() is executed, it must go through bytecode verification. Let us examine
the bytecode for this method, together with the class names assigned by the
bytecode verifier to some elements of the operand stack:

method m()



pl: new(D)
p2: new(S) // [--,D]
p3: invokevirtual(D,n,T,void) // [-+,D,S]

The difference between this and the m() method in the previous example
is that the name T assigned to the top element in the operand stack at pro-
gram point p3 is now replaced with the name S. Since the invokevirtual
instruction references name T, the JVM specification actually requires byte-
code verification to resolve both names T and S from class C' (i.e., using [;
as initiating loader), and to check that the appropriate subclass relationship
holds.

The check fails, because the loading request (l1, T) yields T3, which is not
a superclass of S. Therefore, bytecode verification throws an exception, and
method m() is not executed at all.

Of course, the same would happen even if the field access t.f were not
present in method n(T t). In fact, when class C is being verified, class D
has not been loaded.

This suggests that resolving class names during bytecode verification in
order to check subclass relationships, does not lead to the laziest possible
loading strategy. In the next sections, we will show how subtype constraints
allow lazier loading, and how the behavior of the JVM in this example would
match what one would probably expect.

3 Overview of Our Approach

The main objective of our work is to raise the assurance that the JVM as spec-
ified and implemented by Sun is safe. Because the mechanisms that enforce
safety in the JVM are inherently complex, it is not straightforward to assess
their correctness, as demonstrated by the discovery of bugs that lead to type
safety violations [17,18,4]. In order to raise assurance, we construct a formal
specification, which is consistent with the JVM English specification and the
Sun implementation, and we prove results about that specification. Actually,
our specification intentionally differs from Sun’s in one aspect, namely the
use of subtype constraints for bytecode verification, which enable a cleaner
design and lazier loading policy.

We present an operational semantics for an abstraction of the JVM and
prove a type safety result. The operational semantics differs from usual ones
(e.g. [1]) that just specify state transitions for the JVM bytecode instructions.
Our semantics includes transitions for “macro operations,” e.g. resolution
and class loading, that are performed by the “core” of the JVM. The core
of the JVM maintains data structures, such as a loaded class cache, which
are updated by these macro operations. The interaction between the core of
the machine and user code is complex: there is a mutual recursion between
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user code executing in a thread and the core machine. The state transition
formalism we use reflects this with the use of “nested” rules.

We start by introducing the formal entities (sets, operations, etc.) used in
our formalization. We then define states and transitions for a state machine
representing an abstraction of the JVM. Transitions fire when certain con-
ditions are satisfied. Some conditions correspond to runtime checks actually
performed by the executing JVM; their failure raises exceptions in the JVM.
Other conditions serve to ensure type-safe operations in our formalization;
there are no corresponding runtime checks in the JVM. If these type safety
conditions are not satisfied, then the behavior of the JVM is undefined*. We
finally introduce a notion of validity of states, and present theorems stating
that transitions from valid states lead to valid states, and that transitions
from valid states are always possible unless either there is no more code to
execute or a condition corresponding to an actual check in the JVM is vio-
lated. In other words, in a valid state, the failure of a type safety condition
alone never causes the machine to halt. This means that if the JVM starts in
a state corresponding to a valid state in our formalization, each operation in
the JVM will be always type-safe, and no checks corresponding to the type
safety conditions are needed.

Our formalization makes many simplifications to the JVM. Most impor-
tant is that we ignore concurrency and exceptions. One could easily imagine
a concurrency bug leading to inconsistent data structures; such bugs are not
addressed by our specification. The JVM, when presented with a program
that is inconsistent, throws an exception to report the error. For example,
if a loading constraint is violated, a linking exception is thrown. Since we
do not model exceptions, in our formalization the machine simply halts. We
also do not treat static fields or methods, primitive types, interfaces, arrays,
object initialization, subroutines, and field or method modifiers. We believe
these features are orthogonal to the issues raised by class loading. We treat a
few bytecode instructions, namely those to access fields, call methods, return
results, create new objects, and load/store from/to local variables. In a strong
sense the essence of the Sun approach is captured by our formalization.

Our formalization includes bytecode verification. Bytecode verification
assigns class names to memory locations (in the operand stack and for all
local variables) at each program point of a method based on the instructions
in the method, as shown in Section 2.5. For example, a getfield instruction
requires a certain class name (for the target object) to be assigned to the
top of the stack at the program point where the instruction is, and requires

* In practice, the behavior of an actual JVM when such conditions are not satisfied
is determined by the implementation of the machine. Knowledge of the imple-
mentation can be maliciously exploited to compromise the security of the JVM,
if type safety can be circumvented. For example, typical implementations access
fields through offsets added to the address of an object. In such implementations,
a type-unsafe operation could access arbitrary data within objects, regardless of
field layout (see example in the previous section).
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another class name (for the field value) to be assigned at the top of the stack
at the next program point.

In our formalization the state of an executing JVM contains a global state
consisting of a loaded class cache, a set of loading and subtype constraints
and a heap for storing objects. In addition, the state includes a component
that models the execution stack of a single thread (as per the restriction
above) storing frames. Each frame is a tuple consisting of a class, a method
of the class, a program point within the method, and a state of the local
memory (the operand stack and all local variables).

We identify a subset of execution states called valid states that satisfy cer-
tain constraints. Many of the constraints are straightforward. For example,
one of such constraints requires that all classes in a frame be in (the range
of) the loaded class cache. However, the key constraint is the conformance
condition, which relies on loading and subtype constraints. The problem is
that some classes may never get loaded or only get loaded at run time and
that the bytecode verifier assigns only type names, not full type information,
to memory locations, to avoid premature loading. Loading and subtype con-
straints are used to state requirements for not-yet-loaded classes denoted by
class names. The conformance relation takes into account not only loaded
classes, but also loading and subtype constraints.

To further explain the above point, consider again the example in Figure 1.
The type of the object passed to the n(T t) method is 77. Until name T is
resolved from D, the formal parameter t of method n(T t) has no full type
assigned to it (only name T). Therefore, we cannot state that the passed
object matches the type of the formal parameter, simply because there is
no full type information. However, upon resolution of method n(T t) from
C, the loading constraint (l;,[s,T) is introduced. Such a constraint requires
equality of the class loaded by [; for name T (i.e., T}) and the class that
will be possibly loaded by I» for the same name T. By taking this constraint
into account, the conformance relation captures the fact that the already
loaded type 77 “matches” the not-yet-loaded type for the formal parameter
of the method. If T, were never loaded (e.g., if the assignment i = t.f were
not present in the method), the constraint would never be violated and the
conformance relation would still hold.

Let us now explain subtype constraints. Suppose that, during bytecode
verification, a class name cn is required (e.g., by a getfield(cn,...) instruc-
tion) at the top of the stack, where a name cn', with c¢n’ # cn, has instead
been assigned. The field access is correct as long as cn’ is a subclass of cn.
More precisely, since cn and cn' are just names, the requirement is that if
and when the loading requests (I, cn') and (I, ¢cn), where [ is the defining
loader of the class whose method is being verified, yield two loaded classes C’
and C (respectively), then C’ must be a subclass of C'. According to Sun’s
specification and implementation, and as described in the previous section for
the example in Figure 2, the bytecode verifier checks this subtype relation
eagerly, by resolving names cn and cn’.
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In our formalization, we check subtype relations lazily: the bytecode ver-
ifier just posts subtype constraints of the form (I, ¢n, cn’). Such a constraint
expresses exactly the requirement that if and when the loading requests
(I,cen'y and (I, cn) yield two classes C' and C, then C' must be a subclass
of C. These subtype constraints are handled analogously to the loading con-
straints. Each time a class is loaded, subtype constraints are checked for
violation. Each time a new subtype constraint is introduced, it is checked for
violation, too. In other words, loading constraints, subtype constraints, and
the loaded class cache are constantly maintained in a mutually consistent
state. The primary advantage of this approach is lazier loading, because no
class needs to be loaded for verification purposes. Another advantage is that
the interaction between the bytecode verifier and the rest of the core JVM
is simpler and clearer: the verifier is in fact just a functional component that
takes a class as argument and returns a yes/no answer plus a set of subtype
constraints as result.

To further illustrate subtype constraints, let us consider the example in
Figure 2 using subtype constraints. Again, we start with only class C' loaded.
Before method m() is executed, it must be verified. Bytecode verification
successfully verifies the method and posts the subtype constraint (I;,S,T)
(without loading any class). Method m() starts executing. Classes D and S
are loaded. Since T has not been loaded yet, the subtype constraint (l1,S, T)
is not violated yet. The newly created S object is passed as an argument
to method n(T t) invoked upon the newly created D object. When the field
access t. f is about to be executed, class name T is now resolved with /; (which
is the defining loader of D) as initiating loader. This yields class T}; since
it is not a superclass of S, now the subtype constraint (l1,S, T} is violated.
Therefore, an exception is thrown and field access is prevented.

4 Formalization

4.1 Mathematical notations

We use B to denote the set of Boolean values, N the set of natural numbers
starting from 0, and C the set of all (UNICODE) characters.

We use the usual notations for sets, in particular, W for disjoint union and
P, () for the set of all finite subsets. A set A is called countable iff there is a
bijective function mapping A onto the set IN of natural numbers.

For a set A, we define

A* :{[ao,...,ak,l]|k20,a0,...,ak,1 EA},

AT = A" = {[]},

|[a0,...,ak,1]| = k,

[a():"':ak)—l] +a= [a():"':ak—l:a]:

[ao,...,ak_1]|j = aj for 0 S] < k—l,

[G/O;"';akfl][j '_)a’] = [a07"'7aj*17a7aj+17"'7ak71] for 0 S] < k—1.
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We write [a]® for the sequence consisting of k > 0 occurrences of a.
For sets A and B, A — B denotes the set of all (total) functions from

A to B, and A X B the set of all finite functions from A to B. We use
D(f) and R(f) to denote the domain and range of a function f. Following

the tradition, we also write f: A — B and f: A 5 B for f€eA— B and
feAd LN B, respectively.

