A Formal Specification of Java™ Class Loading

Zhenyu Qian

Allen Goldberg*

Alessandro Coglio

Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304
{qian, goldberg, coglio}@kestrel.edu

ABSTRACT

The Java Virtual Machine (JVM) has a novel and power-
ful mechanism to support lazy, dynamic class loading ac-
cording to user-definable policies. Class loading directly im-
pacts type safety, on which the security of Java applications
is based. Conceptual bugs in the loading mechanism were
found in earlier versions of the JVM that lead to type vio-
lations. A deeper understanding of the class loading mech-
anism, through such means as formal analysis, will improve
our confidence that no additional bugs are present.

The work presented in this paper provides a formal specifica-
tion of (the relevant aspects of) class loading in the JVM and
proves its type safety. Our approach to proving type safety
is different from the usual ones since classes are dynami-
cally loaded and full type information may not be statically
available. In addition, we propose an improvement in the
interaction between class loading and bytecode verification,
which is cleaner and enables lazier loading.

1. INTRODUCTION

The Java Virtual Machine (JVM) has a novel and power-
ful class loading mechanism. Class loading is the process
of obtaining a representation of a class (declaration), called
a class file, and installing that representation within the
JVM. The JVM allows lazy, dynamic loading of classes,
user-definable loading policies, and a form of name space
separation using loaders. According to both the Java and
JVM specifications [13, 16] distinct loaded classes may have
the same name, and within an executing JVM each loaded
class is identified by its name plus the class loader that has
loaded it.

One of the key properties of the JVM, from both a secu-
rity and software engineering perspective, is type safety. If

*A. Goldberg’s current affiliation and address: Shoulders
Corp., 800 West El Camino Real, Mountain View, CA
94040.

the JVM confuses distinct classes, type safety problems can
result. Ensuring type safety requires a fairly sophisticated
mechanism. The reason is that on one hand it is impossible
to determine, prior to execution, the actual loader of a class
because loaders can delegate class loading to each other ac-
cording to the program logic of user-written code. On the
other hand, loading a class before it is required for exe-
cution is undesirable. Saraswat first publicly reported [20]
name spoofing problems due to deficiencies in the mecha-
nisms employed by earlier versions of the JVM.

The Sun solution [15] to such problems employs a constraint
mechanism. Constraints on the disambiguation of names to
ensure type safety are posted when necessary. As classes are
loaded the constraints are checked.

The main result of this paper is to provide formal arguments
that the Sun approach is sufficient to prove type safety. We
formalize the operational semantics of a simplified JVM that
uses this approach. The operational semantics models class
loading, resolution, bytecode verification, and execution of
some selected instructions.

Our model of the JVM departs from Sun’s regarding how the
bytecode verifier checks subtype relationships. Sun’s byte-
code verifier performs the checks by loading certain refer-
enced classes, while our verifier uniformly posts constraints.
These subtype constraints are checked when classes are load-
ed, analogously to the constraints mentioned above. The
advantage of our approach is lazier class loading and clearer
interaction between verification and class loading.

Because a class loader is a runtime object, a reference to
a class (in a class file) is just a name and cannot include
the loader. Disambiguation of such a name is needed, but
can only occur when the referenced class has been loaded.
This implies that traditional approaches to proving type
safety, in which a static type semantics is extracted from
the source code and related to the dynamic semantics, can-
not be applied. Instead, our type safety proof relates the
dynamic semantics with static type information, currently
loaded classes, and currently posted constraints (which ex-
press requirements on not-yet-loaded classes).

Our analysis led us to identify bugs in the current Sun imple-
mentation of the JVM, some of which relate to inadequacies
in the JVM specification [16]'. The bugs result from the fail-

'Some of these bugs were independently discovered and re-

ure of the bytecode verifier to properly disambiguate names.
For a full description of these bugs see [4], where it is also
shown how the bugs are avoided by having the verifier post
subtype constraints.

The remainder of the paper is organized as follows. In the
next section we present relevant JVM concepts and exam-
ples. Section 3 gives an overview of our approach. Section
4 describes the key points of our formalization and proof.
Section 5 discusses related work, and section 6 states con-
clusions.

2. BACKGROUND

2.1 Classobjects

A class file is typically produced by compiling a Java class
(declaration): the class file contains essentially the same
information, except that the code of each of its methods
is compiled to bytecode, i.e. an assembly-like language that
uses an operand stack and a register array, both local to the
method. The registers are also referred to as local variables.
The JVM executes bytecode.

The internal representations of classes in an executing JVM
are objects of the system class named Class, and they are
called class objects. We will use Obj, CILd and Cls to de-
note the class objects for the system classes named Object,
ClassLoader and Class. For convenience, we will not dis-
tinguish between a class and its corresponding class object
in the informal discussion below.

2.2 Resolution and loading

Bytecode instructions use (fully qualified) names to refer-
ence classes. Class resolution is the process of replacing
these symbolic references with (pointers to) actual class ob-
jects in the executing JVM. Resolution causes loading of
the class and checking of the access control modifiers of the
loaded class.

Bytecode instructions reference fields and methods by name,
including the name of the class where they are expected to
be declared. Field and method resolution is the process of
replacing these symbolic references with (pointers to) actual
fields and methods. It requires first resolving the class in
which the field or method is declared, then checking the
presence of the field or method in the resolved class, and
finally checking its access control modifiers.

(Class) loaders are objects of subclasses of class CILd. By
overriding certain methods of class CILd, user-defined class
loaders can implement arbitrary loading policies.

Class CILd contains a defineClass method. It is a final
method and thus cannot be overridden in subclasses of class
CILd. This method takes a class file (in the form of a byte
array) as argument, and returns a newly created class object,
unless the class file has an invalid format — in which case an
exception is thrown. The creation of the new class requires
resolution of all its superclasses. If the defineClass method
is invoked on a loader and a class object is returned, then
the loader is called the defining loader of the resulting class.

ported in [21].

Class CILd contains a loadClass method, which may be
overridden in subclasses. This method takes a class name (in
the form of a string) as argument, and returns a class object
(or throws an exception). The user’s code in this method can
implement arbitrary loading policies. Typically the code will
fetch a class file in some way (e.g., from the local file system,
or a network connection) and then invoke defineClass with
the resulting class file as argument. However, user’s code can
delegate loading by calling 1oadClass upon another loader.
If the loadClass method is invoked by the JVM on a loader
and a class object is returned, then the loader is called an
wnitiating loader of the resulting class. The defining loader
of a loaded class is also regarded as an initiating loader of
the class.

Therefore, a loaded class may have many initiating loaders
but only one defining loader.

When a class name needs to be resolved within an executing
class, the defining loader of the executing class is used as
initiating loader for the class (name) to be resolved.

