Toward a Provably-Correct | mplementation
of the JVM Bytecode Verifier

Alessandro Coglio

Allen Goldberg

Zhenyu Qian

Kestrel Institute

coglio, goldberg,

Abstract

This paper reports on our ongoing efforts to real&
provably-correct implementation of the Java Virtha-
chine bytecode verifier. We take the perspectiae tkite-
code verification is a data flow analysis problemmmore
generally, a constraint-solving problem on latticé&'e
employ 8ECWARE a system available from Kestrel Insti-
tute that supports the development of programs from
specifications, to formalize the bytecode verifend to
formally derive an executable program from our sfpec
cation.

1. Introduction

DoD applications are increasingly being implemented
in distributed computing environments. These emviro
ments exacerbate security concerns, especially wien
bile code is employed. Java provideEnguage-based
mechanismshat help address many security concerns. In
particular, buffer overflow attacks, which accodiot as
much as 50% of today’s system vulnerabilities, eitpl
the absence of type safety in many languages, yo@b
and C++. Java is a type safe language and so aliesn
this mode of attack. Furthermore, Java uses largguag
based mechanism for insuring correct program ligkin
and the enforcement of security policies.

In the Java language framework, Java source code is

compiled to Java Virtual Machin@VM) code, usually
referred to adytecode It is bytecode rather than Java
source that is transmitted as mobile code. The pékt
not trust that this code is the unmodified outpiua@or-
rect Java compiler. Thus, as part of the loadimcess
the JVM verifies that the purported bytecode is validv
code. This verification procedure, performed by biyee-
code verifier,is non-trivial. A major obejective is to es-
tablish the type safety of the code using data flogth-
ods.

This paper reports on our ongoing efforts to realz
provably-correct implementation of the Java Virtivd-
chine bytecode verifier (or simply theerifier) from a
formal specification using the PECWARE] System.
SPECWARE [1], a system available from Kestrel Institute
[2], supports the formal and provably-correct depel
ment of programs from specifications written inpedf-
cation notation based on high-order logic.

gian@kestrel.edu

In previous papers [3, 4] we have specified theassem
tics of theJVM verifier. Collectively these papers deal
with most aspects of thi/M includingJVM subroutines,
dynamic class loading, object initialization, irfeare
types, arrays, and all primitive types. These papake
the perspective that bytecode verification isleda flow
problem or more generally, eonstraint-solving problem
on lattices One advantage of this approach is that imple-
mentation of a bytecode verifier from such a speaiion
can be derived as an instantiation of a generiorgkgn
for constraint solving.

In this paper, we describe our progress in forradiz
the specifications in those papers usirEGVARE and
we describe the refinement methodology used tamhata
implementation.

This paper is organized as follows. The next sactio
gives a detailed overview of our approach. In $ect
we describe how our specification of the verifigrfor-
malized in $ECWARE In Section 4 we describe its re-
finement to a program usingP&CWARE In Section 5 we
give a small example. This is followed by a deguipof
related work and our conclusions.

2. Approach

2.1. Bytecode Verification, Data Flow Analysis,
and Constraint Problems

Data flow analysis is a methodology used to esthbli
assertions at program points that are invariant ale
program executions. Because the types of locahbbas
and stack elements vary duridgM execution, it is natu-
ral to view the bytecode verifier as a data flowlgem.
To specify a particular data flow problem, a cohftow
graph, a semilattice, an initial state, and tranfactions
are specified. The semilattice captures the alspas
gram properties of interest, and transfer functiosgture
the behavior o§VM instructions with respect to the semi-
lattice. The data flow framework includes algoriththat
solve general data flow problems by fixed-pointatan.
Theorems that assert algorithm termination, soussine
and give a characterization of the accuracy ofstiiation
have been proved [5] In particular, soundness andit
nation are assured if the semilattice has finitighteand
the transfer functions are monotone. In additidrthe

transfer functions are distributive, the algorithirlds the
meet-over-all-paths solution, i.e. the sharpesnost ac-
curate result possible. In our specification of veeifier,
construction of a flow graph is trivial. The mainadlenge
is to specify the semilattice and transfer function

In formalizing our specification, we chose a moea-g
eral constraint framework [6] instead of data flanaly-
sis. Letl =[IL,=,Mbe a semilattice arid a collection of
monotone functions of various arities oderLetV be a
collection of variable names. Letdenote a term formed
from constantsc O L, variables,v [0 V, and function
symbols fromF. A constraint solving problens a collec-
tion of definite inequalitiesi.e. inequalities of the form
VvE torc = t. A solution is an assignmeht V - L satis-
fying each inequality. A solutioM is maximalif for any
solutionl and any variablg, I(v) = M(v). In this paper, a
reference to aonstraint solving problenor, simply, a
CSPrefers to a problem of the described form.