We use the notation {a — b | a(a,b)} to denote the function f defined by
f(a) = b for all a,b such that a(a,b).

Let f: A L B. The function flamb]: AU {a} L B is defined by
(fla = b))(a’) = f(a')

fora' € A—{a} and (f[a — b])(a) = b. The function f{a +— b} : AU {a} 5B
is defined by (f{a~ b})(a') = f(a') for o’ € A and (f{a+— b})(a) = b
if a ¢ A. These two operations differ only in the case a € A: the former
updates the given finite function f for the input a, whereas the latter does
not.

4.2 Names and instructions

Class, field, and method names are formalized by three sets,

CN c C*, FN c CH, MN c C*.
We will make explicit use of the following system class and method names:
0bj,Cls,ClLd,Str € CN,  1dCl,dfCl € MN,

standing for java.lang.0bject, java.lang.Class, java.lang.ClassLoader,
java.lang.String, loadClass, and defineClass, respectively.
The JVM instructions we consider are captured by the set

I = {getfield(cn, fn, eng) | (cn, fn, cng) € CN x FN x CN} U
{putfield(cn, fn, cng) | (cn, fn,cng) € CN x FN x CN} U
{invokevirtual(cn, mn, cny, cng) | (cn, mn, cny, cng) € CN x MN x CN x CN} U
{new(¢cn) | ecn € CN} U
{areturn}.

4.3 Fields and methods

We introduce a set of fields with two selector functions; one yields the field
name and the second the descriptor (just a class name since the only types
we consider are classes):

F, nm: F — FN, ds : FF— CN.
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We introduce a set of methods with four selector functions; one yields the
method name, one its argument type, one its result type names and one its
code (i.e., a finite, non-empty sequence of instructions):

M, nm:M— MN, at:M - CN, rt:M — CN, cd:M—1I",
Each m € M satisfies that
VieN.0<j<]|ed(m)| = (cd(m)|; =areturn & j =|cd(m)| —1).

Because there are no branch instructions defined in our simplified instruction
set, code is straight line. The conditions ensure that there is no unreachable
code, and that the last instruction is the unique areturn instruction of the
method.
Program points are indices of instructions within code. They are elements
of the set
P =N.

4.4 Objects and heaps

In the JVM, each object is identified by a reference (i.e., pointer), which
dereferences to the state of the object. Such a state consists of an immutable
and a mutable part. The immutable part is specific to the execution of a
JVM but once an object is introduced into the runtime state of a JVM its
immutable properties are invariant over subsequent execution states. On the
other hand, the values of fields can change during execution.

We introduce a countable set

@)

consisting of all possible objects. Each element of O is an object reference
plus its immutable state.?

Since O does not include the (special) null reference, we introduce a set
for values in fields and operand stacks:

V =0w{null}.

In the JVM each loaded class is represented by an instance of a (meta)
class Class. All possible instances of class Class are collected in a countable
set

C Co.

Every object has a type, i.e., an element of C, given by the selector function

c:0—=C.

® Collapsing immutable states into references allows a lighter notation.
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We assume that there are four system classes

Obj, Cls, CILd, Str € C

that satisfy:

1. C={o€O0]clo) = Cls};
2. {o€ O cl(o) = ¢} is a countable set for each ¢ € C.

The elements Obj, Cls, CILd and Str represent the class objects of the system
classes named 0bj, Cls, C1Ld and Str, respectively. Condition 1 means that
class objects are instances of the class represented by the class object Cls.
The condition implies that ¢l(Cls) = Cls, meaning that the (class) object
Cls represents the class of itself. Condition 2 ensures that there are always
enough instances of each class available in the formalization.

We introduce the countable set

S={o€ 0| cl(o) = Str}
which consists of all possible string objects, and a function
str:C* — S,

yielding a String object for each sequence of characters.

The above definitions and properties are universal in the sense that they
hold for any model of JVM execution. The subtype relation between classes
is not universal in this sense. It depends on the supertype declarations that
appear in the classes that are loaded and are recorded in the runtime state
of a JVM execution.

A class loader is any object of a subclass of class CILd. We cannot specify
a universal predicate on O that characterize class loaders because of the
dependence on subclassing. At this stage, we only reserve the set

L=0-(CUS)

as the space of all potential loaders. The state transitions will ensure that
every object from L that is used as a loader is indeed a loader.
The immutable state of classes includes

nm:C — CN, fld:C — P,(F), mth:C — P,(M),
sup:C — CNw{nil}, Id:C — L,

giving the name of the class, the set of all fields declared in it, the set of
all methods declared in it, its superclass, and its defining loader. We assume
that they satisfy

1. Yo € O. sup(o) = nil & o = Oby;
2. Ve € C.Vf1, fo € fld(c). nm(f1) = nm(f2) = fi = fo;
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3. Ve € C. Vmy, mz € mth(c).
(nm(my), at(mq), rt(mq)) = (nm(ms), at(ms), rt(m2)) = my = mo.

Condition (1) means that object Obj is the only class that has no superclass.
Condition (2) ensures that no two distinct fields have the same name. Condi-
tion (3) ensures that no two distinct methods have the same name and types.
For convenience, we define a function fam : C — P, (FN) by

frm(c) = {nm(f) | f € fld(c)}.

The mutable states of objects are records, which are formally modeled by
finite functions from field names to values:

Re=FN 5 v.

The mutable states of objects are stored in heaps, which are formalized as
finite functions from objects to records:

Hp:O—f)Rc.

4.5 Loaded class cache
A loaded class cache is a finite function from L x CN to C:
LC=LxCN % C.

For lc € LC, we call elements of D(lc) loading requests, and elements of R (lc)
loaded classes.

Given Ilc € LC, we define the subclass relation <;. : C' x C' — B as the
least relation satisfying

¢ =l & ec=cd Vv ((ld(e),sup(c)) € D(lc) A le(ld(c), sup(c)) <iec)
Note that if (- - -, sup(c)) € D(lc) then sup(c) # nil, since nil ¢ CN. We write
c=<id & ctd A=,

The intuition behind the above definition is that if (ld(c), sup(c)) € D(lc),
then lc(ld(c), sup(c)) is the direct superclass of class ¢, and that the defining
loader ld(c) of class c is an initiating loader of the superclass.

The above definition immediately implies that given Ic € LC,

¢ = AN ezl = <
We define an upward closure relation clos : LC' — B by

clos(le) & (Ve € R(le). sup(c) # nil = (ld(c), sup(c)) € D(lc))
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Intuitively, if clos(lc) and ¢ € R(lc), then R(le) contains all direct and indi-
rect superclasses of c.
We define a subclass circularity relation circ : LC' — B by

circ(le) & Je,d € C.c=ied A ¢ =pee A c# .

Given lc € LC, we define a function allfnm,, : C — P, (FN) returning all
field names (declared or inherited) of a class, by

allfnm . (c) = U fam(c")

¢ R’
Given lc € LC, we define a function
fldSel;, : R(lc) x FN x CN — (R(le) x F) & {fail}
by

¢ 2 A fEfld(c) N (nm(f),ds(f)) = (fn, cno) A

(A" € C. 3f" € fld("). c=icc" <1 AN{nm(f), ds(f))=(nm(f'), ds(f"))) =
.ﬂd‘sellc(C?fn; Cng) = <C’7 f>7

(Ad € C,f e fld(c). c 21 A (nm(f),ds(f)) = (fn,cno)) =
fldSel,.(c, fn, cng) = fail.

If there is a superclass of class ¢ that declares the field f with the given name
fn and descriptor cng, then fldSel,. (c, fn, cng) = (¢, f), where ¢’ is the least
one among such superclasses.

Given lc € LC, we define a function

mthSel;. : C x MN x CN x CN — (R(lc) x M)W {fail}
by

¢ =21 A m e mth(c) A (nm(m),at(m), rt(m)) = (mn, cny, cng) A
(Ad" € C. Im' € mth(c").
¢ X1 < A (nm(m), at(m), rt(m)) = (nm(m'), at(m'), rt(m'))) =
mthSel;.(c, mn, eny, cng) = (', m),
(Ad € C,m € mth(c"). ¢ i A {nm(m), at(m), rt(m))=(mn, cni, cng)) =
mthSel;.(c, mn, ¢1, cng) = fail.

If there is a superclass of class ¢ that declares the method m with the given
signature name mn and types cn; and cng, then mthSel;.(c, mn, cny, cng) =
(c',m), where ¢’ is the least one among such superclasses.

4.6 Bytecode verifier

For the restricted set of JVM instructions used in this paper, bytecode veri-
fication is very simple. In particular, since there are no branches, there is no
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need to merge types at a program point where control flow merges. Each local
memory can be assigned with a single class name, and bytecode verification
can be computed through the straight line of code.

The results of bytecode verification are elements in the following two sets:

ST = (CN*)*,
SR =P,(CN x CN).

The first result assigns a type (which is just a class names) to each stack
position at each program point of the method. The second result is a set
of pairs of the form (cn,cn'), called subtype requirements. These pairs are
interpreted to mean that the class represented by the name c¢n must be a
subclass of that represented by the name c¢n’ for the typing of stack positions
to be valid.

Instead of directly defining a bytecode verifier that computes stack en-
try types assignable to the operand stack and the subtype requirements, we
give equations a bytecode verifier must satisfy. Figure 3 defines a relation
bev : C x M x ST x SR — B capturing equations on assignable stack entry
types and corresponding subtype requirements for a given method of a class.
The sequence psr € SR™ consists of sets of subtype requirements, each set for
a program point. The auxiliary function mksr : CN x CN — P,(CN x CN)
is used to construct singleton subtype requirement sets, as defined by

en = cn' = mksr(cn, en') = {},
en # en' = mksr(cen, en') = {{cn, cn')}.

At program point 0, the equation st|o = [nm(c), at(m)] requires that the
operand stack should consist of two elements: the first is the this object,
whose class name is nm(c), and the second is an argument, whose class name
is at(m); the equation psr|p = {} means that there are no subtype require-
ments here.

