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Abstract

This note describes early, but promising, results using Kestrel's

technology to address the problem of locating real vulnerabilities in

commercial o�-the-shelf (COTS) software. We provide the rationale

for our approach, give a brief description of it, document some early

results, and list our current view of the next development steps.

1 Background

We begin with a summary of the underlying technology to show that our

approach is �rmly grounded in systematic engineering principles.

1.1 Principles

A few basic principles have guided the development of SpecwareTM , and

much of the success of this project can be attributed to following those guide-

lines.

First and foremost is the principle of synthesis from design, or alter-

natively, synthesis from speci�cations or synthesis by re�nement:

code is generated by correctness-preserving re�nements or transformations

from abstract speci�cations, to provide correctness-by-construction in

the �nal code. In what follows, speci�cations may also be referred to as

specs, while the term theory is used to refer to the deductive closure of a

speci�cation: specs are the �nite presentations of in�nite theories.

The second principle is orthogonality: speci�cations of di�erent aspects

of an application are designed, developed, and maintained as independently

as possible from each other. Some theories describe a domain such as schedul-

ing or graph layout, while others describe data structures such as strings or

hash tables, while yet others describe algorithmic strategies such as divide-

and-conquer or global-search. To date, Specware has focused on functional

speci�cations that just de�ne what a program should do, but potentially it

could encompass theories to describe architectural aspects such as network-

ing or client-server arrangements, computational aspects such as data latency

or memory performance, or perhaps even algorithmic complexity and other

meta-properties.

Third is the principle of semantic modularization: speci�cations of

any kind are designed as many small theories with strong semantic connec-

tions to each other. Each small theory is large enough to encompass the
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concepts and constraints comprising some meaningful software component,

but is otherwise as small as possible, to maximize reusability. The connec-

tions used to glue theories together are required to maintain strict semantic

compatibility, which can be thought of as behavioral type-checking (or even

more informally as type-checking with a vengeance).

Fourth is the principle of taxonomies: theories and techniques tend to

form natural hierarchies from abstract to detailed versions, and such infor-

mation can be captured and presented to developers as guides for software

development. Furthermore, the structure of such a taxonomy may be ex-

ploited when progressing from designs using one node in the taxonomy to

those using another node, especially if the second is a specialization of the

�rst.

Fifth is the principle of automation: as much as possible of the develop-

ment process should be automated, to keep the developer's attention focused

on just the crucial speci�cation and design issues.

1.2 Tools

1.2.1 Specware

SpecwareTM is the generic system developed at Kestrel to formally compose

many small algebraic speci�cations into a complete speci�cation of some

problem, and to then re�ne that speci�cation down to executable code. [22]

[23]

Various techniques from category theory [3] [12] [13] [17] [24] are used for

generic composition and re�nement operations, while the component alge-

braic speci�cations themselves are implemented in a rather simple language

called Slang.

1.2.2 MetaSlang

MetaSlang is a new language intended to replace Slang, with a type sys-

tem that is simpler for users. Additionally, many tools for manipulating

MetaSlang and the categorical machinery have been written in MetaSlang

itself, so it is largely bootstrapped.
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1.2.3 Designware

Designware is a level of organization layered on top of Specware to facilitate

the use of taxonomies, enable complex operations to be invoked via scripts,

perform simpli�cations and other optimizations on specs and code, etc. [19]

[20] [21]

1.2.4 Java Byte Code Veri�er

Kestrel's Java Byte Code Veri�er was speci�ed in MetaSlang for the purposes

of another project. It embodies the �rst formal speci�cation by anyone of

a Java byte code veri�er, and the very process of specifying it revealed in-

consistencies within the informal speci�cation of such a veri�er and 
aws in

Sun's implementation that allowed un-type-safe code to pass inspection.[6]

[9] [18]

2 Generic Approach

Applying the framework above to the task of analyzing COTS 1 software de-

veloped by others is not immediately obvious, but there is a viable strategy

that begins with a semantically explicit taxonomy of vulnerabilities at the

top-level juxtaposed against semantic representations of the target software

at the bottom level, and which uses an opportunistic mixed initiative ap-

proach to construct a re�nement of some node in the taxonomy down into

theories located within the representations of the target program.

To succeed, this approach needs several components: languages, tools,

taxonomies, and an analysis environment.