2.3 A simpleexample
Let us use an example to explain some basic concepts and
issues regarding classes, loaders, and type safety.

Assume that we have a subclass MyLd of class CILd, two
distinct objects [1 and [of class MyLd, and five classes C,
D, E, T} and T3, satisfying the following:

e Classes C, D, E, Ti and T> have names C, D, E, T and
T, respectively.

e Classes C, E and T have defining loader [, and classes
D and T> have defining loader 5.

e Using loader I; as initiating loader for names D and T
yields the classes D and Ti, respectively, while using
loader I» as initiating loader for names E and T yields
classes E and T5, respectively. This means that [;
delegates to l» the loading of a class named D, and
that I delegates to I; the loading of a class named E.

Figure 1 shows classes C, D, E, Th and T>. We consider
execution starting with the m() method. Initially, only class
C is loaded. The others are loaded when they are needed,
i.e. at their first active use (see below)?.

Starting at the m() method, the JVM first resolves names D
and T, loading classes D and T using [; as initiating loader
for names D and T, respectively. Then it creates objects of
these classes. The n(T t) method is then invoked with an
object of class T as argument.

Class D has defining loader l>. Within the n(T t) method,
name E is resolved, loading class E using l> as initiating
loader for name E. Then the k(T t) method is invoked with
the object of class T; as argument.

2The JVM specification allows loading of a class to happen
at any time no later than its first active use. In this example,
we assume that loading of a class happens exactly at its first
active use.

public class C { // Class C with defining loader ;.
public void m() {
(new D()).n(new TQ); // Load classes D and T} and pass a T1 object as argument.
}
public class D { // Class D with defining loader .
public void n(T t) { // Receive a T object as argument.
(new EQ)) .k(t); // Load class E and pass the T object as argument.
int i = t.f; // Load class T» and fail since T1 # 15!
}
}
public class E { // Class E with defining loader [;.
public void k(T t) { // Receive a Ty object as argument.
Object o = t.f; // Operation succeeds.
}
public class T { // Class T; with defining loader ;.
Object f;
}
public class T { // Class T» with defining loader 5.
int f;
}

Figure 1: A simple example

Class E has defining loader [;. Within the k(T t) method,
the execution of the field access t.f causes resolution of class
name T, using [; as initiating loader. The resulting class is
T,. The field access succeeds because the resolved class of
the formal parameter t is the same as that of the actual
value it holds.

Returning back to the n(T t) method, the execution of the
field access t.f causes resolution of class name T, using [> as
initiating loader. The resulting class is T>. Now execution
will throw an exception (and prevent field access) because
the JVM detects that the class 71 of the actual value in
the formal parameter t does not match the class T» of the
formal parameter t.

We observe that in the execution just described no exception
is thrown until the field access t.f in the n(T t) method
is attempted. The reason is that the JVM cannot check
whether the class 75 of the formal parameter t matches the
class T of the value it holds until the class T5 is loaded.
In fact, the JVM would not throw an exception if the field
access t.f in the n(T t) method were not present.

The usual approach to proving type safety is to show that
during execution values stored in variables always conform
to the types statically assigned to these variables. In our ex-
ample, this means showing that, after the n(T t) method is
invoked, the T object passed as argument conforms to “the
type statically assigned to formal parameter t of n(T t)”.
However, the JVM cannot determine what the class the
name T denotes, until the name T is actually resolved in
class D. In fact, if the class were loaded at the time when
the n(T t) method is invoked, the JVM would be able to
detect that the value does not conform to the loaded class.

The bug reported by Saraswat [20] led to type violations
in earlier versions of the JVM. In reference to the example
in Figure 1, the earlier versions of the JVM did not check
the equality of classes 71 and 7> when executing the field
access t.f in the n(T t) method. The result of such field
access was unpredictable, since it operated on an object of
the wrong type.

The Sun solution to Saraswat’s bug, which checks the equal-
ity of classes T7 and T> when executing the field access t.f
in the n(T t) method in Figure 1, introduce two internal
data structures into the JVM called loaded class cache and
loading constraints [15].

2.4 Loaded class caches and loading

constraints

The JVM resolves referenced class names to loaded classes.
The results of the loading process are stored in a JVM data
structure called the loaded class cache. The loaded class
cache maps an initiating loader and a class name to a loaded
class. Recall that a reference to a class is resolved by us-
ing the defining loader of the current class as the initiat-
ing loader of the referenced class; so the loaded class cache
records how a class name is disambiguated.

When a class name needs to be resolved, the JVM, before
loading with a given initiating loader, checks the loaded class
cache. If a class has been loaded for that initiating loader
and that class name, the JVM returns the already loaded
class as the result. Thus resolution will always give consis-
tent results. If the loaded class cache has no entry for the
initiating loader and class name then loading is carried out.
If a class is returned, the loaded class cache is updated with
a new entry for the just loaded class. If instead an exception
is thrown, resolution fails.

In the sequel, we call a pair (I, cn) of an initiating loader [
and a class name cn a loading request.

A loaded class cache is a finite map from loading requests
to loaded classes:

{(li,en1) = c1,- -, (I, cnn) = cn }.

A loading constraint is a triple (I,1', cn) consisting of two
loaders [and ' and a class name cn. A loading constraint
as above expresses the requirement that using [and [’ as
the initiating loaders for name cn, must yield the same
(loaded) class if they both succeed. Loading constraints
are generated by the JVM when fields and methods are re-
solved. Such constraints enforce that classes exchanging ob-
jects (through field access and method invocation) agree on
the actual classes (and not only the names) of the exchanged
objects.

An executing JVM maintains a loaded class cache and a
set of loading constraints. These two data structures are
checked for mutual consistency whenever either one is up-
dated. Whenever an update causes a violation of a load-
ing constraint w.r.t. the loaded class cache, an exception is
thrown, thus causing a failure of the operation that triggered
the update.

In the example in Figure 1, a loading constraint (l1,l2,T)
is generated when the n(T t) method is resolved (from C)
during execution of (new D()) .n(new T()). Theloader; is
the defining loader for class C, which is used as an initiating
loader for name T within the m() method. The loader I» is
the defining loader for class D, which will be used as an ini-
tiating loader for name T within the n(T t) method, when
T is resolved from D. Class T; is loaded for the loading re-
quest (I1, T) in the execution of the instruction new T(). The
loading constraint is checked only when class T5 is loaded
for the loading request (l2,T), during the execution of the
field access t.f within the n(T t) method.