If program point p is a getfield instruction, the equation st|, = s+t
requires that that the operand stack should have an object at the top, from
which a field value is obtained; the equation st|,+1 = s+ cng requires that
the top of the stack hold a type of the field value; the equation psr|,+1 =
psr|p,Umksr(t, cn) requires that the class of the object at the stack top should
be a subclass of the class required by the instruction. Note that if ¢ = ¢n,
then no subtype assumption is created here.

The situation for a putfield or invokevirtual instruction is analogous to the
above. The operand stack for a putfield instruction is required to contain at
least two objects; one is to be assigned to a field of the other. The operand
stack for an invokevirtual instruction should contain at least two objects; one
is the this object of the method and the other is the actual argument.

The equation for a new instruction is straigtforward.

The operand stack for an areturn instruction should contain at least one
object as the result of the current method. The equation sr = psr|, U
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bev(c,m, st, sr) &
(3psr € SR™. |cd(m)| = |st| = |psr| A stlo = [nm(c), at(m)] A psrlo={} A
(VpeP.0<p<|cd(m)| =
(cd(m)|, = getfield(cn, fn, cno) =
Js € CN™. 3t € CN.
stlp =s+1t A stlps1 =s+cno A psr|p41 = psr|, Umksr(t, cn)) A
(cd(m)|, = putfield(cn, fn, cno) =
ds e CN*. 3t,t' € CN.
stlp=s+t+t A stlp+1=8A
psT|p+1 = psr|p U mksr(t, cn) U mksr(t', cno)) A
(cd(m)|, = invokevirtual(cn, mn, cni, cng) =
dse CN*. 3t,t' € CN.
stlp=s+t+t A stlp+1 =5+ cno A
pst|p4+1 = psr|p U mksr(t, cn) U mksr(t', cn1)) A
(cd(m)|p, = new(cn) =
ds € ON*. st|p =5 A stlpy1 =s+cn A psr|p41 = psr|p) A
(cd(m)|, = areturn =
dse€ OCN*. 3t € CN. st|, =s+t A sr = psr|, Umksr(t,rt(m)))))

Figure 3: Equations of bytecode verification

mksr(t, rt(m)) requires that the set sr is obtained from the value of psr
at the areturn instruction, where mksr(t, rt(m)) says that the class of the
result is required to be a subclass of the return class of the method. Note
that if ¢ = r¢(m), then no subtype assumption is created here.

We assume that all methods in the set M pass bytecode verification. In
this case, we use two functions

bevst : C x M — ST, bevsr:C x M — SR,

satisfying that
bev(e, m, bevst(c, m), bevsr(c, m))

to denote the results of bytecode verification.

4.7 Loading and subtype constraints
Loading and subtype constraints are formalized as finite sets in
Ct =P,(LxLx CN)U(Lx CN x CN)).

A loading constraint is a triple (I,1', cn) € L x L x CN, expressing that if
loaders [ and I’ load classes for class name cn, then the loaded classes must be
the same. The loading constraints here are essentially those defined in [14].

Using loading constraints, we formally define an equivalence relation

~:(LxCN)x(Lx CN)—B
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as the smallest equivalence relation satisfying
(I,LI',en) € ct = (l,en) ~¢ (U',cn).

A subtype constraint is a triple (I, cn, cn') € L x CN x CN, expressing
that if loader [ loads a class for class name cn, and another class for class
name cn', then the loaded class for class name cn must be a subclass of
loaded class for class name cn/. A subtype constraint is actually a subtype
requirement associated with a loader.

To model the subtype requirements modulo ~.;, we define for each ct €
Ct a relation

<e:(LxCN)x(LxCN)—B

as the smallest transitive relation satisfying

({(Iyen) ~c (U'yen'y = (,en) < (', en’)) A
({I,cn,en’y € ct = (l,en) <q (L, cen')).

For each lc € LC, we introduce a consistency-check relation c¢ss;. : Ct — B,
checking if the relations ~.; and <. are satisfied or not on all loaded requests
in lc. Formally the relation is defined by

cssie(ct) &

Y(l, en), (I', en') € D(lc).
((I,en) ~c (I',en'y = le(l,en) =
((Iyen) < (U'yen’y = le(l,en) 24l

The key of this consistency-checking relation is that it does not check those
requirements on classes that have not been loaded. This means that a subtype
requirement generated by bytecode verification are not checked, until the
referenced classes get loaded during execution.

4.8 States

Our type safety proof is based on a formalization using a state transition
formalism. In this section we describe the state space of the transition system.
We leave some details of the state abstract (i.e., we only state the properties
we make use of), in order to make the formalization simpler and more general.

The state has a global component consisting of the heap and internal
data structures regarding loaded classes, namely the loaded class cache and
loading constraints. The state also has a component modeling the execution
stack of a single thread. In our simplified JVM we only consider a single
thread of execution.

The global states are of the form

GStt = Hp x LC x Ct.
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We formulate a set of all operand stacks as
0s =V
Furthermore, we introduce a set for frames as

Frm=CxM x P x OS.

A frame (¢, m, p, 0s) indicates that the p-th instruction in the code of method
m of class ¢ is about to be executed, and that os is the current state of the
operand stack. Recall local variables are not part of our formalization.

We introduce (method call) stacks as sequences of frames:

Stk = Frm”™.
Finally (method call) stacks and global states constitute (execution) states.

Stt = Stk x GStt.

4.9 State transitions

A transition system is a pair (X, 7) where X is a set of states and 7 C X x X
is a transition relation between states (x72' means that from state x we can

move to state z'). In our formalization we make use of a transition system

(Stt,=—>) and a family of labeled transition systems (GStt, l:ab>> with lab €

Lab. In substance, the unlabeled transition system captures the execution of
JVM instructions, while the labeled ones capture activities taking place in
the core of the machine.

The labeled transitions are

LD(l,ecn) RC(c,cnn) RF(c,cn,fn,cng) RM(c,cn,mn,cny,cng)
— R — R 4 R —

C GStt x GStt,

where
l,eny € L x CN,

(
(¢, cnn) € C x CNN for CNN = CN W {nil},
(¢, cen, fn, cng) € C x CN x FN x CN, and

(e, en,mn, eny, cng) € C x CN x MN x CN x CN.

The LD transitions formalize class loading, the RC transitions class reso-
lution, the RF transitions field resolution and the RM transitions method
resolution.

Transitions are defined by means of schematic rules of the form &. Each
rule contains a set a of premises and a conclusion 3, expressing that if all
premises hold, then the conclusion holds. Conclusions assert transitions be-
tween states. The unlabeled and labeled transition relations are defined as
the smallest relations that satisfy all the rules.

For the sake of readability, when we write f(x) in a rule, where f is a
partial function, we regard the condition & € Dom(f) as being implicitly
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present as a premise in the rule. Later in the paper we will prove that these
definedness premises are actually unnecessary, since they hold whenever other
premises all hold.

This paper follows the convention that the variables are written using
lower-case letters and stand for elements of the sets denoted by their upper-
case counterparts. For example, o always stands for an element in O, and v
in V. Note that v may be equal to null but o may not.

Figure 4 describes state transitions for the JVM instructions except invokevirtual.
Note that these rules have a nested form in which labeled rules are “invoked”
as preconditions that bind primed variables which are then used to define the
new state in a semantically obvious and consistent way. Also note that the
value of the parameters for labeled transitions are determined from the state
of the JVM in the originating state.

cd(m)|, = getfield(cn, fn, cno)

(hp, lc, ct)RF(C’gn’mO)(hp', Ic', ct')
cl(o) = lc'(ld(c), cn)

GF
(stk + {c,m,p + 1, 05 + hp'(0)(fn)), hp', Ic', ct')
cd(m)|, = putfield(cen, fn, cno)
(hp, lc, ct)RF(C’gn’mO)(hp', I’ ct')
tl(0) <o 1 (1d(c), en) -

(stk + {c, m,p, 0s + 0 + v), hp, lc, ct) =
(stk + {c,m,p + 1, 08}, hp'[o — hp'(0)[fn —> v]], I, ct’)

ed(m)|p = new(cn)

(hp, lc, ct)Rc(égn)(hp', I, ct')

0€ 0 — (CUD(hp"))
cl(o) = Ic'(ld(c), cn)

NE
(stk + (c,m, p, 0s), hp, lc, ct) = (NE)
(stk + (c,m,p + 1,08 + 0), hp'[o = crRc;r (cl(0))], Ic', ct')
cd(m)|p = areturn (RE)

(stk +(c',m',p’, 0s') + (c,m, p, 05 + v), hp, lc, ct) =
(stk + (c',m',p’, 0s' +v), hp, lc, ct)

Figure 4: Transition rules for the JVM instructions except invokevirtual

Rule (GF) is for a getfield instruction. Intuitively, the JVM first resolves
the field name referenced in the operand of the getfield by “invoking” the
labeled transition RF to (if necessary) update the global state. Then the exe-
cution updates the current program counter and operand stack. The premise
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cl(0) = lc'(ld(c), en) is a type-safety check, requiring that the class of the
object o in which the field should be found, is a subclass of the class resulting
from resolving name c¢n from the defining loader Id(c) of the current class ¢
— such class name is resolved as part of field resolution, so it is present in the
loaded class cache Ic¢" (see below). The subclass relation <; depends on the
currently loaded classes, i.e. on I¢'. In the conclusion, hp'(0) is the mutable
state of the object o in the heap hp’, and hp'(0)(fn) the value of the field
with the name fn in the mutable state.

Rule (PF) is for a putfield instruction. It is similar to rule (GF) except
that it takes both an object o and a value v as arguments, and puts the value
v in the field with the name fn in the mutable state of the object o in the
heap hp'.

Rule (NE) is for a new instruction. Intuitively, it first resolves (if nec-
essary) the class name referenced by the new by the calls the procedure of
class resolution represented by the labeled state transition, and then selects
a new object o with the required class I¢'(ld(c), cn), and finally extends the
heap hp' with an initial mutable state for the new object. To describe the ini-
tial mutable state, an auxiliary function crRe;. : C — Rc is defined for each
lc € LC by

crReic(c) = {fn — null|fn € allfnm,.(c)}.

Note that o ¢ C. Since cl(0) = I¢'(ld(c), en), Ic'(ld(c), en) # Cls.