2.1 Language

Whatever technology is employed, in a mature tool of the type we envision it

should be possible to readily express essential notions related to vulnerabil-

ities. This would require semantic theories, both for abstract terms such as

resource, agent, time, etc. and for concrete terms such as Unix's \fread" sys-

tem call, Netscape's \SecurityManager" Java class, etc. which are grounded

in the semantics of particular programming languages, operating systems,

1
commercial o�-the-shelf
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network protocols, virtual machines, actual processors, etc. In general, such

a language would also be expressive enough to describe modalities such as

time, knowledge, necessity, etc.

Constructing such a full language would be a multi-year e�ort, far beyond

the scope of this project, but we have created small pieces of it driven by

the needs of describing particular vulnerabilities. Our expectation is that

each new example considered will augment the language available for use in

subsequent examples.

2.2 Analysis Tools

Since in general we are analyzing programs for which we may not even have

source code, let alone documentation or speci�cations, we will need a suite

of analysis tools that can create detailed concrete semantic representations

of such programs. In general, such tools will create formal, explicit repre-

sentations of the kinds of structural knowledge used implicitly by traditional

compilers and decompilers, plus ad hoc knowledge about the semantics of

various class libraries such as security managers, resource allocators, etc.

2.3 Taxonomy of Flaws

Much of the ultimate power of this approach will come from the codi�ed

knowledge embedded in semantic taxonomies of 
aws. Many taxonomies

of vulnerabilities have been published (e.g. [1], [2], [4], [5], [7], [8], and

[11]), but as far as we know, ours will be the �rst to create formal semantic

connections among the nodes in such a taxonomy. Given an embedding of

one vulnerability node into a target, the arrows in the taxonomy contain

enough semantic information to constrain the embeddings of related nodes

for formal consistency.

This allows the user to �nd an embedding of a detailed vulnerability

in the target program by proceeding through successively more elaborate

descriptions of the vulnerability, one small step at a time, each step prompted

by the results of the previous step within a mixed-initiative framework.

2.4 Mixed Initiative

In general, the problems being solved are far beyond the capabilities of fully

automated tools{it will be crucial to provide an environment in which knowl-
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edgeable humans will be able to make strategic choices and guide the explo-

ration of alternatives.

2.5 Overview

The diagram in �gure 1 provides a graphical view of how all these pieces

might �t together in a mature vulnerabilities analysis tool.
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Figure 1: Overview of Process

First the analysis tools would be run to get speci�cations for the concrete

semantics of the COTS artifact.

Second, the user would pick a generic node in the taxonomy and attempt

to re�ne the abstract terms within it down to terms in the concrete semantics,

such that all axioms for the abstract terms translate into concrete claims

provable within the speci�cations of the concrete semantics. In essence this

shows that an instance of that abstract generic theory can be found within

the particular semantics of the COTS target.
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Then, iteratively, the user would pick successively more particular nodes

in the taxonomy, at each step extending previous results to construct a re-

�nement of the current node into the concrete semantics.

3 Example

To keep this project grounded in reality, we chose to study particular sig-

ni�cant vulnerabilities reported in the literature, with the goal of creating

the minimal tools within the framework above that would suÆce to locate

instances of some abstraction of the chosen vulnerability. Conceptually, the

chosen abstraction would be a node in the envisioned taxonomy of vulnera-

bilities.

To this end, we focused our attention on the \Brown Ori�ce" attack

on Netscape Navigator developed by Dan Brumleve and demonstrated at

http://www.brumleve.com/BrownOri�ce/. This vulnerability is documented

by CERT as \CA-2000-15: Netscape Allows Java Applets to Read Protected

Resources" at http://www.cert.org/advisories/CA-2000-15.html, and with

bugtraq ID 1546: \Netscape Communicator URL Read Vulnerability" at

http://www.securityfocus.com/bid/1546.

In essence, this attack downloads a \Trojan horse" applet that circum-

vents the security provided by Netscape's use of its capability classes, in such

a way that the applet acts as a server exposing all of the victim's �les to any

inquirer on the net.

The attack uses the ability of a Java subclass to shadow methods from

its parent class to create evil instances of Sockets and ServerSockets that

behave in unanticipated ways within code designed to handle security related

to sockets.

In particular:

� The \close" method of class Socket was shadowed by a \close" method

that does nothing, confounding attempts by ServerSocket to close a

socket that was tentatively opened but then found to be in violation of

the security policy.