2.5 Bytecode verification

Type-safe execution requires that each instruction operates
on data with appropriate types. In order to reduce the num-
ber of runtime checks and thus to improve efficiency, most
type-safety requirements are checked statically. In the JVM,
the code of each loaded class is verified prior to execution
of any of its methods, by a JVM component called the byte-
code verifier. Bytecode verification should assign types to
operand stack elements and local variables for each instruc-
tion, consistently with the types required by the instructions
in the method. However, in order to avoid premature load-
ing, the bytecode verifier only assigns class names, instead
of class types, to local variables and operand stack elements.
Therefore, the bytecode verifier only makes “partial” checks
on class types; such checks are in fact complemented by the
loading constraint mechanisms at runtime.

The following is the bytecode of the m(), n(T t) and k(T t)
methods in Figure 1. The comments on the right give the
class names assigned by the bytecode verifier to some ele-
ments in the operand stack at some program points.

method m()

pl: new(D)

p2: new(T) // [--,D]
p3: invokevirtual(D,n,T,void) // [--,D,T]

method n(T)

rlz.ée.:tfield(T,f,int) /T
r2: ... // [--,int]

method k(T)

qli.éétfield(T,f,Dbject) /0 [T
92: ... // [--,0bject]

Intuitively, the instruction new(D) creates a new object of
class D and pushes (a reference to) it onto the operand
stack®. Thus, bytecode verification assigns the name D to
the top element in the operand stack at program point p2
after that instruction. The instruction new(T) at program
point p2 works in a similar way.

The instruction invokevirtual(D,n,T,void) dynamically
selects the n(T) method based on the class of the second
top object on the operand stack, and invokes the method
with the top element in the operand stack as argument. The
instruction contains a class name D indicating the class in
which the method is to be found, and a class name T indi-
cating the class of the argument. Bytecode verification uses
this information to check the consistency of the class names
assigned to the top stack positions. In this case, it checks
whether the class names D and T are the ones assigned to the
top two elements in the operand stack. Note that this static
consistency check is not sufficient to guarantee type safety:
this is the reason why the executing JVM will generate a
loading constraint (l1,l2,T), as explained in Section 2.4.

The instruction getfield(T,f,int) fetches the int value
of the field £ in the top object of the operand stack and
pushes it onto the operand stack. The instruction contains
a class name T indicating the class in which the field is to be
found. Again bytecode verification uses this information to
check the consistency of the class name assigned to the top
stack position. In this case, it checks whether class name T
is the one assigned to the top element in the operand stack.
At the next program point r2, bytecode verification assigns
type int to the top element of the operand stack.

Bytecode verification analyzes getfield(T,f,0bject) in a
similar way as getfield(T,f,int). The only difference is
that the class name Object is assigned to the top element
of the operand stack at program point q2.

2.6 Another example

Let us now consider an example involving subtypes. This ex-
ample provides some motivation for the subtype constraints
that will be introduced and explained in the next sections.

3For simplicity, we ignore the issue of object initialization in
this example. In other words, we assume that the bytecode
instruction new creates a fully initialized object.

We assume that we have a subclass MyLd of class CILd, two
distinct objects I; and I of class MyLd, and five classes C,
D, Ty, T> and S, satisfying the following:

e Classes C, D, Ti, T» and S have names C, D, T, T and
S respectively.

e Classes C, D and T; have defining loader [;, and classes
T> and S have defining loader [».

e Using loader [; as initiating loader for names D, T and
S yields the classes D, T7 and S, respectively, while
using loader I as initiating loader for name T yields
class T, respectively. This means that [, delegates to
l> the loading of a class named S.

Note that S is a subclass of T, and not of 71, because
resolving name T with l> (which is the defining loader of \S)
as initiating loader yields T5.

Figure 2 shows classes C, D, T;, T> and S. We assume
that initially, only class C is loaded, and consider execution
starting with the m() method.

Based on analogies with the previous example, one might
expect execution to happen as follows. First, classes D and
S are loaded. According to the JVM specification, when a
class is loaded, all its superclasses are also loaded. Therefore,
when S is loaded 7% is also loaded.

Next, an object of class D and one of class S are created, and
method n(T t) is invoked upon the D object, passing the S
object as argument. The field access t.f causes resolution
of name T from class D, which results in class 77. At this
point, field access should fail because S is not a subclass of
T).

However, that is not quite what happens in the JVM. Be-
fore method m() is executed, it must go through bytecode
verification. Let us examine the bytecode for this method,
together with the class names assigned by the bytecode ver-
ifier to some elements of the operand stack:

method m()
pl: new(D)
p2: new(S) // [---,D]

p3: invokevirtual(D,n,T,void) // [--,D,S]

The difference between this and the m() method in the pre-
vious example is that the name T assigned to the top element
in the operand stack at program point p3 is now replaced
with the name S. Since the invokevirtual instruction refer-
ences name T, the JVM specification actually requires byte-
code verification to resolve both names T and S from class
C (i.e., using [as initiating loader), and to check that the
appropriate subclass relationship holds.

The check fails, because the loading request (l1, T) yields T4,
which is not a superclass of S. Therefore, bytecode verifica-
tion throws an exception, and method m() is not executed
at all.

Of course, the same would happen even if the field access
t.f were not present in method n(T t). In fact, when class
C' is being verified, class D has not been loaded.

This suggests that resolving class names during bytecode
verification in order to check subclass relationships, does
not lead to the laziest possible loading strategy. In the next
sections, we will show how subtype constraints allow lazier
loading, and how the behavior of the JVM in this example
would match what one would probably expect.

3. OVERVIEW OF OUR APPROACH

The main objective of our work is to raise the assurance
that the JVM as specified and implemented by Sun is safe.
Because the mechanisms that enforce safety in the JVM are
inherently complex, it is not straightforward to assess their
correctness, as demonstrated by the discovery of bugs that
lead to type safety violations [20, 21, 4]. In order to raise
assurance, we construct a formal specification, which is con-
sistent with the JVM English specification and the Sun im-
plementation, and we prove results about that specification.
Actually, our specification intentionally differs from Sun’s in
one aspect, namely the use of subtype constraints for byte-
code verification, which enable a cleaner design and lazier
loading policy.

We present an operational semantics for an abstraction of
the JVM and prove a type safety result. The operational
semantics differs from usual ones (e.g. [1]) that just specify
state transitions for the JVM bytecode instructions. Our se-
mantics includes transitions for “macro operations,” e.g. res-
olution and class loading, that are performed by the “core”
of the JVM. The core of the JVM maintains data struc-
tures, such as a loaded class cache, which are updated by
these macro operations. The interaction between the core
of the machine and user code is complex: there is a mutual
recursion between user code executing in a thread and the
core machine. The state transition formalism we use reflects
this with the use of “nested” rules.