Rule (RE) is trivial.

The rules in Figure 5 describe state transitions for invokevirtual instruc-
tions. Rule (IV) is for all invokevirtual instructions that do not invoke the
dfCl method in the system class CILd. Intuitively, the transition first calls
the procedure of method resolution, and then dynamically selects a method
for the execution. The premise cl(0) < Ic'(ld(c), cn) is a type-safety check,
requiring that the class of the object 0 upon which the method is invoked,
is a subclass of the class resulting from resolving name cn from the defining
loader Id(c) of the current class ¢ — such a class name is resolved as part of
method resolution, so it is present in the loaded class cache Ic' (see below).
Note that in reality the this-object and the actual parameter should be put
in some local variables. Here we put them in the operand stack, since our
formalization does not consider local variables.

In reality, the dfC1 method in the system class CILd is a final method. The
argument type of the dfC1 method is a byte array. Since we do not consider
modifiers of methods, we simply assume that the code in consideration does
not contain any overriding methods for the dfC1 method. Since we do not
consider byte arrays, we assume that the argument type of the dfC1 method
has the name 0bj.

Rule (DC) describes the invocation of the dfCl method in the system
class CILd. Since the dfC1 method is native, we ignore any actual code for it,
and use a function and a relation to explicitly model the aspects of the object
creation. The function is the previously defined function crRe, describing the
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cd(m)|p = invokevirtual(en, mn, cn1, cno)
(hp, lc, ct)RM(C’mgicnl’cnO)(hp', Ie', ct')
Ic'(ld(c), en) 2 CILd V {mmn,cn1, cno) # (dfC1l,0bj,Cls)
cl(o) =y 1c'(ld(c), cn)
mthSel;.r (cl(o0), mn, cn1, cno) = (¢’, m')
stk + (c,m, p, 0s + 0+ v), hp, lc, ct) =
( ) 7p7 ) p’ )
(stk + (c,m,p + 1, 08) + (c',m', 0, [0,v]), hp', I, ct)

cd(m)|p, = invokevirtual(cn, d£C1, 0bj, Cls)

<h,p, lC, ct>RM(c,cnéfC>l,[]bj,Cls) chls)<hp,, lcl, Ct’)
Ile'(ld(c), en) = CILd
Ic'(Id(c),Cls) = Cls
erClyy (1,¢")
(hp', 1, ct") (hp" 1c", ct")
addLe(lc",l,nm(c'),c) = Ic"
—cire(lc")
CS8S e ((lddCth/H (Ct”, C,))
(stk + (¢, m, p, 0s + 1+ o), hp, lc, ct) =
(stk + {c,m,p + 1,08 + '), hp"[¢ = crRcie (Cls)], Ic", addCtin (ct”, c'))

RC(c,:suf(c )

(DC)

Figure 5: Transition rules for the invokevirtual instruction

creation of an initial mutable state for an object of class Cls. The relation is
crClyp : L x C — B for each hp € Hp defined by

erClpp(l,e) & ce (C—=D(hp)) A L=1d(c).

The relation describes the creation of a class object with a given loader. Note
that since ¢ € C, cl(c) = Cls.

For convenience, we introduce more functions for the description of rule
(DC). A function addLc : LC x L x CN x C — LC ¥ {fail} is defined by

(I, en) &€ D(lc) A

((ld(c), sup(c)) € D(le) = allfnm, (lc(ld(c), sup(c))) N fam(c) = 0) =
addLc(le,l, en,c) = le[(l, ecn) — ]

(I, en) € D(lc) V

((ld(c), sup(c)) € D(lc) = dallfnm, (lc(ld(c), sup(c))) N fam(c) # 0) =
addLc(le,l, en,c) = fail

Intuitively, the function extends a loaded class cache only when the added
loading request does not already exist and causes no field hiding; otherwise
it yields a failure. Note that if we allowed field hiding, we would not be able
to model the mutable states of objects as finite functions from field names to
values.
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A function bevCt : C' — Ct, which transforms all subtype requirements of
a class generated by bytecode verification into a set of loading constraints, is
defined by

bevCt(c) = {(ld(c), cn, en') | m € mth(c), (cn, cn')y € bevsr(c,m)}.

In Java, corresponding argument and return types of an overriding and
overridden method always have identical names. But identical class names
referenced in two classes do not necessarily imply identical loaded classes.
To solve the problem, loading constraints on names of argument and re-
turn classes of overriding and overridden methods with respect to the corre-
sponding initiating loaders are introduced [14]. Formally we define a function
ovrCty. : C — P, (L x L x CN) for each lc € LC, which generates a set of
loading constraints for a given class as follows:

ovrCt.(c) = {(ld(e), ld(c'), at(m)), (ld(c),ld(c"), rt(m)) | m € mth(c) A
mthSel.(lc(ld(c), sup(c)), nm(m), at(m), rt(m)) = (¢, m’)}

Finally, we define a function addCt;. : Ct x C — Ct for each lc € LC by
addCtic(ct,c) = et U bevCi(c) U ovrCtc(c)

Rule (DC) first calls the procedure of method resolution represented by

RM(c,cn,d£C1,0bj,Cls . RC(c,Cls
(e = ) and that of class resolution represented by (é> ). The

condition I¢'(Id(c), cn) < CILd ensures that the invocation is performed on
a real loader. The condition Ic'(Id(c),C1ls) = Cls ensures that the return type
of the dfC1 method is Cls, as expected. The condition ¢rCly,, (I, ¢') describes
the selection of an object reference ¢’. The expression crRey (Cls) in the
resulting state represents the initial mutable state for the new class object.

Note that the relation ¢rCly,, (1,¢') is a simplification of reality, since it
does not cover the fact that the class object ¢’ should actually be built from
the actual argument o. In reality, the fields, methods and superclass of the
class object ¢’ should actually be given by the argument o. Although there are
no problems to formalize them, these details are irrelevant to the properties
we are interested in this paper.

The creation of a class object includes resolution of the superclass of

the object class. The labeled transition RC(C’:M?(C ) models this. This step is

crucial in ensuring that the loaded class cache in the resulting state is upward
closed.

The fact that the expression addLc(Ic”, 1, nm(c'),c") does not yield a fail-
ure implies a requirement in the JVMS (Section 5.3.5) that if the creation
process starts with a given defining loader and a class name, then no class
objects can be loaded for the loading request consisting of the defining loader
and the class name. It also formally rules out field hiding, which we do not
consider in the paper.
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The meaning of the conditions —circ(lc"') and css;. (addCtyn (ct”, "))
is straightforward.

The rules in Figure 6 define labeled transitions. Rules (RC1) and (RC2)
describe the procedure of class resolution. Rule (RC1) is trivial. Rule (RC2)
intuitively says that resolution of a class name cn from a class ¢ first calls
the loading of a class for the name cn using the defining loader ld(c) of ¢ as
the initiating loader.

Rules (LD1) and (LD2) describe the procedure of loading. Rule (LD1)
says that no new loading will be started if the loaded class cache records the
loading request.

(I, en) & D(lc)

mthSel.(cl(l),1dC1, Str,Cls) =
(hp lc Ct)RC(c ,8tr) RC(:cgls)
(Ic! (ld( ), Str), Ic'(Id(c), Cls)) =

cd(m)|, = areturn
CSS1c {(I,cn)y—c'} (Ct”)

(¢, m)

(hp',1c', ct')

(Str, Cls)

"

- (RC1)
(hp, lc, ct)Rcég"D(hp, le, ct)
(hp, lc, ct)LD(@’C")(hp', Ic', ct') (RC2)
(hp, Ic, ct)RC(c C")(hp', Ic', ct')
(I, en) € D(lc)
(LD1)
(hp,lc, ct) => bR C")(hp, le, ct)

([{e, m, 0, L, str(cn)])], hp'[str(cn) — {}], I, ct') =
<[<c7 m7p7 0s + c’)]’ hp”’ lc,,7 Ct,

LD(l,cn)

(hp,lc, ct) ="

hp" 1" {{l, en) — '}, ct")

(LD2)

)
(hp, lc, ct) ey C")(hp Ie', ct')
fidSel,.. (Ic' (1d(c), cn) fn,eno) = (¢, f)

essier (et U {{ld(c), 1

d(c), eno)}

(hp, lc, ct)RF(C’g;n’mO)

(hp, lc, ct)Rc(éﬁ")(hp', I, ct
mthSel;.r (Ic'(Id(c), cn), mn,
cssier (et U {(ld

(hp',1c’, ct" U {(L

)
d(c), 1
)

eny, cno) =

(RF)

d(¢'), eno)})

(¢, m)

(¢), ld(c )%)IOSJSl})

) RM(c,cn,mn, cn1 cn0)<

(hp,lc, ct

b, Ie!, et U {(1d(c), 1d(), eny) |0 < j < 1)

(RM

Figure 6: Transition rules for operations in the JVM core
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Rule (LD2) says that the loading is realized as an execution of the 1dC1
method of the loader if the loaded class cache does not record the load-
ing request, provided that such a 1dCl method can be found. Intuitively
one may expect the following additional premises in the rule to ensure that
mthSel;c(cl(l),1dC1, Str,Cls) yields a 1dC1 method of a loader.

— dm € mth(CILd). nm(m) = 1dC1 A at(c) A rt(c), i.e. that class CILd
declares a 1dC1 method.
— cl(l) %,.CILd, i.e. that the object [ is really a loader.

The first condition is an assumption about the system class. Although the
second is important in ensuring that our transition has the desired semantics,
it can be derived in the context we are interested anyway (see Section 5.2).
In any case, both conditions are not essential to type-safety.

The condition (Ic¢'(ld(c),Str), lc'(Id(c),Cls)) = (Str, Cls) in rule (LD2)
ensures that the 1dC1 method has the correct argument and return type. In
the transition =>*, the expression str(cn) represents a string object for the
string cn, the class object ¢ the loaded class object. The empty record {} in
the heap extension str(cn) — {} corresponds to the fact that a string has no
mutable state. In reality a 1dC1 method typically calls the dfC1 method to
create a new class object.