In �gure 2, we see that the close method for instances of the library

Socket class will invoke impl.close, but the close method for instances

of the evil BOSocket class instead does nothing.
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Thus in �gure 3, we can see that if implAccept is passed a normal

Socket, the close method invoked in the catch of a SecurityException

calls impl.close, but if implAccept is passed a bogus BOSocket, the

invoked close does nothing.

public class Socket {

...

public synchronized void close() <== NORMAL METHOD

throws IOException

{ impl.close(); } <== NORMAL ACTION

...

}

public class BOSocket extends Socket {

public void close_real() throws IOException

{ super.close(); }

public void close() <== SHADOWING METHOD

{ } <== EVIL NON-ACTION

}

Figure 2: Shadowable library class Socket, and an evil Subclass

� In �gure 4 we see a variant of accept (called accept any) that has been

added to a subclass of the library class ServerSocket. This method

thwarts the attempt by implAccept (shown above), which it calls, to

throw a security exception out to the context invoking accept any.

� Finally, in �gure 5, we see that the constructor method for class URL-

Connection is shadowed by a method that sets the protected variable

\connected" to true, no matter what problems may been have detected.
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public class ServerSocket {

...

protected final void implAccept(Socket socket)

throws IOException

{ try

{ socket.impl.address = new InetAddress();

socket.impl.fd = new FileDescriptor();

impl.accept(socket.impl);

SecurityManager securitymanager =

System.getSecurityManager();

if(securitymanager != null)

{ securitymanager.checkAccept

(socket.getInetAddress().getHostAddress(),

socket.getPort());

return; }}

catch(IOException ioexception)

{ socket.close();

throw ioexception; }

catch(SecurityException securityexception)

{ socket.close(); <== SHADOWABLE

throw securityexception; <== INTERCEPTABLE

}}

...

}

Figure 3: Library class ServerSocket with a sensitive region
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public class BOServerSocket extends ServerSocket {

...

public BOSocket accept_any() <== NEW METHOD

throws IOException

{ BOSocket s = new BOSocket();

try { implAccept(s); } <== MAY THROW EXCEPTION

catch (SecurityException se) <== INTERCEPTION

{ } <== EVIL NON-ACTION

return s;

}

}

Figure 4: Method that intercepts security exception

public class BOURLConnection extends URLConnection {

public BOURLConnection(String u) <== SHADOWING CONSTRUCTOR

throws MalformedURLException

{ super(new URL(u));

connected = true; } <== EVIL ACTION

public BOURLConnection(URL u) <== SHADOWING CONSTRUCTOR

{ super(u);

connected = true; } <== EVIL ACTION

}

Figure 5: Subclass of URLConnection that resets \connected"
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All three tricks are interesting and can be generalized, but we focused on

the �rst.

4 Speci�c Approach

The \Brown Ori�ce" trick with the \close" method of the \Socket" class

exploits the intersection of two properties within Netscape system code: (1)

a sensitive region in which issues related to security are being addressed, and

(2) the invocation of methods for instances of a class that could in fact be

shadowed by evil methods for instances of subclasses of that class.

Kestrel's pre-existing Java Byte Code Veri�er, written in MetaSlang, al-

ready had the ability to parse Java class �les, construct a data 
ow represen-

tation of the code within each method, and use transfer functions associated

with that representation to e�ectively type-check the byte code by solving a

data 
ow problem expressed in terms of those transfer functions on a semi-

lattice expressing the control-
ow.

We exploited large portions of this veri�er to extract two new abstrac-

tions: (1) invocations of non-�nal (i.e., shadowable) methods and (2) regions

where security issues were being addressed.

4.1 Shadowable Methods

If a Java class is declared to be �nal, no subclasses are allowed. On a �ner

scale, if a Java class is not �nal, subclasses are allowed, but any methods

within the class that are declared �nal cannot be shadowed in any subclass.

Thus there is a tradeo� between making generic classes that can be spe-

cialized by various subclasses, versus retaining control over methods that

perform sensitive operations. This tradeo� introduces the opportunity for

security mistakes, since a programmer may be unaware or negligent of some

security concern while making such a tradeo�.

4.2 Sensitive Regions

In general, for our purposes a region of code may be considered sensitive

for any of several reasons, but the essential notion is that some resource,

perhaps an abstract resource such as a privilege, has been obtained for the

10



duration of that region, or that the region is cleaning up the aftermath of

some exception related to acquisition of a resource.