It is not difficult to see that a data flow problemay
be mapped to @SPproblem. For simplicity, assume each
node of the control flow graph consists of a singM
instruction. Letf; denote the transfer function formalizing
the behavior of the instruction at nadelntroduce a con-
straint variable,u; for each nodea of the control flow
graph. For each edgg) introduce the inequality;, = tf;
(u).Our specification of the verifier generat€Sks of
this form. Many of the properties enjoyed by thaad
flow architecture are also true of theS8Ps. A chaotic
fixed-point iteration algorithm will converge to e&h
maximal solution. The complexity of the algorithis
polynomial.

We chose to express the bytecode verifier &3S&
problem for the following reasons:

» We wish to explore the applicability of Kestrel-
developed synthesis technology [7] that has beed us
to optimize a related class of constraint problems.

« This results in a robust specification that be ban
modularly enhanced to perform other security-relate
static checks on bytecode, for example information
flow analysis. More generally the bytecode verifier
may be viewed as the verification condition gerarat
of a proof carrying code implementation.

2.2. Some Salient Aspects of Our Bytecode
Specification

The bytecode verifier determines ifJ&M program is
well typed. Because the methods in a class referénc

stance variables and methods defined in other edass
type consistency requires checking tinéernal consis-
tencyof a class, as well as iexternal consistencwith
referenced classes. Because class files are |@hateohi-
cally, and because it is desirable to minimize tansts
on when classes gets loaded, the verifier canratnas
that a referenced class has been loaded priorrificae
tion of a referencing class. Thus, our specificgatioain-
tains aglobal typing contextonsisting ottype assertions
derived from the declarations in a class, e assump-
tions derived from references to external classes. The
global typing context is one component of the sattide.
Because we make no assumptions about the order that
classes are loaded (so the least general commar-sup
type of two object classes is generally not knowmem
the class is verified), and because there is natgse
common super-type of two interface types, thereads
meaningfulmeetoperation definable fodVM reference
types. Instead, we usesatto represent reference types.
The intended meaning is that the static type afarence
is one of the (reference) types in the set. Thésseesemi-
lattice with union as the meet operation. Verifiocatof
thei nvokevi rt ual and other instructions add subtype
assumptions to the global typing context.

2.3. Formalization of the Bytecode Verifier

2.3.1. Architectureof theverifier asa constraint

problem. GLOBAL
CLASS ASSERTIONS &
FILE ASSUMPTIONS
»
\
\\
CONSTRAINT \
GENERATOR \
‘\
/ \A |
GLOBAL !
CONSTRAINTS ASSERTIONS &
ASSUMPTIONS

N\

CONSTRAINT /
SOLVER /
//
X 4 /
//
YES / NO GLOBAL -
ASSERTIONS &
ASSUMPTIONS

Figure 1: Verifier Architecture

Using the constraint approach, verification of assl

_*If aJVMinstruction raises an exception, its behavior file is performed in two steps, as illustrated igiFe 1.
differs from normal execution. Therefore, our attua First, the global typing context is updated witlsextions

specification associates transfer functions witgesd not
nodes.

and assumptions derived from declarations in tmestamt

pool. Furthermore, a constraint problem is gendrébe
each method defined in the class. In generatingctime
straint problem, it is assumed that the classriieets the
static verification checks described in Section @f98].
In the second phase, the constraint problem foh eac
method is solved and the global typing contextgdated
with typing assumptions derived from the methodecod
As defined above, a semilattice, a collection ohmo
tone functions on the semilattice, and a set djuadties
parameterizes &SP The semilattice and monotone func-
tions are defined once for tl&/M — only the generated
constraint inequalities depend on the method bearg
fied.