We start by introducing the formal entities (sets, operations,
etc.) used in our formalization. We then define states and
transitions for a state machine representing an abstraction
of the JVM. Transitions fire when certain conditions are
satisfied. Some conditions correspond to runtime checks ac-
tually performed by the executing JVM; their failure raises
exceptions in the JVM. Other conditions serve to ensure
type-safe operations in our formalization; there are no cor-
responding runtime checks in the JVM. If these type safety
conditions are not satisfied, then the behavior of the JVM
is undefined?. We finally introduce a notion of wvalidity of
states, and present theorems stating that transitions from
valid states lead to valid states, and that transitions from
valid states are always possible unless either there is no more

“In practice, the behavior of an actual JVM when such con-
ditions are not satisfied is determined by the implementa-
tion of the machine. Knowledge of the implementation can
be maliciously exploited to compromise the security of the
JVM, if type safety can be circumvented. For example, typ-
ical implementations access fields through offsets added to
the address of an object. In such implementations, a type-
unsafe operation could access arbitrary data within objects,
rega)rdless of field layout (see example in the previous sec-
tion).

public class C {
public void m() {
(new D()) .n(new SQO));
}

public class D {
public void n(T t) {
Object o = t.f;
}

}

public class T {
Object f;

}

public class T {
int f;

public class S extends T {

}

// Class C with defining loader [;.

// Class D with defining loader [;.

// Class T1 with defining loader [;.

// Class T» with defining loader I5.

// Class S with defining loader I5.

Figure 2: Another example

code to execute or a condition corresponding to an actual
check in the JVM is violated. In other words, in a valid state,
the failure of a type safety condition alone never causes the
machine to halt. This means that if the JVM starts in a
state corresponding to a valid state in our formalization,
each operation in the JVM will be always type-safe, and
no checks corresponding to the type safety conditions are
needed.

Our formalization makes many simplifications to the JVM.
Most important is that we ignore concurrency and excep-
tions. One could easily imagine a concurrency bug leading
to inconsistent data structures; such bugs are not addressed
by our specification. The JVM, when presented with a pro-
gram that is inconsistent, throws an exception to report the
error. For example, if a loading constraint is violated, a link-
ing exception is thrown. Since we do not model exceptions,
in our formalization the machine simply halts. We also do
not treat static fields or methods, primitive types, inter-
faces, arrays, object initialization, subroutines, and field or
method modifiers. We believe these features are orthogonal
to the issues raised by class loading. We treat a few bytecode
instructions, namely those to access fields, call methods, re-
turn results, create new objects, and load/store from/to lo-
cal variables. In a strong sense the essence of the Sun ap-
proach is captured by our formalization.

Our formalization includes bytecode verification. Bytecode
verification assigns class names to memory locations (in the
operand stack and for all local variables) at each program
point of a method based on the instructions in the method,
as shown in Section 2.5. For example, a getfield instruc-
tion requires a certain class name (for the target object) to
be assigned to the top of the stack at the program point
where the instruction is, and requires another class name
(for the field value) to be assigned at the top of the stack at
the next program point.

In our formalization the state of an executing JVM contains

a global state consisting of a loaded class cache, a set of load-
ing and subtype constraints and a heap for storing objects.
In addition, the state includes a component that models
the execution stack of a single thread (as per the restriction
above) storing frames. Each frame is a tuple consisting of
a class, a method of the class, a program point within the
method, and a state of the local memory (the operand stack
and all local variables).

We identify a subset of execution states called wvalid states
that satisfy certain constraints. Many of the constraints are
straightforward. For example, one of such constraints re-
quires that all classes in a frame be in (the range of) the
loaded class cache. However, the key constraint is the con-
formance condition, which relies on loading and subtype
constraints. The problem is that some classes may never get
loaded or only get loaded at run time and that the bytecode
verifier assigns only type names, not full type information,
to memory locations, to avoid premature loading. Loading
and subtype constraints are used to state requirements for
not-yet-loaded classes denoted by class names. The confor-
mance relation takes into account not only loaded classes,
but also loading and subtype constraints.

To further explain the above point, consider again the ex-
ample in Figure 1. The type of the object passed to the
n(T t) method is 71. Until name T is resolved from D, the
formal parameter t of method n(T t) has no full type as-
signed to it (only name T). Therefore, we cannot state that
the passed object matches the type of the formal parameter,
simply because there is no full type information. However,
upon resolution of method n(T t) from C, the loading con-
straint (l1,l2,T) is introduced. Such a constraint requires
equality of the class loaded by Iy for name T (i.e., 71) and
the class that will be possibly loaded by [l» for the same
name T. By taking this constraint into account, the con-
formance relation captures the fact that the already loaded
type 71 “matches” the not-yet-loaded type for the formal
parameter of the method. If Tb were never loaded (e.g., if

the assignment i = t.f were not present in the method),
the constraint would never be violated and the conformance
relation would still hold.

Let us now explain subtype constraints. Suppose that, dur-
ing bytecode verification, a class name cn is required (e.g.,
by a getfield(cn,...) instruction) at the top of the stack,
where a name cn', with cn’ # cn, has instead been assigned.
The field access is correct as long as cn’ is a subclass of cn.
More precisely, since cn and cn' are just names, the re-
quirement is that if and when the loading requests (I, cn')
and (I, cn), where [is the defining loader of the class whose
method is being verified, yield two loaded classes C' and C
(respectively), then C' must be a subclass of C. Accord-
ing to Sun’s specification and implementation, and as de-
scribed in the previous section for the example in Figure 2,
the bytecode verifier checks this subtype relation eagerly, by
resolving names cn and cn’.

In our formalization, we check subtype relations lazily: the
bytecode verifier just posts subtype constraints of the form
(I, cn, cn'). Such a constraint expresses exactly the require-
ment that if and when the loading requests (I, cn’) and
(1, cn) yield two classes C' and C, then C’ must be a subclass
of C. These subtype constraints are handled analogously to
the loading constraints. Each time a class is loaded, subtype
constraints are checked for violation. Each time a new sub-
type constraint is introduced, it is checked for violation, too.
In other words, loading constraints, subtype constraints, and
the loaded class cache are constantly maintained in a mu-
tually consistent state. The primary advantage of this ap-
proach is lazier loading, because no class needs to be loaded
for verification purposes. Another advantage is that the in-
teraction between the bytecode verifier and the rest of the
core JVM is simpler and clearer: the verifier is in fact just
a functional component that takes a class as argument and
returns a yes/no answer plus a set of subtype constraints as
result.