The expression ¢ {{l, cn) — ¢'} in rule (LD2) formalizes a tricky point: if
the loaded class cache Ic" records the loading request (I, ecn), then it remains
unchanged. In other words, if it is detected at the end of the loading that the
loading request has been loaded and thus recorded by the loaded class cache,
the loading will ignore the class object ¢’ and yield the recorded loaded class
as the result.

Rules (RF) and (RM) describe the procedures of field and method reso-
lution. They are straightforward.

Since the transition relations are in fact the smallest relations generated
by finitely many applications of the rules, a transition holds if and only if a
finite proof tree can be built where the transition is the root and all leaves are
non-transition conditions. Infinite proof trees correspond to non-terminating
execution in practice.

4.10 An example

Consider the bytecode in Section 2.5. Assume that execution reaches a state
(-+-+(C,m,pl,---), hp, lc, ct) at program point py, where {[1,D), (I1, T}, (I, T)
¢ D(lc). Then a transition for the new(D) is determined by the proof tree in
Figure 7, where ellipses denote omitted details. In the figure, since (l;,D) ¢
D(le), (I;,D) € D(lc") and thus rule (LD2) is applied.

By a similar proof tree, we can determine the transition for new(T) at
program point ps. Since (l;, T) is not in the domain of the loaded class cache
at program point po, the proof tree contains an application of rule (LD2),
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({MyLd, 1dC1,0,l1, str(D)])], :hp'[str(D) = {}, I, ct’y =~

({(MyLd, 1dCL,---,---+ D], hp", Ic", ct") (LD2)
(hp, le, ct) "2 (hp  1c" {(11,D) — D}, ct”) (RC2)
(hp, le, ct)“ZS” (hp 1" {1y, D) + D}, ct”) ~E)

<' iy (C)m)p]-: o ')) hp) lC, Ct> —
(- +(C,m,p2,-+0),hp"[o— -], Ic"{{l,D) — D}, ct")

Figure 7: Proof tree for new(D) at p:

which causes the item (I3, T) — T3 to be added to the loaded class cache at
program point ps.

Now assume that execution has finished the invokevirtual(D,n, T, void) at
program point ps and reaches a state

(- +(Comyps +1,---) + (D, n,r1,[0,01]), hp, lc, ct).

It is easy to see that the proof tree for the transition contains an application
of rule (RM), which introduces the loading constraint (l1,l2, T) in the loading
constraint set ct. By our assumption above at program point py, (l2,T) &
D(lc). This means that the loading constraint (I1,l, T} is not violated at this
moment.

Assume execution reaches the getfield at program point r5. Since (l2, T) is
not in the domain of the loaded class cache, the proof tree for this instruction
would include an application of rule (LD2), which on one hand would require
the item (l,T) — T to be added to the loaded class cache, but on the
other hand check the css relation ensuring that no loading constraints are
violated with respect to the new loaded class cache. Since T} # T3, the loading
constraint (l1,l2,T) is violated. Thus such a proof tree does not exist. That
is, no transition fires for this instruction.

5 Safety properties

5.1 Valid states and real loaders

We are not interested in all possible states and global states, but only those
that satisfy some constraints, which we call wvalid states and walid global
states. In this section, we will formally define what valid states and valid
global states are.

First of all, we are interested only in those states where the heap is well-
formed with respect to the loaded class cache in the following sense:

— The class of each object in the heap is a loaded class in the loaded class
cache.
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— Each object in the heap has the required set of field names.

— Each object in the heap contains only field values that are either null or
objects in the heap.

— Each class object in the heap is in the loaded class cache.

Formally, we define a relation wfm,. : Hp — B for each given lc € LC by

wfmlc(hp) <
(Vo € D(hp).
cl(o) € R(le) A
D(hp (o)) = allfom (cl(0)) A
(¥fn € D(p(0)). hp(0)(fn) = null v hp(0)(fn) € D(hp)) A
(0eC = o€ R(k))).

Second, we are interested only in those loaded class caches that are well-
formed in the following sense:

— They are upward-closed.

— They are not subclass-circular.

— They record the defining loaders of all loaded classes as initiating loaders.

— They contain only those loaded classes on which the function Id yields
real loaders. (Recall that for a given class object ¢ € C, the value ld(c)
is not necessarily a real loader with respect to the loaded class cache in
the execution.)

— They do not allow field hiding,.

Formally, we define a relation wfm : LC' — B by

wfm(le) <
clos(lc) N —cire(le) A
(Ve € R(lc).
cl(ld(c)) 2ic CILd N
(ld(c),nm(c)y € D(lc) A le(ld(c),nm(c)) =c A
(sup(c) # nil = allfnm,(lc(ld(c), sup(c))) N fam(c) = B))
Third, we are interested only in those loading constraint sets that are
consistent, and contain all loading constraints for argument and return classes
of overriding and overridden methods, and all loading constraints generated

from the subtype requirements of all loaded classes. To express this, we define
a relation wfm,, : Ct — B for each Ic € LC by

wfmy,(ct) < essic(ct) N (Ve € R(le). ovrCtic(c) C ct A bevCi(c) C ct)

We are interested only in those states where the (method call) stack is
well-formed with respect to the global state in the following sense:

— In each frame of the (method call) stack,
e the current class has been loaded into the loaded class cache,
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e the method is declared in the current class,

e the program point is valid in the method, and

e the operand stack contains only null or objects in the heap.

— For any two successive frames of the (method call) stack,

e the program point in the first frame is the next program point of
an invokevirtual instruction invoking the method in the second frame,
and

e the loading constraint set contains a constraint ensuring that the
loaders in both frames will load the same return class for the invoked
method in the second frame.

The second group of conditions mean that method calls are the only reason
that causes a method call stack to grow, and that the corresponding caller
and callee always load the same return class for the method. Actually the
corresponding caller and callee also always load the same argument class for
the method, but we do not use that invariant in the proof.

Formally we define a relation wfmp,, ;. ., : Stk — B for each (hp, Ic, ct) €
GStt, covering the above points:

wfmhp,lc,ct(Stk) At
(V{e,m,p, 0s) € stk.
c € R(le) A
m € mth(c) A
0< p < led(m)] A
(veos = (v#null = veD(hp)))) A
(v<cl7m,7pl7 Osl>7 <C7m7p7 Os> E Frm'
e (d,m! p' 08"y + (¢, m, p, 08y + - = stk =
p'>0A
(3en € CN. cd(m')|pr—1 = invokevirtual(cn, nm(m), at(m), rt(m))) A
(ld(c),ld(c), rt(m)) € ct)

For each lc € LC and ct € Ct, we define a relation
glc7ct : (LX CN) X (LX CN) — B

covering <.; and the order induced by <., formally as the smallest transitive
relation satisfying

(<la Cn) Sct (lla Cn’) = <la Cn> glc,ct <lla CH’)) A
(I, en), (I, en’) € D(le) A le(l,en) Zicle(l'sen') = (I, en) <4, o (I, en')).

We define a conformance relation cfm;, ., :V x L x CN — B for each
lc € LC and ct € Ct by

cfmlc,ct(v,l,cn) < (v#null = (ld(cl(v)), nm(cl(v))) Lie.et (I, cn))

Intuitively, the conformance relation ensures that if a value v € V' is not null,
then its class is or will be a subclass of the loaded class for name ¢n and
loader [ after the classes are loaded.
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To understand the motivation behind the conformance relation, let us
consider a state (stk, hp, lc, ct) such that some operand stack in stk contains
a value v. Assume that wfm,.(hp), wfm(lc), wfm,.(ct) and wfmy, ;. ..(stk),
which imply that

(1 (cl(v)), nm(cl(v))) € D(Ie) A le(ld(cl(v)), nm(cl(v))) = el(v) A cssie(ct).
In this case the relation

(1d(cl(v)), nm(cl(v))) <, o0 (L en)
actually means that if (I, cn) € D(Ic), then

le(1d(cl(v)), nm(el(v))) Ziele(l, en)

The tricky point here is the condition (I, en) € D(lc). In other words, if no
class has been loaded for the loading request (I, cn), the value v can be of
any class.

Now we define a relation c¢fm,, ., : Hp — B for each lc € LC and ct € Ct
to check the conformance of heaps:

Cfmlc7ct(hp) A
Yo € D(hp). Vfn € D(hp(0)). Veng € CN. Ve e C.Vf € F.

ﬂdsellc(d(o)afna CnU) = <C, f) = Cfmlc,ct(hp(o) (fn)7 ld(C), C’no)

The relation ensures that the content Ap(0)(fn) of a field of an object in a
heap always conforms to the name cng of the class of the field with respect
to the loader ld(c) of the class where the field is actually declared. Note that
¢ is either c¢l(0) or a superclass of it.

We define valid global states using a relation vld : GStt — B defined by

old(hp, lc, ct) < wfm.(hp) A wfm(lc) A wfm(ct) A cfmy. . (hp)

For convenience, we lift the first relation ¢fm above to sequences of values
and class names as follows:

Cfmlc,ct([vh"'7vn]7l7[cn17"'7cnk]) < n=kA ( /\ Cfmlc,ct(vi7l7 an))
1<i<n

Furthermore, we lift the last relation ¢fm to (method call) stacks, and
define cfm, ., = Stk — B by

cfmlc7ct(stk) & Ye,m,p, o0s) € stk. cfmlc7ct(os,ld(c), bevst(c, m)|p)
Now we introduce valid states via a relation vld : Stt — B defined by

old(stk, hp, lc, ct) < old(hp,lc, ct) A wfmp, 1o o (stk) A cfmy, ., (stk)
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The transition step = preserves validity if whenever

(stk, hp, lc, ct) = (stk', hp',Ic', ct')

and vld (stk, hp, lc, ct), vld (stk', hp',Ic', ct'); the transition step dob preserves
validity if whenever

(hp, lc, ct) Lab (hp',Ic', ct')

and vld (hp, lc, ct), vid(hp', lc’, ct).
A labeled transition step of the form

(hp, lc, ct) LD&;M (hp', Ic', ct')

is said to be associated with a real loader if ¢l(l) <;. CILd. A labeled transition
step of the form

RC(c,cn RF(c,cen,fn,cng RM(c,cn,mn,cni,cng
(c,cn) (or ( )or ( )) (

(hp,lc,ct) = hp', I, ct')

is associated with a real loader if cl(ld(c)) <. CILd.