2.3.2. Semilattice construction. We define a semilattice,
Lww, that characterizes the information that the iarif
maintains at each program point. This information i
cludes the type of local variables and elementghef
stack, as well as the global typing context, whietiudes
assertions and assumptions about class declaradiwhs
subtype relationships, and the signature of refmén
methods and instance variables. The type informatio
regarding local variables and stack elements isimoply
the static type of the entity, but holds informatiabout
the initialization status of objects, and otheromfation
needed to verify the proper use of the jsr andnstuc-
tions.

We defineL,w from some simple point and set semi-

lattices usingsemilattice-building operations
x takes two semilattices and forms their product;

takes a semilattice and forms a semilattice of prod-
ucts (sequences) of elements from

seq

takes two semilattices and forms their disjoinhs

/ takes a semilattice and a suitable congrueratéae
and forms a semilattice whose elements are the
equivalence classes induced by the relation. Gee u
of this operation is to identify the bottom elemeft
a binary product with the bottom elements of the
component semilattices;

takes a semilatticke and forms a semilattice of
bounded stacks whose elements are takenlfrom

stk

Note that these operations are generic semilatiae
structions of utility beyond thévVM.

Ly oL
prim — vars
Lrefbase k)-l_
lac
Lother stk
L JVM
gl-assum—@
L | o : Lglobal
gl-assert

Figure 2: JVM Semilattice Construction

Figure 2 is a simplified view of the constructiofh lgyy
using the semilattice-building operations. In thgurfe,
the ovals represent operations and unboxed textahess
of the resulting semilattices. Thus,se Used to represent
a stack element or local variable, is the (cascpadisibint
sum of the three semilattices shown. As descrilire,
the semilattice that represents a reference is seseilat-
tice of reference typesyaseis then used to form semilat-
tices representing the stack and local variablggssert
represents the set of global assertions. The quaijsera-
tion is applied tolg..sser to CONstruct a semilattice that
identifies in a single equivalence class all inéstest
assertion sets and the bottom element of the siicgla

2.4. Monotone Functions and Constraint I ne-
qualities

Roughly speaking, our specification defines a mono-
tone function for each transfer function correspogdo a
JVM instruction. The transfer functions are constrdcte
from monotone functions defined on component semila
tices ofL,w. For examplepushandpop are defined on
stack semilattices, proved to be distributive (leemono-
tone) functions, and used in the definition of &fan
functions that manipulate th&VM stack. Most transfer
functions are composed from constructor or destruct
operations (likgpushandpop of the semilattice-building
operations (likesti(L)).

More precisely, because some transfer functions de-
pend on the operand of the instruction, we actuddy
fined families of parameterized transfer functiofar
example, the transfer function for that f i el d instruc-
tion is parameterized by the name of the objecsctn-
taining the field and type of the referenced field.

Analysis of a method generates a constraint inégual
of the formy; = tf; (u;) for each edgdi, j) of the control
flow graph. Constraints are represented as paitsrofs,
using an abstract data type for terms. The comstsaiv-
ing algorithm invokes a functioaval (t, e)that evaluates
a termt given an environmeng that maps variables to
semilattice values.

3. Formalization in SPECWARE

As mentioned in Section 1,PBCWARE is a system
supporting the formal development of programs from
specifications. Its core functionality is based cear
mathematical concepts from logic and category theor
and made accessible to the developer through digedp
user interface. A specificatiorsfe¢ in SPECWARE is a
theory in high-order logic. The system provides\eomn
ient mechanisms to build more complex specs ostrof
pler ones. One such mechanisninistantiatinga param-
eterized spedpsped: roughly, a pspec is a spec with an
explicit “formal parameter” part, which upon instiation
gets “replaced” with an “actual parameter” spec.

Formalizing bytecode verification inPEBCWARE along
the lines described in Section 0, amounts to foizimay:
the JVM semilattices; the transfer functions for thHéM
instructions; the format of class files; the forrh aon-
straints; which constraints are derived from a gietass
file; and what is a (maximal) solution to a setaoin-
straints. In this section, we provide an overviefatie
specs we developed for some of these conceptsvdid a
cluttering this overview with non-substantial detaihe
examples we present are slight simplifications loé t
specs we actually wrote.

SPECWARE provides a library of specs for some popu-
lar concepts (e.g., sets, ordering relations, ameys).
Starting from some of them, we incrementally boilir
specs in a structured way, making extensive ugpspécs
and instantiation, as well as of other compositioecha-
nisms. We followed the rationale of “factorizingbro-
mon sub-concepts as much as possible, in orderao p
duce more re-usable, readable, and elegant spetact|
many of the specs we wrote are completely indepgnde
of bytecode verification.

