
AutoRand: Automatic Keyword Randomization
to Prevent Injection Attacks

Jeff Perkins1, Jordan Eikenberry1, Alessandro Coglio2, Daniel Willenson1,
Stelios Sidiroglou-Douskos1, and Martin Rinard1

1 MIT/CSAIL Cambridge MA USA
{jhp, jeikenberry, dwillenson, stelios, rinard}@csail.mit.edu

2 Kestrel Institute, Palo Alto CA USA
coglio@kestrel.edu

Abstract. AutoRand automatically transforms Java applications to use
SQL keyword randomization to defend against SQL injection vulnerabil-
ities. AutoRand is completely automatic. Unlike previous approaches it
requires no manual modifications to existing code and does not require
source (it works directly on Java bytecode). It can thus easily be applied
to the large numbers of existing potentially insecure applications without
developer assistance. Our key technical innovation is augmented strings.
Augmented strings allow extra information (such as random keys) to
be embedded within a string. AutoRand transforms string operations so
that the extra information is transparent to the program, but is always
propagated with each string operation. AutoRand checks each keyword
at SQL statements for the random key. Experimental results on large,
production Java applications and malicious inputs provided by an inde-
pendent evaluation team hired by an agency of the United States gov-
ernment showed that AutoRand successfully blocked all SQL injection
attacks and preserved transparent execution for benign inputs, all with
low overhead.

1 Introduction

SQL injection attacks are a critical vector of security exploits in deployed appli-
cations. SQL Injection [10] is the first entry in the CWE/SANS list of the top
25 most dangerous software errors [23]. Injection errors are also the first entry
in OWASP’s top 10 web application security problems [21]. Given the demon-
strated ability of attackers to exploit such vulnerabilities [8] and the exploitable
opportunities that this class of vulnerabilities presents to attackers on an ongo-
ing basis [9], techniques that eliminate SQL injection vulnerabilities and prevent
SQL injection attacks are of primary importance to the future security of our
information technology infrastructure.

On the surface it would seem that SQL attacks could be prevented by follow-
ing good coding practices (such as using prepared statements and/or sanitizing
inputs) that have been available for many years. Unfortunately, these practices
have to be followed 100% of the time or an attack may be enabled. The con-
tinued prevalence of SQL injection attacks [9] bears evidence to the fact that a



2 Jeff Perkins, Jordan Eikenberry, Alessandro Coglio

different approach that doesn’t rely on error-free development is required. Fur-
thermore there is a large amount of existing SQL code that needs protection. It
is unrealistic to expect this code to be retrofitted. The developer resources are
often not available and in many cases the source code may not be accessible.

1.1 SQL Keyword Randomization

Instruction set randomization [17] protects systems against code-injection at-
tacks by creating randomized instruction sets. An attacker that does not know
the instruction set in use will inject invalid code which will not execute correctly.

SQL keyword randomization applies the same technique to SQL injection
attacks. Conceptually the SQL grammar is changed to use randomized SQL
keywords that are not known to possible attackers. Any code that is injected will
not contain valid keywords and will thus yield an error when parsed thwarting
any attack.

Existing randomization systems [5] require the developer to manually mod-
ify the program to randomize the SQL keywords that appear in constant strings.
This requires program source and possibly significant developer time (see Sect 6.2).
In many cases, neither of these may be available. An automatic system is needed
to address the large numbers of existing potentially insecure applications.

Building an automatic system, however, is challenging. A working solution
must randomize all SQL keywords that can reach an SQL statement (by any
path) while ensuring that those modifications do not change the semantics of
the program or are made visible outside of the program (because that would leak
the random key). Operations on strings containing random keys must preserve
the keys and the original semantics of the operation. Since the keys change both
the length and contents of the string, many operations (e.g., substring, charAt,
replace) must be automatically converted.

1.2 AutoRand

We present a new system, AutoRand, that automatically transforms Java appli-
cations to use randomized SQL keywords3.

The resulting transformed Java application is protected against SQL injection
attacks that rely on using SQL keywords in the malicious input to change the
structure of the SQL command passed to the SQL execution engine.

AutoRand automatically translates the Java bytecodes of the application to
randomize any SQL keywords that appear in program constants or in trusted in-
puts. It transparently propagates the randomized versions of the keywords across
string operations. Any use of randomized SQL keywords in other operations (e.g.,
file/socket writes, string comparisons, etc) are automatically derandomized to
ensure that the program’s semantics are maintained.