5.2 The properties

This section formulates three theorems. The first is simple.

Theorem 1. If stt = stt’, and stt is valid, (or gstt Lol gstt’', and gstt is

valid,) then for all stt" = stt"" and gstt" Lo, gstt'"" in the proof tree of

stt = stt’ (or gstt dob, gstt', respectively), stt”, stt"', gstt" and gstt'"" are
all valid.

The third theorem states that all those objects used as loaders in the state
machine are really loaders. For example, a direct consequence of the theorem
is that in the applications of rule (LD2), the condition cl(l) <;.CILd holds.

Theorem 2. In any proof for stt = stt’, if vld(stt) then all labeled transi-
tions in the proof are associated with a real loader.

As mentioned before, our transition system formalizes a defensive JVM,
which performs runtime type safety checks to ensure type safety. Formally, the
premises and the pattern of the input state in the consequence of a transition
rule together determine when the transition can fire. But the pattern and
individual premises play different roles in modeling the execution. Concretely,
a group of premises and the pattern determine the selection of transition
rules; a second group of premises rule out possible runtime errors; a third
group of premises express some “purely defensive” conditions, which always
hold in the context we are interested (i.e. in valid states), provided that all
other premises hold; a fourth group of premises formulates the selection of
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some objects, fields or methods, which always hold for some objects, fields or
methods. These groups of premises are not necessarily disjoint.
For example, in rule (GF) the top frame in the input state must be of the
form
stk + (¢, m, p, os + o),

which implies, among others, that the transition cannot fire on an operand
stack with null on the top. The premise

cd(m)|, = getfield(cn, fn, cng)

requires that the rule can be selected only when method m has a getfield
instruction at program point p. The premise

(hp, lC, Ct>RF(c,cn7 n,cno)

(hp',Ic', ct')
ensures the success of field resolution, and thus rules out runtime errors. The
premise cl(0) = l¢'(Id(c), en) is a purely defensive condition ensuring type
safety. The condition always holds for a valid input state in the consequence,
provided that all other premises hold (see below).

In rule (NE), the premise

0€ 00— (CuD(hp"))

expresses a selection of a non-class object o. Such an object always exists,
since the set O — (C' U D(hp")) is a countable set.

In rule (IV), the premise cl(0) <. Ic'(Id(c), cn) is a purely defensive con-
dition ensuring type safety. The premise

mthSel;r (Ic'(cl(0), mn, cny, cng) = (¢',m').

expresses the selection of a method. The selection actually never fails at this
stage if all other premises (including the transition premises) of the rule hold.

Recall that we assume that the definedness premises for all applications
of partial functions are always present in the rules. All these premises are
“purely defensive” conditions ensuring type safety.

The second theorem explicitly gives all conditions the JVM need to check
in order to move from a valid state in executing a JVM instruction. It includes
a form of type-safety. From it, one can realize that it is unnecessary for
the JVM to explicitly check the following pure defensive conditions for type
safety.

— The definedness conditions for all applications of partial functions in each
rule.
— The premise cl(0) <. lc'(ld(c), cn) in rules (GF), (PF) and (IV).

Theorem 3. Let stt = (stk + {c,m, p, 0s), hp, lc, ct) be a valid state. Let any
of the following conditions be true:
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1. cd(m)|, = getfield(cn, fn, cng) A

A(np',Ic’, ct'). (hp, lc, ct)RF(qm:’é"’C"U)(hp/, Ie', ct');
2. ¢d(m)|, = putfield(¢cn, fn, cng) A
A(np',Ic’, ct'). (hp, e, ct)RF(qm:’é"’C"U)(hp/, Ie', ct');

cd(m)|, = new(en) A I(hp',lc', ct'). (hp,lc, ct)Ran)(hp', Ie', ct'y;

cd(m)|p, = areturn A stk #[];
cd(m)|, = invokevirtual(cn, mn, cny, cng) A
(mn, cny, cng) # (d£C1,0bj,Cls) A

A(hp', Ic', ct'y. ((hp, lc, ct)RM(C’Cnﬂn:nSmhmo)(
Ic'(ld(c), cn) 4 CILd);

6. c¢d(m)|, = invokevirtual(cn,d£C1, 0bj,Cls) A
Anp', Ic', ct’), (hp", 1", ct"), !, 1", 1, 0.

((hp, lC, ct>RM(c7cn£}>l,Ubj7C15) RC&(}IIS)
Ic'(ld(c), en) <y CILd A
Ic'(ld(c),Cls) = Cls A

crClyy (I,¢) A

(hp', Ic, ct’)RC(cg)(CI))(hp", Ile", ct"y A
addLe(lc” 1, nm(c'),c') = Ic"" A
—cire(le") A

csser (addCtygn (et ') A

stk = stk' + 1+ o.

Then there exists stt’ € Stt such that stt = stt’.

hp',lc', ct') A

(hp',lc', ct'y A

5.3 Some useful lemmas

Lemma 4. — If fldSel, (c, fn, cno) = (¢, [}, then ¢ X;.c’ and fn € allfnm,.(c).
— If mthSel;.(c, mn, cny, cng) = (', m), then c <;.c'.
— In both cases above, if ¢ # ¢, then ¢’ € D(lc).

Proof. Directly follows from the definitions of <., fidSel,,, allfnm,; and

mthSel;.. O
Lemma 5. If (hp, lc, ct)LDé;n)(hp', Ic', ct'y, then (I, cn) € D(Ic").

Proof. Directly follows from rules (LD1) and (LD2). O
Lemma 6. If (hp,Ic, ct)ROgn)(hp', Ic', ct'), then (ld(c), cn) € D(Ic").
Proof. Directly follows from rule (RC2) and Lemma 5. O

Lemma 7. If (hp,lc, ct)RF(c’cn’ neno)
(ld(c), cn) € D(Ic") A
(3¢ € C. 3f € F. fidSel, . (Ic'(ld(c), cn), fn, cno) = (', f) A (ld(c),ld(c), cno) € ct') A
fn € allfnm,. (I¢'(ld(c), cn))

(hp',Ic', ct'y, then
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Proof. Directly follows from rule (RF) and Lemmas 4 and 6. O

Our simplification that no field hiding is present has a consequence as
stated in the following lemma.

Lemma 8. Assume that a loaded class cahce lc satisfies that
clos(lc) N (Ve € R(le). allfnm (lc(ld(c), sup(c))) N fam(c) = 0).
If there are c,c’,c", fn, cn and f such that
¢ =i N fldSel, (¢, fn,cn) = (", f)
then fldSel; (¢, fn, cn) = (", f).

Proof. The case where ¢ = ¢’ is trivial. In the case where ¢ # ¢/, since ¢ <.,
¢, ¢ € R(lc), and the proof follows from the given conditions. O

RM(c,cn,mn,cn1,
> (e cngmu cn0)<

Lemma 9. If (hp,lc, ct hp',lc', ct'), then

(ld(c), cn) € D(Ic") A
(3c' € C. Im' € M. mthSel; (Ic'(ld(c), cn), mn, ecny, cng) = (c',m') A
(ld(e), ld(c"), en1), (ld(c), ld(c"), cno) € ct')
Proof. Directly follows from rule (RM) and Lemma 6. O

The next lemma says that the global state expands only along with the
execution in a certain sense. Note that we do not consider garbage collection
in this paper.

Lemma 10. If

(stk, hp, lc, ct) = (stk', hp', Ic', ct') or
(hp, lc, ct) Lo, (hp',lc', ct') for lab € Lab,

then D(hp) CD(hp') A lc Clc" A et C ct'.

Proof. Follows by induction on the proof trees of applications of transition
rules. O

The following lemma formally states how loading constraints ensure that
overriding methods always have the same argument and return classes.

Lemma 11. If wfm, (ct), then
Ve, d € R(le). Ym € mith(c). Ym' € mth(c').

¢ =21 A nm(m) =nm(m') A at(m) = at(m') A rt(m) = rt(m') =
(ld(c), at(m)) ~¢ (ld(c'),at(m")) A (ld(c),rt(m)) ~q (ld(c),rt(m"))
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Proof. Follows from an induction on the length of the relation ¢ <;.c’, using
the definition of wfm, (ct). O

The following lemma formally states how the consistency and conformance
relations work together to ensure a subclass relation.

Lemma 12. If

cfmye (0,1, en) A (I, en) € D(le) A cessie(ct) A
(ld(cl(o)), nm(cl(0))) € D(le) A le(ld(cl(o)), nm(cl(0))) = cl(o),

then cl(o) <i.lc(l, cn).

Proof. Follows directly from the definitions of ¢fm;. o4, <. 4 Sie and cssic.
O

5.4 The premises for type safety and definedness

The condition cl(0) <. Ilc'(ld(c), cn) in rules (GF), (PF) and (IV) is implied
by other conditions for valid states. Now we state a lemma for rule (GF),
which implies this. We omit the lemmas and proofs for rules (PF) and (IV),
since they are completely similar.

Lemma 13. For rule (GF), if vld((stk + (c,m, p, 0os + o), hp, lc, ct)) and the

» RF(c,cn,fn, )
transition step (hp, lc, ct) (c gn Cno)(hp', Ic', ct') holds and preserves valid-
ity, then

Cfmlc’7ct’ (07 ld(C), Cn) A

(ld(c), en) € D(Ic') A

(3¢ € C. 3f € F. fidSel,.(Ic'(ld(c), cn), fn, cng) = (', f) A
(ld(e),ld(c), eng) € ct') A

fn € allfnm, (Ic'(ld(c), en)) A

o€ D(hp") A fneD(hp'(0)) A cl(o) Zylc'(ld(c), cn).