First of all, we wrote specs for (generic) semitais,
such as

spec SEM LATTICE is

sort P
op lg: P, P-> Boolean
op neet P, P->P
axiomreflexivity is

I a(x, x)

axi om anti-synmretry is
_ lg(x,y) & lq(y,x) => x=y
axiomtransitivity is
lalx,y) &lq(y,z) =>1q(x,2)
axi om great es-1 ower-bound is
lg(neet(x,y),x) &
lg(rmeet(x,y),y) &
(la(z,x) & la(z,y)=>
la(z, neet(x,y)))
end- spec

We wrote pspecs formalizing the construction of se-
guence semilattices, stack semilattices, and soFon.

instance, we wrote a pspecSEQUENCE- of -
SEM LATTI CE having SEM LATTI CE as formal pa-
rameter, and defining a new sort of tuples of saftide
points, and how the partial ordering and binaryrafien
can be lifted to such tuples:

pspec SEQ of - SEM LATTICE i s
paraneter SEM LATTI CE

definition of neet :
Seq, Seq -> Seq is
axiom nmeet (x,y) =z <=>
fa(i) conmp(z,i) =
meet (comp(Xx,i),
comp(y,i))

Analogously, we wrote pspecs STACK- of -
SEM LATTI CE (with push and pop operations),QUO-
TI ENT- of - SEM LATTI CE, etc. Next, we suitably in-
stantiated them, starting frodvVM-specific semilattices
such as:

spec JVM PRI M Tl VE- SEM LATTICE i s
sort PrinSL
const int
const fl oat
const unusabl e :

Pri nSL
Pri nSL
Pri nSL

définition of neet is
axi om neet (int,float)=
) =

unusabl e
axi om neet (i nt,int n

t

In order to formalize definite inequalities, termger a
semilattice with monotone functions must be foreedi.
Abstracting a little bit from that, we first wrote spec
ALGEBRA and a pspeCERMS —over - ALGEBRA having
ALGEBRA as formal parameter:

spec ALGEBRA is

sort Dom

sort Fun

op arity : Fun -> Nat

op apply : Fun, Donlist -> Dom

pspec TERMS-over-ALGEBRA i s
par anet er ALGEBRA

sort Term

sort Var

op const-term: Dom-> Term

op var-term: Var -> Term
op funapp-term:
Fun, TernlList -> Term
sort Asg
op asg-val : Asg, Var -> Dom
Term Asg -> Dom

op eval

Next, instantiating the carridomto be a semilattice,
adding axioms stating monotonicity for the elemeints
Fun, and pairing generic terms with constant terms or
variable terms, we formalized definite inequalitiess
well asCSPs as sets of definite inequalities, and what is a
(maximal) solution.

Our specs for transfer functions define a sortliem,
and anappl y operation to apply them to tl#&/M semi-
lattice points. To avoid lengthy and repetitiveidiions,
we defined them as suitable compositions of sonxd-au
iary functions. For instance, we defined a functidmich
pops the top elements ofJ&¥M stack semilattice point if
they satisfy a “pattern” (e.g., the top two elenseln¢ing
both integers), and returris otherwise. Here is an ex-
cerpt:

spec TRANSFER- FUNCTI ONS i s
sort TransFun

op apply :

TransFun, JvnSL -> JvnSL
const iadd : TransFun
axi om

fa (...stk:StkSL...)
apply(iadd,...stk...) =
(...push (int,
pop(pattern(int),
stk))...)

Clearly, by instantiating the definite inequalitggecs
with the JVM semilattice and the transfer functions, we
exactly obtained the spec fd¥M constraint problems.

SPECWARE provides facilities to validate specs, by al-
lowing the developer to enrich them with conjectustat-
ing putative properties of the specs. The develaaer
then ask the system teerify a spec, which amounts to
invoking a theorem prover (currently, Specware d8-c
nected to various theorem provers) to prove alldbe-
jectures of the spec. In all our specs we inclucedec-
tures, stating for instance that tBéM primitive semilat-
tice is really a semilattice, that a (generic) e semi-
lattice is really a semilattice, and that our tfangunc-
tions are monotone:

t heor em primreflexivity is
fa(x: PrinSL) 1|q(x,X)

t heor em seq-transitivity is
fa(x,y, z: Seq)
Fa(x,y) & la(y, z)

t heor em t r ansf - f un- monot oni ci ty is

=> 1q(x, z2)

fa(tf: TransFun, Xx,y:JvnBL)
la(x,y) =>
l'g (apply(tf,x),
appl y(tf,y))