AutoRand also inserts code that checks each SQL command to ensure that all
keywords have the correct random value. If any keywords (such as those inserted
3 We use the term keyword to include keywords, operators and comment tokens



AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 3

by an attacker) are not correct, an exception is thrown. If all of the keywords
are correct, the query is de-randomized and passed to the normal SQL routine.

AutoRand operates directly on byte-code and does not require source or
manual modifications. It can easily be applied to existing applications without
developer assistance. To our knowledge it is the first system to automatically
apply SQL keyword randomization to existing programs.

Experimental results on large, production Java applications and malicious
inputs provided by an independent evaluation team hired by an agency of the
United States government showed that AutoRand successfully blocked all SQL
injection attacks with no false positives and negligible overhead.

1.3 Augmented Strings

Our key technical innovation is augmented strings. Augmented strings allow addi-
tional information to be added to strings. This additional information is handled
transparently with respect to the application. Augmented strings are designed to
ensure that, with the exception of augmented checks (such as SQL query checks),
the application exhibits the same behavior with augmented strings as without.
The additional information is accounted for in all string operations to ensure
that it is propagated across the operation without changing the semantics of
the program. To accomplish this transparency, AutoRand automatically modi-
fies string operations to ensure that the presence of the additional information is
not visible to the program itself (e.g., conditionals over string values, reflection,
etc) or externally (e.g., network writes, environment variables access, etc).

The additional information in an augmented string is identified by a ran-
dom key. The key is complex enough to ensure that it will not occur (within
some arbitrarily small probability) by happenstance in the program’s input or
constants. This allows the additional information to be precisely identified.

In the case of AutoRand, the random key is placed immediately after each
SQL keyword to create a randomized version of the keyword in the augmented
string. To our knowledge the augmented strings approach is novel and could
be used in broader contexts than SQL injection, such as tracking the detailed
provenance (filename, URL) of each token in a string, randomization for other
injection issues (such as command injection) or carrying debug information.

1.4 Experimental Evaluation

We evaluate the AutoRand implementation on a set of benchmarks and associ-
ated inputs developed by an independent evaluation team hired by the sponsor
of this research (an agency of the United States government). The evaluation
team started with a set of existing large, production Java applications, inserted
SQL injection vulnerabilities into the applications, and developed inputs that
exploit the vulnerabilities. The evaluation team was given complete information
about the AutoRand implementation. The results of the evaluation show that
AutoRand successfully blocked all SQL injection attacks. To test transparency
and preservation of functionality, the evaluation also exercised the applications



4 Jeff Perkins, Jordan Eikenberry, Alessandro Coglio

on benign inputs. The results showed identical behavior for each benign input.
We note that this evaluation worked with applications that are over an order of
magnitude larger than any previous evaluation of SQL injection attack defenses
for Java programs of which we are aware [14, 4, 7]. AutoRand’s ability to success-
fully block SQL injection attacks in these applications highlights the effectiveness
of AutoRand’s techniques and the robustness of the AutoRand implementation.

1.5 Contributions

This paper makes the following contributions:

– AutoRand: It presents a system for automatic and transparent SQL key-
word randomization to automatically eliminate SQL injection vulnerabilities.

– Augmented Strings: It presents a technique that transparently adds infor-
mation (in this case a random key) to strings and propagates that informa-
tion across string operations. The original semantics of the application are
preserved except where explicit checks utilizing the additional information
are added (in this case for SQL injection attacks).

– Experimental Evaluation: It presents results from applications and in-
puts developed by an independent evaluation team. These results show that
AutoRand successfully blocked all of the developed SQL injection attacks
and correctly preserved transparent execution for all of the benign inputs.

2 Example

We next present an example that illustrates how AutoRand nullifies SQL injec-
tion attacks.