To further illustrate subtype constraints, let us consider the
example in Figure 2 using subtype constraints. Again, we
start with only class C' loaded. Before method m() is ex-
ecuted, it must be verified. Bytecode verification success-
fully verifies the method and posts the subtype constraint
(11,8, T) (without loading any class). Method m() starts ex-
ecuting. Classes D and S are loaded. Since T7 has not been
loaded yet, the subtype constraint (l1,S,T) is not violated
yet. The newly created S object is passed as an argument to
method n(T t) invoked upon the newly created D object.
When the field access t.f is about to be executed, class
name T is now resolved with /1 (which is the defining loader
of D) as initiating loader. This yields class Ti; since it is
not a superclass of S, now the subtype constraint (l1,S,T) is
violated. Therefore, an exception is thrown and field access
is prevented.

4. FORMALIZATION

A full presentation of our formalization and its properties
would exceed the space allowed to this paper. Therefore, in
this section we just give highlights, making some simplifi-
cations for the sake of brevity. A full presentation can be
found in [19].

4.1 Transtion systems

A transition system is a pair (X, 7) where X is a set of states
and 7 C X x X is a transition relation between states (z7z’
means that from state z we can move to state z'). In our
formalization we make use of a family of labeled transition

systems (GStt,g), where GStt formalizes all (execution)
states in the “core” of the JVM, and lab indicates the cur-
rent “macro operation” (as mentioned in Section 3). Fur-
thermore, we make use of an unlabeled transition system
(Stt,=), where Stt formalizes all (execution) states in the
JVM. In substance, the labeled transition systems capture
activities taking place in the core of the machine, while the
unlabeled one captures the execution of JVM instructions.

The state sets GStt and Stt are incrementally built start-
ing from abstract sets whose elements represent the entities
present in the JVM. In particular, we have sets O, C, L, and
M counsisting of (all possible) objects, classes, loaders, and
methods. These sets are abstract in the sense that we do not
define their exact structure, but just postulate the existence
of functions operating on them which capture the properties
we are interested in. This approach of using abstract sets
makes the formalization simple and general.

Four of those functions operating on the abstract sets are as
follows:

cl:0—C,
ed: M — I+,
sup : C — CN @ {nil},
ld:C— L.

The function cl returns the class of a given object. The func-
tion cd returns the code of a given method, where the set I
formalizes all instructions we are interested in, and the code
consists of a finite non-empty sequence of such instructions.
The function sup gives the name of the superclass of a given
class, where the set CN consists of all class names, and nil
indicates that the given class is the system class Obj, and
thus has no superclass. The function Id yields the defining
loader of a given class.

Formally, the state sets GStt and Stt are defined as follows:
GStt = Hp x LC x Ct and Stt = Stk x GStt.

The set Hp formalizes heaps (where objects are stored).

The set LC formalizes loaded class caches:
LC=LxCN5C.

A loaded class cache is a finite map from loading requests
(i.e. pairs of loaders and class names) to classes.

Given [c € LC, we define the subclass relation determined
by all loaded classes as the least relation <;. : C x C — B
satisfying

c jlcc' =
c=cV
((ld(c), sup(c)) € Dom(lc) A lc(ld(c), sup(c)) =Xic).
In the definition, the loading request (ld(c), sup(c)) means

that the defining loader of the class c is used as an initiat-
ing loader to load the direct superclass of the class ¢. The

condition (ld(c), sup(c)) € Dom(lc) means that the loaded
class cache Ic records that the direct superclass of the class ¢
has been loaded. Note that if (- - , sup(c)) € Dom(lc), then
sup(c) # nil, since nil ¢ CN.

The set Ct formalizes loading and subtype constraints:
Ct =P,((LxLx CN)U(L x CN x CN)).

A loading constraint is a triple ([,I',en) € L x L x CN, ex-
pressing that if loaders [and I’ load classes for class name
cn, then loaded classes must be the same. A subtype con-
straint is a triple (I, cn,cn’) € L x CN x CN, expressing
that if loader [loads a class for class name cn, and another
class for class name cn’, then the loaded class for class name
cn must be a subclass of loaded class for class name cn'.

A state in GStt is called a global state. A state in Stt consists
of a global state plus a call stack, which is a finite sequence
of frames:

Stk = Frm” where Frm=Cx M xNx OS x LV.

A frame is a tuple (¢, m, p, 0s, lv), where ¢ denotes a current
class ¢, m denotes a current method in the class ¢, p is a nat-
ural number denoting the program point of the instruction
(in the method code c¢d(m)) about to be executed, and os
and [v constitute the current contents of the operand stack
and local variables:

0S=V" and LV =V" where V =0U{null}.

Transitions are defined by means of rules such as those
shown in Figure 3. Each rule contains premises and a conclu-
sion (respectively above and below the line), and expresses
that if all premises hold, then the conclusion holds. Con-
clusions assert transitions between states. The labeled and
unlabeled transition relations are defined as the smallest re-
lations that satisfy all the rules. For brevity, not all the rules
are shown in Figure 3, and not all the functions used in the
rules are formally defined in this paper.

Rule (IV) formalizes method invocation. Its first premise re-
quires that the instruction cd(m)|, at program point p is an
invokevirtual instruction, where mn is a method name,
en and cnj (0 < j < n) are class names, and n > 0.
The second premise requires that the method is resolved:
method resolution is captured by a labeled transition that
updates the global state. The third premise is a type-safety
condition, but does not correspond to any runtime checks
in the JVM (see Section 3). The type-safety condition re-
quires that the class of the object 0 upon which the method
is invoked, is a subclass of the class resulting from resolv-
ing name cn from the defining loader ld(c) of the current
class c. Note that the method resolution step in the second
premise ensures that the loaded class cache I¢’ contains a
loaded class for the loading request (ld(c), cn) (see below).
The last premise serves to select the method to be executed
based on the class of the target object o (i.e., dynamic dis-
patch): mthSel;. (cl(0),...) returns the closest class above
cl(o) in the hierarchy (possibly cl(o) itself, otherwise a su-
perclass) that contains a method with the given descriptor
— the method is also returned. Such a method will always
exist because of the previous two premises. The conclusion
of the rule expresses that a new frame is added to the call

stack. Its operand stack is initially empty, while its first
n + 1 local variables are initialized to the target object o
of method invocation and the actual arguments v1,...,vp.
The other variables are initialized to null for simplicity. The
notation nv(m') denotes the number of local variables used
in m’, and [a]* a sequence containing k occurrences of a.

Rule (RM) formalizes method resolution. Its first premise
requires class name cn to be resolved, while the second
premise ensures there is a method with the required descrip-
tor in the resolved class or one of its superclasses. The third
premise requires that the extended set of constraints is con-
sistent w.r.t. the loaded class cache, i.e., that no constraints
are violated. Note that the predicate css;.s checks consis-
tency of the given set of constraints w.r.t. Ic’ (see below).
The conclusion asserts that the set of constraints is extended
with loading constraints for the class names appearing in the
method descriptor (as described in [15]).

