Specware to Isabelle Interface
Manual

Specware to Isabelle Interface Manual
Copyright © 2006-2010 by Kestrel Development Corporation
Copyright © 2006-2010 by Kestrel Technology LLC

All rights reserved

The name Specware® is a registered trademark of Kestrel Development Corporation

Table of Contents

1. Concepts..... cessessnsssssanese 1
2. Usage ceseesssnnessnnees 3
2.1, StArtiNG UP ceeeiieeiiieeiieeee ettt ettt ettt ettt ettt et eanees 3
2.2. Using The Translatorc.ccooeeriiniiriieiieneeeeeeeeeeee e 3
2.3. Proof SCIIPLS 11 SPECS ...uvveieiiiiiiiiieiieeeeee ettt et 3
2.4, Translation TabIescoceoiiiiiiiiiiiiiee e 5

i

v

Chapter 1. Concepts

This document describes a Specware interface that allows the use of Isabelle/HOL to
discharge proof obligations that arise in developing Specware specifications. The
interface is essentially just a Specware Shell command and an Emacs command that
converts a Specware spec to an Isabelle theory, along with extensions in the Specware
syntax to allow Isabelle proof scripts to be embedded in Specware specs, and to allow
the user to specify translation of Specware ops and types to existing Isabelle constants
and types. The translation translates Specware declarations, definitions, axioms and
theorems to the corresponding Isabelle versions. The logics are similar so it is usually
straightforward to compare the source and target of the translations. In addition,
Specware has implicit type obligations, particularly sub-type obligations, that are
explicated in the Isabelle target.

We assume the user is familiar with Isabelle/HOL. See the tutorial at
http://isabelle.in.tum.de/documentation.html. The current version of the Isabelle
translator works with Isabelle2009-1. An example Specware spec with Isabelle proofs
is given in Examples/IsabelleInterface/BoolEx.sw. This spec corresponds to
the Isabelle theory in section 2.2.4 of the Isabelle/HOL tutorial.

To see examples of how to specify translation of Specware types and ops to existing
Isabelle types and constants, see the bottom of the Specware Base library specs such as
Library/Base/Integer.swoOr Library/Base/List. sw.

A Specware definition may translate into one of four different kinds of Isabelle
definitions: defs, recdefs and the newer funs and functions. Simple recursion on
coproduct constructors translates to fun, but more complicated recursion is usually
translated to fun. Some recursion still translates to recdef because the fun and
function support is new, but the user can force translation to function.
Non-recursive functions are translated to defs, except in some cases they are translated
to fun which allows more pattern matching.

The main difference in the logics of Specware and Isabelle/HOL is that Specware has
predicate sub-types. In most cases a sub-type is translated to its super-type and
translations of quantifications over a sub-type introduce an explicit application of the
sub-type predicate. A subtlety is that we need to consider the case that polymorphic
type variables may be instantiated with subtypes. When necessary, e.g., for a predicate
like injective?, a single op is translated to two Isabelle ops, the ordinary one and
one with an extra argument for a predicate or predicates corresponding to subtype
predicates for type variables. Another subtlety is with respect to equality of functions
with subtype domains. These are translated to Isabelle functions with expanded
domains, but to preserve equality these are regularized to have a single value outside

Chapter 1. Concepts

the restricted domain. This regularization is not needed if the function is applied to an
argument, because it may only be applied to an argument for which the predicate holds,
so in some cases we do the regularization lazily, i.e., give the function its unregularized
definition, but regularize it in contexts where it may be used in an equality.

There is a capability for translating a sub-type differently from its super-type. This is
used for the type Nat which is translated to nat rather than int. In general, this may
lead to coercions between nat and int being inserted.

This initial translator has a few limitations. It should translate all Specware specs but
not all translated definitions and constructs will be accepted by Isabelle/HOL. In
particular, only case expressions that involve a single level of pattern-matching on
constructors are accepted. An exception, is that nesting is allowed in top-level case
expressions that are converted into definition cases.

Chapter 2. Usage

2.1. Starting Up

Specware and Isabelle can both be started up normally, each running under their own
XEmacs job, but it convenient to run them under the same XEmacs. To do this run

Isabelle_Specware.

Currently Isabelle does not run under Windows except with cygwin so this script is not
available there. However, the translator can run from Specware even if Isabelle is not
running.

2.2. Using The Translator

The translator is called using the emacs command Generate Isabelle Obligation
Theory from the Specware menu (with keyboard shortcuts c—c c-i or c-c TAB). The
translation is written to a file in the Isa sub-directory of the current directory and the
file is visited in a buffer. The user may then process the Isabelle theory providing proof
steps as necessary. These proofs may then be copied back to the Specware spec so that
the next time it is translated, the translation will include the proofs.