The pseudo-code in �gure 6 illustrates the structure of some typical sen-

sitive regions.

void Foo (LibraryClass C)

{ try

{ <acquire resource>;

C.m1 } <== HIGHLY DANGEROUS

catch(ImportantException exception)

{ C.m2 } <== MAY BE DANGEROUS

finally

{ C.m3 } <== SUSPICIOUS

}

Figure 6: Pattern for various sensitive regions

For the particular experiment we have already run, sensitive regions were

de�ned to be the catch clauses for exceptions of class SecurityException.

4.3 Re�nement of Taxonomy Node

Given those two abstractions, we can de�ne an abstract taxonomy node

that says, in e�ect, \Find a sensitive region that invokes an unpredictable

method". The re�nement of this node can then be decomposed into the

re�nement of each of those notions: \sensitive region" and \unpredictable

method". In turn, \sensitive region" can be re�ned to \sensitive syntax"

and \sensitive semantics". We've seen three variations of syntax locations

that are potentially sensitive, and the sensitive semantics might be inferred

from calls to a security manager, resource allocator, alarm clock initiator,

etc.

The fact that such a simple use is made of the taxonomy merely re
ects

the initial state of this project and our focus on a rather simply described vul-

nerability. In general, the taxonomy node might refer, for example, to several

sensitive regions interacting in particular ways according to complex proto-

cols. The re�nement would then require more sophistication than merely

�nding an intersection of two features.
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5 Results

We ran the resulting analysis tool on 1031 Java class �les for Netscape that

represent about 100,000 lines of source code, with the following goals:

1. Demonstrate that our generic approach �nds the two speci�c needles

(problematic invocations of a shadowable method exploited by \Brown

Ori�ce") that we know are in the haystack: one invocation of a shadow-

able \close" method for instances of class \Socket" within a constructor

method for ServerSocket and another such invocation within the im-

plAccept method of ServerSocket.

2. Report no false positives { i.e. report only true vulnerabilities.

3. Find additional true positives { similar method invocations associated

with new vulnerabilities.

4. Run relatively quickly, at a minimum for feasibility, and ideally fast

enough to facilitate extensive experimentation.

How did we do? In short, pretty well.

1. We found the two speci�c \Brown Ori�ce" invocations we knew we

needed to �nd.

2. We reported about �ve clusters of false positives, but these were due

primarily to the use of an overly simple method for locating sensitive

regions, and an overly verbose reporting mechanism, both easily cor-

rectable.

3. We found about four new suspicious invocations that might represent

novel vulnerabilities, unreported to date.

4. The original unoptimized program was unacceptably slow, but one ad-

hoc optimization allowed us to handle most of the 1031 �les in about

10 hours of processor time. About 40 anomalous �les were clearly not

candidates for this vulnerability (they merely initialized large arrays

of constants), but due to some missing optimizations2 required enough

2
Some operations on maps were behaving O(N**3) when O(N) is possible with a little

care, and the maps in question were growing to size 6000 or so.
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much processing time that we manually by-passed them. Relatively

straightforward optimizations now underway for the overall process

should provide substantial speed-ups.

6 Future Work

Current work is proceeding opportunistically on several fronts, but with the

following general bias:

� First, to facilitate more rapid future experimentation, the existing pro-

gram is being revised to make its component speci�cations simpler and

more generically useful, and to optimize performance.

� Second, we are generalizing the notion of \sensitive region" to facili-

tate �nding new classes of vulnerabilities. For example, code that has

acquired a lock on a resource raises the spectre of deadlocks or denial

of service.

� Third, we are analyzing the tantalizing results of new potential vulner-

abilities reported in our initial look at Netscape Navigator, to see if in

fact an attack can be constructed to exploit them.

� Fourth, we will analyze other known 
aws in applications to see if we

can �nd abstractions of vulnerabilities similar to the ones found for

\Brown Ori�ce".

� Fifth, we will be applying the tools to other target COTS applications

to see what other as-yet-undetected vulnerabilities we can �nd.

� Sixth, we will explore the development of new tools for extracting se-

mantic information from COTS targets, to provide a richer target for

re�nement of abstract vulnerabilities.

� Seventh, we will begin to populate a formal taxonomy of vulnerabil-

ities and build the tools needed to re�ne nodes in that taxonomy to

abstracted speci�cations of COTS targets.

In general, we are quite pleased by promising initial results, and are

excited by the extensive research paths we see to extend those results.
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