2.1 Vulnerable Code

Consider the Java fragment

String query = "select * from users where "
"username=’" + username + "’ and password=’" + password + "’";

ResultSet results = databaseConnection.
createStatement().executeQuery(query);

(1)

which looks up, in the users table of a database, the user whose name and
password are in the string variables username and password. The query is con-
structed by combining a constant SQL code template with variable fragments
that should only specify data. If username is jqd and password is xB34qy5s,
the query sent to the database is

select * from users where username=’jqd’ and password=’xB34qy5s’ (2)

and the application operates normally. However, if username is “’ or 1=1 --”
and password is the empty string, the query sent to the database is

select * from users where username=’’ or 1=1 --’ and password=’’ (3)



AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 5

which always returns all records from the users table, since the password check
has been commented out by the comment marker --. The latter input is crafted
to subvert normal operation by executing SQL code that is part of the input
data. This kind of subversion may cause loss of confidentiality and/or integrity.
E.g., if username is “’; drop table users --” and password is the empty string,
the query sent to the database is

select * from users where username=’’; drop table users
--’ and password=’’ (4)

where the semicolon separates the (now irrelevant) query from an injected drop
statement that deletes the users table from the database.

If username and password are set from application inputs, the execution of
the SQL query in (1) should be preceded by input validation, i.e., checks that
username and password do not contain characters that may alter the structure
of the SQL query (e.g., that they only contain letters and numbers). If the check
fails, the inputs should be rejected or sanitized (e.g., by removing any character
that is not a letter or a number). If the developer fails to include these checks,
the code in (1) is vulnerable to SQL injection attacks.

2.2 Automatic Hardening by AutoRand

AutoRand automatically turns the code in (1) into code like

String query = "select<key> * from<key> users where<key> username=’" +
+ username + "’ and<key> password=’" + password + "’";

ResultSet results = derandomizeAndExecuteQuery
(databaseConnection.createStatement(), query);

(5)

where <key> is a randomization key, i.e., a randomly chosen sequence of ASCII
letters and numbers, e.g., di83e2371A. That is, all the SQL keywords that occur
in string constants are randomized by appending <key>. The AutoRand run-
time method derandomizeAndExecuteQuery tokenizes the query and checks
each SQL keyword to ensure that it is suffixed by <key>. If the check succeeds,
the query is deemed legitimate, all instances of <key> are removed, and the
resulting query is executed normally by calling executeQuery. This check fails
if an attacker injects a non-randomized keyword. For example, if username is “’
or 1=1 --” and password is the empty string, the query

select<key> * from<key> users where<key> username=’’
or 1=1 --’ and<key> password=’’ (6)

fails the check because or and -- lack <key>. Since the attacker does not know
the valid keywords for or and -- (i.e., does not know <key>), they are unable to
create a successful attack.

AutoRand also automatically transforms other parts of the code to make
keyword randomization transparent to non-SQL uses of the mutated strings. For
instance, using String.length() to take the length of query in (5) should return
the same value as query in (1)—the randomization key should not contribute



6 Jeff Perkins, Jordan Eikenberry, Alessandro Coglio

to the count. Transparency is particularly important for output-related uses of
the mutated strings, e.g., String.out.println(query), because if the attacker
were to see the randomization key in some output (e.g., error message) they
would be able to inject correctly randomized keywords.

3 Technical Approach

AutoRand protects a Java application against SQL injection by statically trans-
forming each class of the application, producing a hardened version of the ap-
plication.

3.1 Correctness

In Java, strings are objects, whose contents are manipulated exclusively via a
standard API, which consists of the classes String, StringBuilder and String-
Buffer.4 AutoRand intervenes in string method calls to ensure that keys are
propagated (propagation) and do not affect the application (transparency)—
other than protecting against SQL injection. AutoRand’s transformation is cor-
rect if it maintains these properties.

– Transparency: A given AutoRand program state and (side-effect free) op-
eration is transparent if running the operation in the state produces the same
result as running the corresponding original operation in the derandomized
state.

– Propagation: A given operation satisfies propagation if each keyword that
is propagated from its inputs to its outputs is consistently randomized (i.e.,
the output keyword is randomized if and only if the corresponding input
keyword was randomized).

Transparency guarantees that the original semantics of the program hold (ex-
cept for the added SQL checks). Propagation ensures that randomized keywords
in program constants or trusted inputs propagate through string manipulations
to SQL statements. This ensures that they will parse correctly (in the absence of
injection attacks). If a randomized keyword were not propagated correctly to an
SQL statement the statement would not parse correctly and an exception would
be incorrectly thrown (a false positive). A propagation error would not result
in a false negative as the lack of a randomized key will always be treated as an
error. There is no path by which an attacker can add the key to their keywords
(other than by knowing the key)

Transparency Abstractly, if op is an operation that takes a string S as input
and yields a string as output, AutoRand’s replacement operation op′, in order
to achieve transparency, must satisfy

op(S) = r−1(op′(r(S))) (7)
4 For simplicity, we use the term ‘string’ to refer to objects of all three classes.



AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 7

where r randomizes strings and r−1 derandomizes strings.5 The requirement (7)
is easily adapted to operations that take multiple strings as input or yield non-
strings (e.g. r−1 is a no-op for String.equals()). Derandomization r−1 removes
all instances of the key, not only instances that follow SQL keywords, thus, string
operations that modify keywords will not affect transparency.

Some string methods return values other than strings. The derandomization
operation r−1 is a no-op for non-strings. Thus op′ must return the same value
as op (as required by equation (7)). Many of the non-string return values are
indices into strings. These indices must reference the derandomized version of
the string, not the randomized version. AutoRand’s replacement operations must
also accept index arguments that are with respect to the derandomized version of
the string. These operations map any index arguments from the derandomized
string to the corresponding index in the randomized string. For example, the
following code adds some text to an SQL statement following the select keyword.
The length of the select keyword is hard-coded.

StringBuffer sb = new StringBuffer(...);
int offset = sb.indexOf("select") + 6;
sb.insert(offset, " field1, field2");

(8)

For this to work correctly on a randomized sb, the index must be translated
to the corresponding index in the randomized buffer (after select<key>). Note
that code similar to this exists in the real-world applications that we tested.

Propagation Propagation is achieved if every randomized keyword in the
input operands that is transferred to the result is also randomized in the result.
For the purposes of SQL commands, keywords are a unit and only operations
over a complete keyword (and not its individual characters) need to support
propagation. Such sub-keyword operations may occur if the string is used for
non-SQL purposes, but propagation is not required in such cases. As noted
above, transparency is not affected by sub-keyword operations.

Abstractly, if op is an operation that takes a string S as input (where S may
contain randomized keys) and yields a string as output, AutoRand’s replacement
operation op′, in order to achieve propagation must satisfy

(Kr ∈ S) ∧ (K ∈ op(r−1(S))) ⇐⇒ Kr ∈ op′(S) (9)

where r−1 derandomizes strings, Kr is a randomized keyword and K is the
corresponding keyword. A keyword in the output corresponds to a keyword in
the input only if it is the same instance of the keyword (i.e., the characters that
make up the keyword in the input were copied to the output).

3.2 String Randomization

AutoRand randomizes (each SQL keyword in) each string constant in the appli-
cation code.
5 The requirement assumes that the key does not occur in S. The space of keys ensures
a sufficiently small probability that the key occurs in the application code or data
by happenstance.



8 Jeff Perkins, Jordan Eikenberry, Alessandro Coglio

AutoRand randomizes each string constant by tokenizing it and then append-
ing the randomization key to all the SQL keywords in the string. The string is left
unmodified if no SQL keywords are found in it. The set of tokens that AutoRand
regards as SQL keywords is easily configurable. The current default configura-
tion protects against injection of standard SQL [15] as well as non-standard SQL
extensions for popular databases. Since SQL keywords are case-insensitive, the
AutoRand tokenizer is case-insensitive.

Each keyword is randomized by appending a randomization key consisting
of 10 ASCII letters (upper case or lower case) or digits. For example, select
could become selecta2831jfy6. To minimize the possibility that an attacker
could generate the key by chance, we use a large space consisting of 6210 (i.e.,
over 800 quadrillion) possible keys. This corresponds to about 60 bits, which is
small for cryptographic keys, whose threat model is offline brute force search.
However, AutoRand’s keys have a different threat model, namely an attacker
attempting injections over the network, whose latency limits the rate at which
keys can be tried. Nonetheless, AutoRand’s key length is configurable and could
be easily increased. Increasing the key by 10 characters increases the overhead
(see Sect 5.3) by only about 0.73%.

3.3 SQL API Calls

Java applications access SQL databases via a standard Java API. The java.
sql.Statement class provides methods to execute SQL statements passed as
string arguments, e.g., executeQuery() in (1).

AutoRand wraps each call by the application to the methods of Statement
and Connection that receive SQL statements and prepared statements as string
arguments. Even though a prepared statement is not vulnerable to injections
when the template is instantiated, the creation of the prepared statement itself
is vulnerable to injection when the string (e.g., “select * from users where
username=? and password=?”) is assembled from parts that are not all trusted.