4. Refinement in SPECWARE

In SPECWARE programs are formally derived from
specs byefining specs. Roughly, refining a spec amounts
to “mapping” it into a new spec, which interprdte ton-
cepts of the initial one in terms of other conceptsese
other concepts should be closer to those of somgetta
executable language, and if they are sufficienthse,
executable code can be generated byCS/ARE Refine-
ments can be sequentially composed, thus allowattg ¢
to be derived from specs through a series of ssbm@es
steps. Furthermore, a refinement for a compouna spe
(e.g., an instantiated pspec) can be obtained fefime-
ments for the individual components (e.g., for fspec
and for the actual parameter). CurrentlpESWARE can
generate code for (functional subsets o§pland C++.

SPECWARE provides built-in mechanisms to represent
constructed sorts (e.g., products, sums, and qus}ién
target languages in terms of the representationthef
component sorts. It also provides a library ofrrefhents
of common abstract structures (such as sets amg) bag
more concrete structures (such as lists and arralyeh
are “directly” representable in target languagedsartig
from these mechanisms and refinements, we haveeckfi
our specs to isp code. For instance, we refined théM
primitive semilattice points to an enumerationmtegers,
with semilattice operations defined by cases:

.d.e.fi nition of unusable : PrinBL is

axi om unusable = 1
definition of int

axiom int = 2
definition of fl oat

axiom float = 3

PrinSL is
PrinSL is

definition of neet :
PrinmSL, PrinSL -> PrinSL is
axi om ~(x=y) =>
nmeet (X, y) = unusable
Sequence and stack semilattices have been refined t
array and lists. Operations have been re-phraseeto
constructive, as in:

definition of neet :
Seq, Seq -> Seq is
axi om neet (x,y) =

meet -aux (x, vy, x, 1)
definition of neet-aux :
Seq, Seq, Seq, Nat -> Seq is
axi om geq(i,size(z)) =>
meet - aux(x,y,z,i) = z
axiomlt(i,size(z)) =>
meet - aux(x,y,z,i) =
nmeet - aux(Xx,y,
change(z, i,
meet (conp(x, i),
conp(y,i))),

succ(i))

An important refinement is to provide an actualoalg
rithm to compute the maximal solution of a set efinite
inequalities. We have in fact built and refined cspéor
the algorithm proposed in [6]. For example, a cast
of the formu; C tfi,q((Us) is represented in our generated
L1sP code as (roughly):

((VAR 3) (FUN-APP (TF 16) (VAR 4)))

And here is how theneetfunction over the]VM primitive
semilattice is refined toisP:

(DEFUN MEET-PRIM (X Y)
(COND((NOT (= X Y)) 1)...))

We are going to further refine our specs for optation,
in order to generate more efficient code.

5. Example

Figure 3 below gives a method together with anaxpl
nation of each instruction. We assume that the odkth
contained in the clas€. Note that in the instruction
putfield (Fld, D C,Fldisthe name of the field,
D the type of the field an@ the name of the class contain-
ing the field. Since program poithas two predecessors
5 and6, and the top stack entry may hold either the first
or second actual parameter.

For the instructions in the example in Figure 3dee
fine the following transfer functions of type JvmSk
JvmSL:

tfa0ad ind (@ST,asm,var,stk :=
if isRef(varng) then (asr,asm,var,pusstk varig))
elsel

tfit_acmpeq pp (@ST,@asm,var,stk) :=
if isRef(top(stk) and isReftop(pop(stk))
then(asr,asm,var,pofpop((stk)) elsedd

tfgoto pp(U) = U

tfouttied (Fia.0.c) (@ST,asm,vars,sjk=
(asr,
asm0 {subtypindtop(stk),D),

subtypirgop(pop(stk),C), FI d fieldqC)},

vars, pojgpop(stk))

tfreturn (U) =T

where T denotes an artificial top element in tkenis
lattice JymSlL,. and the functiorsubtyping({ref,...,ref},
ref) yieldstrue if and only if eachref; is a subtype ofef’
in theJVM.