Rules (RC1) and (RC2) formalize class resolution. The for-
mer expresses that if the loaded class cache already contains
an entry for the defining loader ld(c) of ¢ and name cn (i.e.,
a loading request (ld(c), cn)) in its domain Dom(lc) then no
loading is necessary and the global state does not change.
If that is not the case (first premise of rule (RC2)), then
the class must be loaded, where the defining loader ld(c) of
the class c is used as the initiating loader, and the method
loadClass is selected for the class of the loader ld(c), as
expressed by the second premise. The third and fourth
premises ensure that the invocation of loadClass eventu-
ally terminates with a class at the top of the operand stack
— the result of loading. (We use =" to denote zero or more
transition steps.) The function str returns a string (i.e., an
object of system class String) corresponding to the given
class name. The conclusion asserts that the loaded class
cache is updated with a new entry, provided that the new
entry does not lead to the violation of any constraints (as
required by the last premise of the rule). During execution
of loadClass other methods can be invoked, and therefore
other methods and classes can be resolved. The rules cap-
ture the mutual recursion between execution of user’s code
and activities carried out by the core of the JVM.

4.2 Bytecode verification and subtype
constraints

Verifying a method m of a class ¢ amounts to assigning
two sequences of type names to each program point in the
code cd(m). The two sequences constitute the names of
the types of the values in the operand stack and local vari-
ables at that program point, for all possible executions of
the code. The assigned type names must be “consistent”
with the instructions: an instruction at a program point
may require that certain type names be assigned to certain
positions of the operand stack and certain local variables at
the current and other related program points. For example,
if ed(m)|, = invokevirtual(en, mn, [cni,. .., cny], cno), then
the type names assigned to the top n + 1 stack positions
at program point p must denote subclasses of the classes
denoted by class names cn, cni,..., cn,, respectively. At
program point p + 1, those top n + 1 positions must be re-
placed by one with class name cng, while the type names
for local variables are unmodified. See also Section 2.5.

cl(o) =y Ic'(ld(c), cn)

cd(m)|p, = invokevirtual(en, mn, [eni, .. ., cny], eno)
(hp, lc, Ct)RM(c,cn,mn,[c:né,...,cnn],cn0)<hp,, lC’, Ct’)

mthSel,. (cl(o), mn, [cni,. .., cny], cno) = (¢’,m’) (1)
(stk 4+ (c,m, p, 08 + 0+ [v1,...,Vx], l0), hp, lc, ct) =
<Stk + <C) m,p+1,o0s, l’U) + (C,, mly 0, []) [O) Uiy ey Un] + [nu”]nv(m’)fnflx hp,) lC’, Ct,>
(hp, le, ct)RC(éfn)(hp'7 I, ct')
mthSel,. (Ic' (ld(c), cn), mn, [cn1,. .., cny], cno) = (', m)
essier (et U {(ld(c),1d(c"), enj) | 0 < j < n}) (RM)

(ld(c), cn) € Dom(lc)

RC(c,cn)

(ld(c), cn) & Dom(lc)

cd(m)|, = areturn
€881/ {(1d(c),enyrre'} (€t)

(hp, lc, ct)y "= "(hp, lc, ct)

mthSel;.(cl(ld(c)),loadClass, [String], Class) = (¢, m)
([{c;m,0,[], [1d(c), str(cn)] + [null]™ "™ =2)], hp, Ic, ct) ="
({c,m, p, 05 + ',)], hp', Ic’, ct’)

(RC1)

RC(c,cn)

(hp, lc, ct)y =>""(hp', Ic'{{ld(c), cn) v '}, ct')

(RC2)

Figure 3: Some transition rules

Within method code, classes are referenced by name only.
In order to verify if a class named c¢n is a subclass of a class
named cn’, the bytecode verification of the current JVM [16]
resolves cn and cn' (using the defining loader Id(c) of the
current class), and checks the subtype relation. In general,
if there is a branch in the control flow of the program, then
at the branch’s target that is reachable from more than one
preceding program point, the types denoted by the assigned
names must be obtained by “merging” the types denoted by
the assigned names at the preceding program points®. The
current JVM resolves the relevant class names assigned at
the preceding program points, and if successful, all result-
ing loaded classes are merged. The behavior just described
implies that classes that may not be used in execution, get
loaded during verification.

In our formalization, bytecode verification never resolves (or
loads) any classes, thus avoiding premature loading. In
order to deal with the “merging” operation, finite sets of
type names are assigned by bytecode verification, and sin-
gle class names cn are represented as singleton sets {cn} [5,
11, 18, 4]. In that case, the merging operation is simply set
union. In order to ensure that the class denoted by a set
{c¢n1,...,cny} is a subclass of the class denoted by a class
name cn, bytecode verification produces subtype constraints

5 “Merging” two classes means to find their first common
superclass.

(ld(c), enj, cn) for 1 < j < m, where class c is the current
class. These subtype constraints will then be added to the
global state of the executing JVM, and checked only when
the relevant classes are loaded.

In our formalization, bytecode verification is captured by a
function

bev : C x M — (StTy x SR) U {fail}
where

StTy = ((Pu(CN))* x (Pu(CN))*)* and
SR =P,(CN x CN).

The result of this function is determined by solving a con-
straint problem over semilattices as in e.g. [5, 18, 17]. If the
problem has no solution, fail is returned. Otherwise, the so-
lution contains a static type assignment (i.e., an element of
StTy) plus a finite set of subtype requirements (i.e., pairs of
class names). A static type assignment is a finite sequence
of pairs. Each pair consists of two finite sequences of finite
sets of class names: it gives sets of class names (as discussed
above) for operand stack and local variables at a program
point.

In our transition system, bytecode verification takes place
when a new class c¢ is introduced into the state of the JVM
(as formalized by a rule not shown here). Each subtype
requirement (cn, cn') returned by bev (if successful) is added

as a subtype constraint (ld(c), cn,cn’) to the global state
of the machine, provided the resulting set of loading and
subtype constraints satisfies the predicate css;. with respect
to the current loaded class cache lc.

As mentioned before, the predicate css.(ct) checks whether
any loading or subtype constraint in the set ct is violated
with respect to the current loaded class cache lc. Concretely,
we define for each ¢t € Ct an equivalence relation ~.; in-
duced by all loading constraints in ct as the smallest equiv-
alence relation over (L x CN) x (L x CN) satisfying

(I,Uen) € ct = (l,cn) ~o {I',cn),

and a subtype relation <. induced by all subtype con-
straints in ct as the smallest transitive relation over (L x
CN) x (L x CN) satisfying

(Ien) ~c (I';en') = (I,en) <ot (I, en’) and
(I,cn,cn') € ct = (I,cen) < (I, cn').