Each method wrapper first checks that all the keywords in the SQL string
include the correct key. If any keyword does not have the key, the SQL string is
deemed to result from an attack and the wrapper throws an exception.

If all the keywords have the correct key, the method wrapper removes every
occurrence of the key and then calls the method of Statement or Connection
with the resulting string.

3.4 String Manipulations

Just randomizing strings as described in Section 3.2 and wrapping SQL API calls
as described in Section 3.3 would nullify SQL injection attacks but could disrupt
the normal operation of the application. For instance, if String.equals were
called on a program constant containing a keyword and an input containing
the same keyword, it would incorrectly return false, changing the semantics
of the application. Also, if a randomized string makes its way to an output
that is visible to the attacker (e.g., System.out.println(query)), the attacker



AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 9

could learn the key and inject correctly randomized keywords. Thus, AutoRand
implements further transformations to make keyword randomization transparent
to the application (other than hardening the application against SQL injection),
including any output that may be visible to the attacker.

When necessary, AutoRand intervenes in string method calls by replacing
calls to string methods with calls to methods in the AutoRand string library.

The Java string methods fall into a few basic categories. AutoRand’s ap-
proach for accomplishing transparency and propagation for each of those cate-
gories is described in the following subsections. The category, propagation, and
transparency for each string method are shown in Fig 2.

Observer Methods Observer methods do not create or modify strings. They
are handled by derandomizing each of the string arguments and then invoking the
original method. Transparency is trivially accomplished as the original method
is run on the derandomized arguments. There are no keyword propagation issues
since strings are not created or modified.

For example, the implementation for String.length and String.equals are:

AutoRandLength (String s) { AutoRandEquals (String s1, String s2) {
return derand(s).length(); return derand(s1).equals(derand(s2));

} }

Complete String Methods Complete string methods operate on entire strings,
and not on portions of them. Since the random keys are incorporated into the
string itself, any operations that only involve complete strings will work correctly
without modification. For example, String.concat() and StringBuffer.append()
function correctly on randomized strings without modification.

Fortunately, these are amongst the most commonly used of the String func-
tions, which is partially responsible for AutoRand’s low overhead.

Partial String Methods Partial string methods may operate on pieces of a
string. The pieces are often specified by indices, but can also be specified by
a string match (such as in String.replace()). For these methods, AutoRand
transfers the operation from the original (derandomized) string to the random-
ized string.

The three basic operators for partial strings are substring, insert, and delete.
The location in the string is specified by one or more indices.

AutoRand creates an index map between the derandomized and randomized
versions of the string (an example is shown in Fig 1). This maps characters in the
original (derandomized) string to the corresponding character in the randomized
string. AutoRand implements substring, insert, and delete by looking up each
index in the map and calling the original method on the randomized string
using the mapped indices. This both propagates random keys and preserves
transparency for each operation.

The substring method takes a substring from start (inclusive) to end (ex-
clusive). Any substring that contains a keyword will include both the beginning



10 Jeff Perkins, Jordan Eikenberry, Alessandro Coglio

s e l e c t * f r o m

s e l e c t < K E Y > * f r o m < K E Y >

... ... ...

Fig. 1: Each character in the original (unrandomized) string is mapped to the cor-
responding character in the randomized string. There is no mapping to any of the
characters in the randomization key. This ensures that no operation over mapped in-
dices can create a partial key and that any operation over complete keywords will
include the corresponding randomization key.

character of the keyword and the character immediately after the keyword. Since
the map of the character after the keyword will point after the randomization
key, any substring that includes the keyword will also include its key. For ex-
ample, consider substring(9,13) on the string in Fig 1. This call would return
the keyword from in the original string. After applying the index map this call
is transformed into substring(14,23) on the randomized string. This will return
from<KEY> in the randomized string, preserving the randomization key.

The delete method takes the same parameters as substring and works in the
same fashion. For example, delete(9,13) would be transformed to delete(14,23)
and would remove from<KEY> from the randomized string.

The insert method inserts its string argument before the specified index. The
map ensures that inserts cannot occur between the keyword and its randomiza-
tion key or in the middle of a randomization key, because there are no maps to
those locations.