We view the instructiom et ur n as having a special
final node as its successor program point. The rafad
each method has a special transfer function

head_tf(asr,asm := (asr,asmcnam, ty, ..., tym,
UNUSy,..., UNUSL[l)

whereasr andasmare given by an invoking site of the
method,cnamis the class containing the declaration of
the method, anty, ..., ty, are types of the parameters.

A constraint is created for each instruction. thetin-
struction be at the program pojpp and have a successor
program poinpp". Then the constraint is of the form

Upy E tf (Upp)
For the method head, a constraint
Up = head tf (cnam, ty, ..., ty,, asr, asm

is created at program poif, whereasr and asm are
given by an invoking site of the method.

Void m(J1, J2)

/1 The method has two arguments of interfatesandJ 2

/' Sett hi s-object and the actual parameters in the variables;

/| Load the object reference in variable 0 onto thels
/| Load the object reference in variable 1 onto thels
/| Load the object reference in variable 2 onto thels
/1 If the top entries in the stack are equal, thetods

/' Load the object reference in variable 1 onto theks

/' Load the object reference in variable 2 onto theks

limt local 3 /| The method has 3 variables
/| setthe empty stack
0 aload O
1 aload 1
2 al oad 2
3 if_acnpeq 6
/| else go tat.
4 aload 1
/1 Go to7.
5 goto 7
7 putfield (FId,Dc)

return

/' Put the top stack entry into the fidgttid of the object
/' | referenced by the second top stack entry
/| Terminates and returns.

Figure3: A Simple M ethod

Program vars
void nm(J1,J2)

0 aload O [C, J1,J2]
1 aload 1 [C,J1,32]
2 aload 2 [C,J1,32]
3 if_acnpeq 6 [C,J1,32]
4 aload 1 [C, J1,J2]
5 goto 7 [C,J1,32]
6 al oad 2 [C,J1, 2]
7 putfield (Fld,D C [C,J1, 2]
8 return [C, J1,J2]

Figure 4: Legal Location Types

stk asm

asmas input
fl asm
[C] asm
[C, J1] asm
[C,J1,J2] asm
[C] asm
[C, J1] asm
[C] asm
[C, {31, J2]] asm
0 asm{

{subtyping ({J1, J2}, D),
Fld O fields(C)}}

for the Method in Figure 3

Figure 4 shows the maximal solution to the con-
straint inequalities generated for the method code.
Note that at program point, the semilattice value of
the top entry of the stack is a set with two eletsen
since its static type is either the static typehaf first
or second actual parameter of the method. In akrot
cases where a stack or local variable holds aeeéer
type, the set of possible types is a singletonsiho
plify, we have suppressed braces around singletts s
The constrainsubtyping({J1, J2}, D) in theasm com-
ponent at program poir@ ensures thabD is a super-
interface ofJ1 andJ2.

6. Related Work

Bertelsen formalizedVVM instructions using state
transitions [9]. Cohen described a formal semartfcs
a subset of thdVM, but runtime checks are used to
assure type-safe execution [10]. Both approachés di
not consider static type checking, thus are natatly
relevant to bytecode verification.

Stata and Abadi [11] proposed a type system for
subroutines, provided lengthy proofs for the sowssn
of the system and clarified several key semansiads
about subroutines.

Qian [3] presented a constraint-based typing system
for objects, primitive values, methods and subrmsi
and proved the soundness.

Freund and Mitchell [16] made a significant exten-
sion of Stata and Abadis type system [11] by coasi
ing object initialization.

Hagiya and Tozawa [12] presented another type
system for subroutines, where the soundness psoof i
extremely simple. Hagiya and Tozawa discussed $ssue
relating to implementation of their type systemp bu
they did not formally describe their implementation

In fact, since they did not consider objects, theif
plementation did not address many of the issuets tha
we have.

Pusch [13] formalized a subset of théM in the
theorem prover Isabelle/HOL based on the work by
Qian [3], thus achieving a high level of assurameé.
of this work is basically aimed at achieving a sbun
specification, but did not consider how to devebop
provably correct implementation.

Goldberg [4] directly used data flow analysis to
formally specify bytecode verification focusing on
type-correctness and global type consistency for dy
namic class loading. He successfully formalizedag w
to relate bytecode verification and class loading.

Saraswat [14] studied static type-(un)safety of
JAavA in the presence of more than one class loader.
We do not consider class loaders in this paper.