Then the predicate cssi.(ct) actually checks whether the
equivalence relation ~. coincides with the identity rela-
tion with respect to the loaded class cache lc, and whether
the subtype relation <., modulo the equivalence relation
~., coincides with the subclass relation <;. induced by the
loaded class cache lc. For example, for (I,1', cn), (I', cn, cn'},
(I',1",cn'y € ct, if le(l, en) Zile(l”, en'), then cssic(ct) is
false, even when (I', cn), (I, cn') € Dom(lc), i.e., even when
no classes have been loaded for the loading requests (I', cn)
and (I'; en').

4.3 Typesafety

As mentioned in Section 3, our transition systems formalize
a defensive JVM, i.e., one that ensures type safety by check-
ing conditions during execution. Our main theorems state
that validity is preserved by state transitions, and that from
a valid state it is always possible to move to another valid
state, unless either there is no more code to execute or some
of the listed conditions that correspond to runtime checks
in the actual JVM fail.

Let us consider, for example, rule (IV) above. The second
premise in the rule requires method resolution to succeed.
This condition corresponds to a check also performed by the
actual JVM - in fact, an exception is thrown if method res-
olution fails. The third premise, however, is a type-safety
check that the real JVM does not perform — in typical im-
plementations it just accesses a method table at the offset
determined by resolution. Our theorem proves that if our
defensive machine halts, the reason may be that method
resolution fails, but never that the type safety check fails.
This means that the type safety check is unnecessary, and
that the real JVM will always invoke methods in a way that
is consistent with the type of the invocation targets. Note
that since we do not consider exceptions, in the event that
method resolution fails our machine just halts. We could
add exceptions to our model without significant conceptual
modifications.

The notion of validity of states captures a well-formedness
and a (type) conformance property. Validity is proved to
be preserved by all transitions: any transition from a valid
state leads to a valid state. Given that the machine starts in

a valid state (which is true for any reasonable initial state),
validity is an invariant of the execution.

The well-formedness property includes simple requirements,
e.g. that the class cl(0) of each object o in the heap must be
in (the range of) the loaded class cache (i.e., cl(0) € R(lc)),
and some consistency relations, e.g. the relation cssi.(ct)
for the current loaded class cache lc and set of loading and
subtype constraints ct.

The conformance property is more complex, since it depends
on a subtype relation <. . defined by all loaded classes in
lc and all loading and subtype constraints in ct on not-
yet-loaded classes. Formally, the relation =< .., for each
lc € LC and ct € Ct, is defined as the smallest transitive
relation satisfying

(I, eny 2ot (I';en’) = (I, en) Xie,ee (I, cn'y and
(I, eny, (', cn'y € Dom(le) A le(l, en) <iele(l',en’) =
(I, en) <ic,et {I'y cn’).

The key idea behind <. . is that it relates loading requests,
instead of loaded classes.

At any time in execution, the loaded class cache may or
may not contain a loaded class for a given loading request.
The relation < . on loading requests considers not only
the actual subclass relation <., but also the constraints
through <. So, even if some classes are not (yet) loaded,
requirements for such (future) classes are captured by suit-
able constraints.

Note that <., <t and <. .+ are distinct relations.

The conformance property is captured by a conformance
relation cfm,, ., over V x L x CN, defined for each lc € LC
and ct € Ct as

Cfmlc,ct(vala C") g
(v#null = (ld(cl(v)),nm(cl(v))) Ric,et (I, en)),

This relation specifies the notion of a value v “conforming”
to the class for a loading request (I, cn) in case that class
is loaded. If the value is null, then the relation is (trivially)
satisfied (because null is a valid element of every type). Oth-
erwise, the defining loader ld(cl(v)) and name nm(cl(v)) of
the class of the value (object) are computed, and the relation

(ld(cl(v)), nm(cl(v))) Sic,et (I, cn)
must hold. It means that if (I, en) € Dom(lc), then
le(ld(cl(v)), nm(cl(v))) Xicle(l, en)

The subtle point here is the condition (I, cn) € Dom(lc).
In other words, if no class has been loaded for the loading
request (I, cn), the value v can be of any class.

5. RELATED WORK

The requirement that loaders in addition to class names are
needed to uniquely identify class objects is mentioned in the
Java language specification [13]. But it was not completely
understood what the concrete mechanism should be. The
bugs reported by Saraswat [20], Tozawa and Hagiya [21] and
ourselves [4] are evidence of this. Saraswat proposed a solu-
tion where method overriding is based on full types instead

of names only. However his solution may cause counter-
intuitive dynamic dispatch and requires a modification to
the class loaders’ API to avoid premature class loading.

Dean [6] presented probably the first formal model for Java
class loading, focusing on the static typing, using the PVS
verification system [9]. The model is clean and abstract, but
does not consider loading and subtype constraints.

Jensen, LeMetayer and Thorn [14] proposed an abstract
formalization of Java class loading, and showed how the
Saraswat bug is disallowed by the formalization. Their for-
malization pre-dates Sun’s response to the Saraswat bug and
differs in some aspects from the official semantics of the JVM

[2].

Goldberg [11] formalized a way to integrate some aspects
of class loading into bytecode verification. The idea is that
the bytecode verifier does not load classes to insure type
safety, but generates constraints that are checked when the
referenced classes are loaded. He did not consider multiple
loaders. Our approach includes and generalizes this idea.

Liang and Bracha [15] introduced the concepts of loading
constraints and loaded class cache. Their setting is infor-
mal, and thus it is hard to verify their claims, or see where
the problems are and how they are solved. This solution is
also documented in [16]. A good informal account of class
loading can be found in [12]. However, that account often
does not distinguish between the JDK 1.2 implementation
and the JVM specification.

Fong and Cameron [8] proposed a general, modular architec-
ture for mobile-code loading and verification, and discussed
a possible instantiation for Java loading and bytecode ver-
ification. In particular, their concept of proof obligations
corresponds to our concepts of constraints. However, they
do not consider multiple loaders.

Borger and Schulte [1] presented a fairly complete opera-
tional semantics of the JVM which includes loading. The
work follows the well-established approach of Abstract State
Machines and can take advantage of existing machine-sup-
ported simulation tools. Their model of loading considers
exceptions, but does not consider the loaded class cache and
loading and subtype constraints.