Proof. Since vld(stk + (¢, m, p, 0s + 0), hp, lc, ct), there are s,t such that
bevst(c,m)|p = s+t A cfmy, ,(0,1ld(c),1).
By Lemma 10, c¢fm;. .4 (0,1d(c),t). We distinguish between two cases:
— If t = cn, then ¢fm;y .4 (0,ld(c), cn).
— If t # cn, by the definition of bevsr(c,m), (t,cn) € bcvsr(c,m). Since

wfmy,(ct), (ld(c),t, cn) € ct. By Lemma 10, (ld(c),t,cn) € ct’. Thus
cfme v (0,1d(c), cn).
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Thus we always have that cfm;. .. (o,ld(c), cn).

Since Uld(hp, le, Ct) and RF(c,cn,fn,cng)
By Lemma, 7,

preserves validity, vld(hp', Ic', ct').

(ld(c), en) € D(Ic") A

(3¢' € C. 3f € F. fldSel,, (Ic'(ld(c), cn), fn, eng) = (¢, f) A
(ld(c),ld(c"), cno) € ct') A

fn € allfnm, (Ic'(ld(c), cn))

Since wfmy,, ;. .+(stk + (c,m,p, 05 +0)), 0 € D(hp). By Lemma 10, o €
D(hp"). Since wfm,,(hp) and wfm(lc), we have that

cl(o) € R(lc), (ld(cl(0)), nm(cl(0))) € D(lc) and le(ld(cl(0)), nm(cl(0))) = cl(o).
By Lemmas 12 and 10, cl(0) <. lc'(ld(c), cn) and thus fn € D(hp'(0)). O

We consider the property that although some expressions in transition
rules contain uses of partial functions and relations, they are always well-
defined in the context we are considering.

The property ensures that no implicitly abnormal behavior is possible in
the application of a transition rule, even if the well-definedness of uses of
partial functions and relations is not checked.

Lemma 14. (Definedness) For each transition rule, if

— the input state of the transition in the consequence is a valid state,

— all well-defined premises (those that consist of well-defined uses of func-
tions and relations, including all transition premises) are true, and

— all transition premises preserve validity,

then all uses of functions and relations in the rule are well-defined.

Proof. — Consider rule (GF). The key is to prove that hp'(0)(fn) is well
defined. We need only to prove that o € D(hp') A fn € D(hp'(0)), which
follows from Lemma 13.

— For rule (PF), the key is to prove that hp'(o) is well-defined, whose proof
is similar to that for Lemma 13.

— The well-definedness of Ic'(ld(c), ¢n) in rules (NE), (IV), (DC), (RC2),
(RF) and (RM), and Ic'(ld(c),Cls) and Ic¢'(ld(c), Str) in rules (DC) and
(LD2) follows from Lemmas 5, 6, 7 and 9.

— The proofs for rules (RE), (RC1) and (LD1) are trivial. O

5.5 Validity preservation

We give a lemma as a preparation for the theorem on validity preservation.

Lemma 15. (Validity) For each transition rule, if
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1. the transition in the consequence takes a valid input state,
2. all well-defined premises hold, and
3. all transition premises preserve validity,

then the transition in the consequence produces a valid output state.

Proof. Consider each transition rule. First, by Lemma 14, all applications
of functions and relations in the rule are well-defined. Thus all premises are
true.

— Consider rule (GF). In order to prove that
vld (stk + {c,m,p + 1,08 + hp'(0)(fn)), hp', Ic', ct'),

the key is to prove cfmgy .. (hp'(0)(fn), ld(c), cno).
By Lemma 13, o € D(hp'), fn € D(hp'(0)), cl(0) =i lc'(ld(c), cn), and
there are ¢’ and f such that

fldSel,. (Ic'(Id(c), cn), fn, cno) = (', ) A (ld(c),ld(c), eno) € ct'.

Since cl(0) <. lc'(Id(c), cn), by Lemma 8, fldSel,. (cl(0), fn, eng) = (¢, f).
Since ¢fmy . (hp'),

fidSel, . (cl(0), fn, cno) = (', f) = cfmyy o (hp' (0)(fn), 1d(c"), cno).

Thus cfingr oo (' (0)(f), 1(c), no).
— Consider rule (PF). By a proof similar to that for Lemma 13, 0 € D(hp")
and fn € D(hp'(0)). Thus

D(hp'(0)) = D(hp'(0)[fn - v]).

Hence it is straightforward to check that wfm,. (hp'[o — hp'(0)[fn — v]]).
Now to prove that vld(hp'[o — hp'(0)[fn > v]], ¢, ct'), the key is to prove

cfmyes e (hp'[o = hp'(0)[fn — v]]).

The case where v = null is trivial. We assume that v # null.
By a proof similar to that for Lemma 13, there are ¢’ € C and f € F
such that

fldSel,. (Ic'(Id(c), cn), fn, cno) = (', ) A (ld(c),ld(c), eno) € ct'.

By anohter proof similar to that for Lemma 13, c¢fm;. .. (v, ld(c), cno)

and cl(v) < lc'(ld(c), eno).

Since cfme o (v, 1d(c), eno) and (ld(c), ld(c'), cno) € ct’, cfmyy o (v, 1d(c'), cno).
Since cl(0) = 1lc'(ld(c), cn) and fldSel,. (Ic'(ld(c), en), fn, cng) = (¢, f),

by Lemma, 8, fldSel . (cl(0),fn, cno) = (¢, f). Since cfm .. (hp'), we

have that cfm,. . (hp'[o = hp'(0)[fn — v]]).
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— The proof for rule (NE) is straightforward. Note that o € C and cl(o) =
Ic'(ld(c), en) imply that Ic'(ld(c), cn) # Cls.

— Consider rule (IV). Recall that bevst(c',m')|o = [nm(c'), eni]. To prove
that vld(stk + (c,m,p + 1, 08) +{c',m',0,[0,v]), hp', Ic', ct'), the key is to
prove that

e R(le") A

e o (0, ("), mn()) A

cfmlc’,ct’ (U7 ld(C’), Cnl) A
(ld(c), eno) ~cv (ld(c"), cng).

Since wfmy,, ;. .+(stk + (¢, m, p, 0s + o +v)) and wfm,.(hp), cl(o) € R(lc).
By Lemma 10, cl(o) € R(l¢'). Since mthSel;. (cl(0), mn, cni, cng) =
(c',m'), by Lemma 4, ¢’ € R(lc") and cl(0) <c'.

Since wfm(Ic"), (Ve € R(l¢"). (ld(c), nm(c)) € D(Ic") A Ic'(Id(c), nm(c)) =
c. Since cl(0),c" € R(lc"), {ld(cl(0)), nm(cl(0))) Lyt o (Ud(), nm(c")),
and thus cfm;. .. (0,1d(c"), nm(c")).

Since vld(stk + (¢, m, p, 0s + o+ v), hp, lc, ct), there are s,t,¢; such that

bevst(c,m)|p, =s+t+t1 A cfmy, (0, ld(c),t) N cfmy. (v, 1ld(c),t1).

e If t = cn, then cfm, (o0, ld(c), cn).
o If t # cn, (t,cn) € bevsr(c,m). Since wfm,,(ct), (ld(c),t, cn) € ct.
Thus c¢fm,. . (0,ld(c), cn).
By a similar analysis, ¢fm, (v, ld(c), cny). By Lemma 10, ¢fm; ., (0, ld(c), cn)
and cfm. . (v,1d(c), cny).
By Lemma 9, (ld(c), cn) € D(I¢') and there are ¢ and m” such that

mthSel; (Ic'(Id(c), en), mn, eny, cng) = (¢”",m") A

(ld(c), ld(c"), en), {ld(c),ld(c"), cno) € ct'.

Since cfmyy . (0,1d(c),en) A (ld(c),en) € D(Ic") A essi(ct’), by
Lemma 12, cl(0) <, 1c'(ld(c), cn). Since

clos(lc") A
mthSel;. (cl(0), mn, cny, cng) = (¢',m') A
mthSel; (Ic'(Id(c), en), mn, eny, cng) = (¢, m"),
¢ 2’
By Lemma 11,

(ld(c"), eny) ~cp (ld(c"), eny) and (ld(c'), cng) =~ (ld(c), eng).
Since (ld(c), ld(c"), en1) € ct', we have that (ld(c"), en1) ~cp (ld(c), cny).

Since c¢fmy. (v, ld(c), eny), we have that cfm. ., (v,1d(c"), eny).
Finally, since (ld(c), ld(c"), cng) € ct', (ld(c), cng) ~ce (ld(c), cng).
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— Counsider rule (RE). By definition, there is s’ such that bevst(c',m')|, =
s' + rt(m). The key is to prove

Cfmlc7ct(v7 ld(C’), rt(m)).

The case where v = null is trivial. We assume that v # null.
Since vld(stk + {¢',m/,p’, 0s") + (¢, m, p, 0s + v), hp, lc, ct), there are s,
such that

bevst(c,m)|p, = s+t A

cfmye o (v, 1d(c), t) A
(t # rt(m) = (ld(c),t,rt(m)) € ct),
and there is ¢n such that

ed(m')|pr—1 = invokevirtual(en, nm(m), at(m), rt(m)) A
(ld(c), rt(m)) =~ (ld(c'), rt(m)).

Now it is straightforward to see that no matter ¢ = rt(m) or not, we have
that cfm. ., (v, ld(c), rt(m)), thus cfm. (v, ld(c"), rt(m)).

— Consider rule (DC). A large part of the proof is similar to that in the
above for rule (IV). The rest is straightforward.

Note that the transition " 222'“) ensures that clos(lc"[(I, nm(c")) = ¢']).

The definition of addLc(lc” 1, nm(c'),c') ensures that
Ve € R(lc"). allfnm . (1" (1d(c), sup(c))) N fam(c) = 0.

The proof of cl(ld(c')) = CILd in the proof of wfm(lc"") needs some
explanation. First, vld({stk + (c,m, p, 0s + 1 + o), hp, lc, ct)), implies that
cfmy, (1, 1d(c), en). Since

(ld(c), en) € D(Ic") A lc'(ld(c), en) = CILd,

cl(l) <4 CILd. Since | = ld(c'), cl(ld(c')) =y CILd. By Lemma 10, we
have that ¢l(ld(c')) <o CILd.