The translator may also be called using the Specware Shell command
gen-obligations (or the abbreviation gen-ob1ligs) applied to a unit id.

2.3. Proof Scripts in Specs

An embedded Isabelle proof script in a Specware spec consists of an introductory line
beginning with proof Isa, the actual Isabelle script on subsequent lines terminated by
the string end-proof. For example, the simple proof script apply (auto) can be
embedded as follows:

proof Isa
apply (auto)
end-proof

If the last command before end-proof is not done, sorry, ged or by, the command
done is inserted.

Chapter 2. Usage

The proof script should occur immediately after the theorem or definition that it applies
to. If the script applies to a proof obligation that is not explicit in the spec, then the
name of the obligation should appear after proof Isa, on the same line. There are rare
cases where an obligation is inserted between a definition and an immediately
following proof script, which causes the proof script to be ignored. If this happen, then
the name of the op should be explicitly given.

If the user does not supply a proof script for a theorem then the translator will supply
the script by auto which may be all that is required to prove simple theorems.

Annotations for theorems may be included on the proof Isa line. For example,

theorem Simplify_ wvalif normif is
fa(b,env,t,e) valif (normif b t e) env = valif (IF(b, t, e)) env
proof Isa [simp]
apply (induct_tac b)
apply (auto)
end-proof

translates to

theorem Simplify_valif normif [simp]:
"valif (normif b t e) env = valif (IF b t e) env"
apply (induct_tac Db)
apply (auto)
done

In this example we see that universal quantification in Specware becomes, by default,
implicit quantification in Isabelle. This is normally what the user wants, but not always.
The user may specify the variables that should be explicitly quantified by adding a
clause like fa t e. to the proof Isa line. For example,

theorem Simplify_valif_normif is
fa(b,env,t,e) valif (normif b t e) env = valif (IF(b, t, e)) env
proof Isa [simp] fa t e.
apply (induct_tac b)
apply (auto)
end-proof

translates to

theorem Simplify_valif normif [simp]:
"\<forall>t e. valif (normif b t e) env = valif (IF b t e) env"

Chapter 2. Usage

apply (induct_tac b)
apply (auto)
done

The \<forall> will be displayed as a universal quantification symbol using
X-Symbol mode in Isabelle. Note that instead of fa in the proof Isa line the user may
use the X-Symbol for universal quantification.

Recursive functions that are translated to recde fs can have a measure function
specified on the proof Isa line, by including it between double-quotes. For example:

proof Isa "measure (\<lambda> (wrd,sym). length wrd)" end-proof

2.4. Translation Tables

A translation table for Specware types and ops is introduced by a line beginning proof
Isa Thy_Morphism followed optionally by an Isabelle theory (which will be imported
into the translated spec), and terminated by the string end-proof. Each line gives the
translation of a type or op. For example, for the Specware Integer theory we have:

proof Isa Thy_Morphism Presburger
type Integer.Int -> int
type Integer.Integer —-> int

type Nat.Nat -> nat (int,nat) [+, *,div,rem,mod,<=,<,>=,>,abs, min, max
Integer.zero -> 0

Integer.one -> 1
Integer.ipred -> pred
Integer.isucc —-> succ
IntegerAux.-— -> -

Integer.+ -> + Left 65
Integer.- -> - Left 65
Integer.x* > % Left 70
Integer.<= -> Left 50
Integer.< -> < Left 50
Integer.>= -> Left 50
Integer.> -> > Left 50
Integer.sign -> sign
Integer./ -> div Left 70
Integer.div -> div Left 70

Chapter 2. Usage

Integer.mod -> mod Left 70
Integer.min -> min curried
Integer.max -> max curried

end-proof

A type translation begins with the word type followed by the fully-qualified Specware
name, —> and the Isabelle name. If the Specware type is a sub-type, you can specify
coercion functions to and from the super-type in parentheses separated by commas.
Note that by default, sub-types are represented by their super-type, so you would only
specify a translation if you wanted them to be different, in which case coercion
functions are necessary. Following the coercions functions can appear a list of
overloaded functions within square brackets. These are used to minimize coercions
back and forth between the two types.

An op translation begins with the fully-qualified Specware name, followed by —> and
the Isabelle constant name. If the Isabelle constant is an infix operator, then it should be
followed by Left or Right depending on whether it is left or right associative and a
precedence number. Note that the precedence number is relative to Isabelle’s
precedence ranking, not Specware’s. Also, an uncurried Specware op can be mapped to
a curried Isabelle constant by putting curried after the Isabelle name, and a binary op
can be mapped with the arguments reversed by appending reversed to the line.

	Specware to Isabelle Interface Manual
	Table of Contents
	Chapter 1. Concepts
	Chapter 2. Usage
	2.1. Starting Up
	2.2. Using The Translator
	2.3. Proof Scripts in Specs
	2.4. Translation Tables