Tozawa and Hagiya’s formal model for a type safe JVM [22]
is closely related to ours, although their model and ours
were developed independently. Some of the components
considered in their model are also considered in ours. For
example, their loaded class caches and loading constraints
are very similar to ours, and their concept of widening con-
version roughly corresponds to our concept of subtype con-
straints. There are two main conceptual differences between
their model and ours. The first is that they do not consider
subtype constraints: their widening conversion is checked at
verification time, which means that the involved classes must
be loaded. This corresponds to Sun’s eager loading strategy
for verification. The second is that they do not consider ex-
ecution of code in user-defined loaders. Furthermore, they
take a different overall approach. They define an opera-
tional semantics that depends on an “environment”, which

consists of loaded classes, objects in the heap, etc. They
define judgements (such as widening conversion) holding in
an environment, and they prove some monotonicity proper-
ties for judgements w.r.t. extending environments (e.g., as
per loading of new classes). In our approach, instead, the
information about loaded classes, heap, etc. is part of the
state, and there are explicit state transitions that load new
classes, create new objects, and so on. Therefore, we believe
our model is more intuitive and closer to the JVM specifi-
cation and implementations.

Drossopoulou [7] developed a model for Java class loading,
focusing at an abstract level on the interface between execu-
tion, loading and verification. Her work introduces and ana-
lyzes a high-level language, which is closer to Java than the
JVM. Her model does not consider multiple loaders, while
ours does, but her work handles exceptions, while ours does
not.

Type-safe loading has also been studied in static settings
both for high-level modules (e.g. [3]) and for assembly lan-
guages (e.g. [10]). In these settings, the major difference be-
tween the dynamic and static loading is that the final steps
of loading and the formation of the “real” executable are de-
layed until loading-time [10]. The mechanism for dynamic
loading in Java is more complex, since it is possible that
a class that is used in the static type inference never gets
loaded, and that a loader itself is a user-defined program
and needs to be loaded at run time.

6. CONCLUSION

The mechanisms for Java class loading and bytecode verifi-
cation are complex. It is hard to ascertain properties such
as type safety using an informal specification. We have pre-
sented a formalization of class loading and formally proved
type safety.

Our formalization addresses most key issues mentioned in
[13, 16, 15] and in Sun’s current implementation. In ad-
dition, we have introduced subtype constraints so that the
bytecode verifier does not need to resolve any class, thus
avoiding premature loading and having a cleaner interaction
with the rest of the machine.

Our formalization models a simplified JVM. It includes es-
sential internal data structures such as the loaded class cache,
loading and subtype constraints. It supports selected lan-
guage features such as classes, objects, methods, and dy-
namic and lazy loading, but not interfaces, arrays, primitive
types, access control, exception handling, garbage collection
and multi-threading. So far we have not seen any funda-
mental problems to extending our formalization to address
the missing data structures and features.

Acknowledgements

The research has been partially supported by DARPA con-
tracts F30602-96-C0363 and F30602-99-C-0091. We sin-
cerely thank Gilad Bracha for numerous discussions, clar-
ifications and comments on early versions of the paper. We
also thank Sheng Liang for several useful discussions, and
Stephen Fitzpatrick for comments on the paper.

7. REFERENCES
[1] E. Borger and W. Schulte. Modular design for the
Java virtual machine architecture.
ftp://ftp.di.unipi.it/pub/Papers/boerger/
jvmarch.ps, 1999.

[2

G. Bracha. A critique of ‘Security and dynamic
loading in Java: A formalisation’.
http://java.sun.com/people/gbracha
/critique-jmt.html, 1999.

[3] L. Cardelli. Program fragments, linking, and

modularization. In Proc. 24th ACM Symp. Principles

of Programming Languages, pages 266-277, 1997.

[4] A. Coglio and A. Goldberg. Type safety in the JVM:
Some problems in JDK 1.2.2 and proposed solutions.
In Proc. ECOOP Workshop on Formal Techniques for

Java Programs, 2000. Long version available at
http://www.kestrel.edu/java.

[5] A. Coglio, A. Goldberg, and Z. Qian. Towards a

provably-correct implementation of the JVM bytecode

verifier. In Proc. OOPSLA’98 Workshop Formal
Underpinnings of Java, 1998.

[6] D. Dean. The security of static typing with dynamic

linking. In Proc. 4th ACM Conf. on Computer and
Communications Security. ACM Press, 1997.

[7] S. Drossopoulou. Towards an abstract model of Java

dynamic linking and verification. Department of
Computing, Imperial College, London, UK.

[8] P. Fong and R. Cameron. Proof linking: An
architecture for modular verification of
dynamically-linked mobile code. In Proc. 6th ACM

SIGSOFT Int. Symp. on the Foundations of Software

Engineering (FSE’98), 1998.
[9

Formal Methods Program - SRI Computer Science
Laboratory. The PVS specification and verification
system. http://pvs.csl.sri.com/, 1999.

[10] N. Glew and G. Morrisett. Type-safe linking and
modular assembly language. In Proc. 26th ACM
Symp. Principles of Programming Languages, 1999.

[11] A. Goldberg. A specification of Java loading and

bytecode verification. In Proc. 5th ACM Conference

on Computer and Communications Security, 1998.

[12] L. Gong. Inside Java 2 Platform Security:
Architecture, API Design, and Implementation.
Addison-Wesley, 1999.

[13] J. Gosling, B. Joy, and G. Steele. The Java™
Language Specification. Addison-Wesley, 1996.

[14] T. Jensen, D. LeMetayer, and T. Thorn. Security and

dynamic class loading in Java: a formalisation. In

Proc. IEEE Int. Conference on Computer Languages,

1998.

[15] S. Liang and G. Bracha. Dynamic class loading in the

Java™ virtual machine. In Proc. Conf. on

Object-Oriented Programming, Systems, Languages,

and Applications, pages 36—44. ACM Press, 1998.

[16]

[17]

18]

T. Lindholm and F. Yellin. The Java™ Virtual
Machine Specification - 2nd edition. Addison-Wesley,
1999.

Z. Qian. Standard fixpoint iteration for Java bytecode
verification. ACM TOPLAS. To appear.

Z. Qian. A formal specification of Javat™ virtual
machine instructions for objects, methods and
subroutines. In J. Alves-Foss, editor, Formal Syntaz
and Semantics of Java™. Springer Verlag LNCS 1523,
1998.

Z. Qian, A. Goldberg, and A. Coglio. A formal
specification of Java™ class loading. Long version.
http://www.kestrel.edu/java, 2000.

V. Saraswat. Java is not type-safe. Technical report,
AT&T Research, 1997.
http://www.research.att.com/"vj/bug.html.

A. Tozawa and M. Hagiya. Careful analysis of type
spoofing. In JIT’99 Java-Informations-Tage 1999,
Clemens H. Cap, Hrsg., Informatik aktuell, pages
290-296. Springer Verlag, 1999.

A. Tozawa and M. Hagiya. New formalization of the
JVM. http://nicosia.is.s.u-tokyo.ac.jp/members
/miles/papers/cl1-99.ps, 1999.