The Kimera project [15] was quite effective in de-
tecting flaws in commercial bytecode verifiers. inds
a comparative testing approach, they wrote a refere
bytecode verifier and tested commercial bytecode ve
fiers against it. A particularly interesting poimés that
their code is well structured and organized, anil/ed
from the EnglishJVM specification. It achieves a
higher level of assurance than commercial implemen-
tations. However, since there is no formal speaific
tion, it is not possible to reason about it, oabbsh its
formal correctness.

7. Conclusions and Future Work

We have specified and implemented via refinement
nearly all aspects of the bytecode verifier. OwgcHp
cation omits treatment of exceptions and the useof
instructions:j sr andret. While these instructions
add significant complexity to the bytecode verifiae

have previously formalized their semantics and ekpe
their specification and refinement to be a strdaght
ward extension of our current verifier. Performante
our generated code is sufficient to serve as aaerée
implementation the verifier.

We plan to compare the results from our derived
verifier with other bytecode verifiers. This wilbn-
tribute to increasing our assurance that the dpeeif
tion captures the intended semantics of the informa
specification and may expose errors in these atber
fiers.

We are currently using a similar approach to spec-
ify another security-critical component of the JVitle
class loader.

8. References

[1] Srinivas, Y.V. and R. Jillig. Specwate Formal Support
for Composing Software. IrRroceedings of the Confer-
ence on Mathematics of Program Construction, B. Moel-
ler, Ed. Berlin: Springer-Verlag, 1995, pp. 399242
Lecture Notes in Computer Science, Vol. 947.

[2] Kestrel Institute KEEP
http: //iwww.kestrel .edu/HTML/keep.html/.

[3] Qian, Z. A Formal Specification of JavaVirtual Ma-
chine Instructions for Objects, Methods, and Sutines.
In, Formal Syntax and Semantics of Java//, J. Alves-
Foss, Ed. Berlin: Springer-Verlag, LNCS #1523, 1998
pp. 271-312..

[4] Goldberg, A. A Specification of Java LoadingdaByte-
code Verification. InProceedings, 5th ACM Conference
on Computer and Communications Security. San Fran-
cisco, CA., November 1998. ACM Press.

Program.

[5] Muchnick, S.Advanced Compiler Design and Implemen-
tation. San Francisco, CA: Morgan Kaufmann, 1997.

[6] Rehof, J. and T. Z/EMogensen. Tractable Congiaim
Finite Semi-lattices. InThird International Satic Analy-
sis Symposium (SAS), 1996, pp. 285-330. Springer-
Verlag.

[7] Westfold, S.J. and D.R. Smitl8ynthesis of Efficient
Constraint Satisfaction Programs. Kestrel Institute Tech.
Rep., 1998. .

[8] Lindholm, T. and F. YellinThe Java// Virtual Machine
Soecification. Reading, MA: Addison-Wesley, 1996.

[9] Bertelsen, PSemantics of java byte code. Copenhagen:
Royal Veterinary and Agricultural University TedRep.,
1997 .http://www.dina.kvl.dk/~pmb/.

[10] Cohen, R.M.The Defensive Java Virtual Machine
Soecification. Computational Logic, Inc. Tech. Rep.,
1997. .

[11] Stata, R. and M. Abadi. A type system for Jaytecode
subroutines. InProceedings, 25th ACM Symposium on

the Principles of Programming Languages. San Diego,
CA, January 1998. ACM Press.

[12] Hagiya, M. and A. Tozawa. On a New Method Betta-
flow Analysis of Java Virtual Machine. Ifroceedings
of the 1998 Static Analysis Symposium, 1998. (To ap-
pear).

[13] Pusch, CFormalizing the Java Virtual Machine in Isa-
belle/HOL. Technische Unversitat Miunchen Tech. Rep.
TUM 198186, October 18, 1998. http://
wwwié.infor matik.tu-muenchen.de/~isabelle/bali/.

[14] Saraswat, V.Java is not Type-safe. AT&T Research
Tech. Rep., 1997. .

[15] Sirer, E.G., S. McDirmid, and B. Bershai Java Sys-
tem Security Architecture. University of Washington
Tech. Rep., 1997.

[16] Freund, S. and J. Mitchelh Type System for Object
Initialization in the Java Bytecode Language. in Pro-
ceedings of OOPSLA'98. October 1998. Vancouver,
B.C., Canada. ACM Press.