— The proofs for rules (RC1), (RC2) and (LD1) are trivial.

— Counsider rule (LD2). Since mthSel;.(cl(l),1dC1,Str,Cls) = {(c¢,m), by
Lemma 4, ¢l(l) <jcc and thus cfm,, ., (I, 1d(c), nm(c)). By Lemma 10, we
have that cfm;. . (1, 1d(c), nm(c)).

By Lemma 6, (ld(c),Str) € D(Ic"). Since I¢'(Id(c),Str) = Str, we have
that cfm;. . (cn,ld(c),Str). Hence

ld(([{c,m,0,[l, cn))], hp'[en = {}],1c', ct')).
Since the transitions steps in the premise preserve validity,
old(([(e,m, p, s + )], hp", e, ct").

Since wfim i o o ([{(¢;m, p, 08 +¢)]), ¢ € D(hp"). Since wfmy (hp"),
c e R(lc"). Since Csslc”{(hcn)»—m’}(Ct”)a

old ((hp", 1" {(l, en) — '}, ct")).
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— The proof for rules (RF) and (RM) are straightforward. O

Now we can prove the theorem on validity preservation.
Proof of Theorem 1. By definition, if stt = stt’, then there is a finite
(proof) tree of applications of the rules with stt = stt’ as the root. The
assertion follows by applying Lemma 15 to each application of a rule in each
path from a leaf to the root, in that order. O

5.6 Labeled transitions with real loaders

As a consequence of Theorem 1, we show that in building a proof tree, it is

sufficient to consider only those labeled transitions that are associated with

. . .. LD(I,
a real loader, in particular, those transitions (zgn)

First, we consider individual transition rules.

where [ is a real loader.

Lemma 16. For each transition rule, if

— the input state of the transition in the consequence is a valid state,

— whenever the transition in the consequence is a labeled transition, it is
associated with a real loader,

— all premises are true, and

— all transition premises preserve validity,

then all labeled transitions premises are associated with a real loader.

Proof. — The labeled transition premises of rules (GF), (PF), (NE) and

.. RM(¢c,cn,dfC1,0bj,Cls RC(e,Cls) .
(IV), as well as the labeled transitions (c,6m,A1GLOD308) o nd RS iy
rule (DC), are associated with a real loader, since the valid input state
of the transition in the consequence implies that

cl(ld(c)) <o CILd.

— Consider "2 11 rule (DC). Since the input state of the tran-
sition in the consequence is valid, cfm, .(I,1d(c), cn). By Lemma 10,
¢fmyer o (1, 1d(c), en). By Lemma 6, (ld(c), cn) € D(lc"). Since the tran-

.. RM(c,cn,dfC1,0bj,Cls) RC(c,Cl1s) .
sitions = and = " preserve validity,

cl(l) =y le'(ld(e), en).

Since lc'(Id(c), cn) = CILd and [ = Id(c') are premises, (the latter is in

the definition of ¢rCll,) cl(ld(c')) < CILd. Thus the transition ROl sup ()
is associated with a real loader.

— No proofs are needed for rules (RE), (RC1) and (LD1).

— The proofs for rules (RC2), (RF) and (RM) are trivial.
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— The labeled transitions in rule (LD2) are associated with a real loader,
since the input state of the transition in the consequence is valid, and the
premise mthSel;.(cl(l),1dC1, Str,Cls) = (¢,m) implies that ¢ € R(lc).
O

Proof of Theorem 2. Consider a finite proof tree for stt — stt’ with
stt =>* stt’ as the root. By Theorem 3, all transitions preserve validity. Now
the assertion follows by applying Lemma 16 to each application of a rule in
each path from the root to a leaf, in that order. O

5.7 Safety
The next lemma below implies that in rule (NE), if the condition
0€ 0 —(CUDhp")) A cl(o) =Ic'(ld(c), cn)

does not hold, then I¢'(Id(c), cn) = Cls. In reality, the case would correspond
to the creation of a class object using a new instruction, something Java
disallows.

Lemma 17. For any hp' € Hp, there is always o € O — (C U D(hp')). For
c € C, if there is no o € O — (C UD(hp")) with cl(o) = ¢, then ¢ = Cls.

The next lemma implies that in rule (DC), there is always ¢’ € C satisfying
the condition crClp, (I, c').

Lemma 18. For any | € L and hp € Hp, there is always c € (C — D(hp))
with | = ld(c).

Proof of Theorem 3. In cases 1 and 2, by Lemma 13, rule (GF) or (PF) can
be applied, and the assertion of the theorem holds. In case 3, by Lemma 17,
rule (NE) can be applied, and the assertion of the theorem follows. In case 4,
rule (RE) can be applied, and the assertion of the theorem trivially follows.
In case 5, by Lemma 9 and a lemma for rule (IV) similar to Lemma 13,
rule (IV) can be applied, and the assertion of the theorem holds. In case 6,
by Lemma 18, rule (DC) can be applied, and the assertion of the theorem
holds. d

To conclude this section, we emphasize that a successful transition step as
defined by our rules corresponds to a terminating execution. Non-terminating
execution corresponds to infinite proof trees. An infinite proof tree may have
an infinite width or height. Infinite width corresponds to the case where the
transition sequence premise of rule (LD2) is infinite. Infinite height corre-
sponds to the case where there are infinitely nested applications of transition
rules, each for a transition premise of a previous transition rule.
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6 Related Work

The requirement that loaders in addition to class names are needed to uniquely
identify class objects is mentioned in the Java language specification [12]. But
it was not completely understood what the concrete mechanism should be.
The bugs reported by Saraswat [17], Tozawa and Hagiya [18] and ourselves [4]
are evidence of this. Saraswat proposed a solution where method overriding
is based on full types instead of names only. However his solution may cause
counter-intuitive dynamic dispatch and requires a modification to the class
loaders’ API to avoid premature class loading.

Dean [5] presented probably the first formal model for Java class load-
ing, focusing on the static typing, using the PVS verification system [8]. The
model is clean and abstract, but does not consider loading and subtype con-
straints.

Jensen, LeMetayer and Thorn [13] proposed an abstract formalization of
Java class loading, and showed how the Saraswat bug is disallowed by the
formalization. Their formalization pre-dates Sun’s response to the Saraswat
bug and differs in some aspects from the official semantics of the JVM [2].

Goldberg [10] formalized a way to integrate some aspects of class loading
into bytecode verification. The idea is that the bytecode verifier does not load
classes to insure type safety, but generates constraints that are checked when
the referenced classes are loaded. He did not consider multiple loaders. Our
approach includes and generalizes this idea.

Liang and Bracha [14] introduced the concepts of loading constraints and
loaded class cache. Their setting is informal, and thus it is hard to verify their
claims, or see where the problems are and how they are solved. This solution
is also documented in [15]. A good informal account of class loading can be
found in [11]. However, that account often does not distinguish between the
JDK 1.2 implementation and the JVM specification.

Fong and Cameron [7] proposed a general, modular architecture for mobile-
code loading and verification, and discussed a possible instantiation for Java
loading and bytecode verification. In particular, their concept of proof obli-
gations corresponds to our concepts of constraints. However, they do not
consider multiple loaders.

Borger and Schulte [1] presented a fairly complete operational semantics
of the JVM which includes loading. The work follows the well-established
approach of Abstract State Machines and can take advantage of existing
machine-supported simulation tools. Their model of loading considers excep-
tions, but does not consider the loaded class cache and loading and subtype
constraints.

Tozawa and Hagiya’s formal model for a type safe JVM [19] is closely
related to ours, although their model and ours were developed independently.
Some of the components considered in their model are also considered in ours.
For example, their loaded class caches and loading constraints are very similar
to ours, and their concept of widening conversion roughly corresponds to our
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concept, of subtype constraints. There are two main conceptual differences
between their model and ours. The first is that they do not consider subtype
constraints: their widening conversion is checked at verification time, which
means that the involved classes must be loaded. This corresponds to Sun’s
eager loading strategy for verification. The second is that they do not consider
execution of code in user-defined loaders. Furthermore, they take a different
overall approach. They define an operational semantics that depends on an
“environment” , which consists of loaded classes, objects in the heap, etc. They
define judgements (such as widening conversion) holding in an environment,
and they prove some monotonicity properties for judgements w.r.t. extending
environments (e.g., as per loading of new classes). In our approach, instead,
the information about loaded classes, heap, etc. is part of the state, and there
are explicit state transitions that load new classes, create new objects, and so
on. Therefore, we believe our model is more intuitive and closer to the JVM
specification and implementations.

Drossopoulou [6] developed a model for Java class loading, focusing at an
abstract level on the interface between execution, loading and verification.
Her work introduces and analyzes a high-level language, which is closer to
Java than the JVM. Her model does not consider multiple loaders, while ours
does, but her work handles exceptions, while ours does not.

Type-safe loading has also been studied in static settings both for high-
level modules (e.g. [3]) and for assembly languages (e.g. [9]). In these settings,
the major difference between the dynamic and static loading is that the
final steps of loading and the formation of the “real” executable are delayed
until loading-time [9]. The mechanism for dynamic loading in Java is more
complex, since it is possible that a class that is used in the static type inference
never gets loaded, and that a loader itself is a user-defined program and needs
to be loaded at run time.

7 Conclusion

The mechanisms for Java class loading and bytecode verification are com-
plex. It is hard to ascertain properties such as type safety using an informal
specification. We have presented a formalization of class loading and formally
proved type safety.

Our formalization addresses most key issues mentioned in [12,15,14] and
in Sun’s current implementation. In addition, we have introduced subtype
constraints so that the bytecode verifier does not need to resolve any class,
thus avoiding premature loading and having a cleaner interaction with the
rest of the machine.

Our formalization models a simplified JVM. It includes essential inter-
nal data structures such as the loaded class cache, loading and subtype
constraints. It supports selected language features such as classes, objects,
methods, and dynamic and lazy loading, but not interfaces, arrays, primi-

45



tive types, access control, exception handling, garbage collection and multi-
threading. So far we have not seen any fundamental problems to extending
our formalization to address the missing data structures and features.
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