All other partial string methods can be built up from these core methods
(substring, delete, and insert), and the observer and complete string methods.
For example, the String.replace(target,replacement) can be implemented as

StringBuffer sb = new StringBuffer();
int start = 0;
int offset = this.indexOf(target);
while (offset != -1) {

sb.append(this.substring(start,offset));
sb.append(replacement);
start = offset + target.length();
offset = this.indexOf(target,start);

}
sb.append(this.substring(start));

(10)

AutoRand re-implements each of the other non-core partial string methods
in the same fashion.

Character methods Character methods convert (portions of) strings to their
underlying characters, bytes, or code points (e.g., toCharArray(), getChars(),
getBytes() and charAt()).



AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 11

AutoRand derandomizes the string before making the conversion, preserving
transparency. Since the result is not a string, random keys are not propagated
(see Sect 4 for more information)

Miscellaneous Methods The reverse() method reverses the characters in a
string. AutoRand derandomizes the string before making the conversion, preserv-
ing transparency. Propagation is not an issue as there are no single character
keywords and thus keywords can not be transferred to the result. The capacity(),
ensureCapacity(), and trimToSize() methods are not modified by AutoRand.

The intern() method returns a canonical representation for the string ob-
ject. This is commonly used to conserve memory and also allows reference equal-
ity checks between interned strings. Since string constants are automatically in-
terned and AutoRand modifies entries in the constant table, the randomized
versions of constants are interned. This does not affect transparency unless ref-
erence equality is used to compare a constant with an interned input value.
This kind of reference equality did not occur in any of the real-world programs
used in the evaluation. Nonetheless, AutoRand could be extended to modify
reference equalities (via the if_acmp<cond> bytecode) on strings to compare
the (derandomized) contents of the strings if both sides of the equality test are
interned.

Category Methods

Complete <init>, append, appendCP, concat, copyValueOf, toString, valueOf
Observer compareTo*, contains, contentEquals, endsWith, equals*,

hashcode, indexOf, isEmpty, lastIndexOf, length, matches,
offsetByCPs, regionMatches, startswith

Partial delete*, format, insert, replace* setCharAt, setLength,
split, subSequence, substring, toLowerCase, toUpperCase, trim

Character charAt, codePoint*, getBytes, getChars, toCharArray
Misc capacity, ensureCapacity, intern, reverse, trimToSize

Fig. 2: Synopsis of approach for each string method (in String, StringBuffer, and String-
Builder). Similar calls (indicated with *) are grouped together as are calls with the same
name but different arguments. CodePoint is abbreviated as CP. Category is the type
of call for AutoRand instrumentation purposes. See sections 3.4, 3.4, 3.4, and 3.4 for
more information.

3.5 External API Calls

Java strings can interact externally to the Java application through a number
of Java system library calls. For example, writing to files/sockets, opening files,
reading properties, reading environment variables, using reflection etc.

In these cases, the original strings should always be used. AutoRand accom-
plishes this by converting the application (and the system libraries themselves)



12 Jeff Perkins, Jordan Eikenberry, Alessandro Coglio

to call AutoRand’s version of these routines. These routines derandomize their
string arguments and then make the original call. This ensures that each exter-
nal call acts correctly and that the random key is never visible to an attacker
(since it is always removed before any external communications).

3.6 Standard Java Library

Strings are also manipulated within the standard Java library. For example, the
equals(), compareTo() and hashCode() methods are called in the collection
classes. Commonly used classes such as Pattern and Matcher call string meth-
ods and create new strings. AutoRand instruments the libraries in the same
manner as it instruments the application. This ensures that any string manip-
ulations within the libraries will correctly propagate random keys and ensures
transparency over any strings containing random keys. The only differences are
that constant strings within the standard libraries are not randomized (as they
will not flow to application SQL commands)

AutoRand statically transforms the byte code of the standard Java libraries
and creates a new version of the library. When an application hardened by
AutoRand is run, it is run with the transformed version of the library.

3.7 Extensibility

AutoRand could be easily extended to randomize, besides SQL keywords, other
kinds of keywords in strings, to provide protection against OS command injec-
tion, LDAP injection, XQuery/XPath injection, etc.

4 Threats to Validity

Our current AutoRand implementation is transparent with the following excep-
tions: 1) AutoRand performs the randomization checks at SQL API calls to
detect SQL injection attacks. The lack of transparency at these API calls is one
of the goals of AutoRand. 2) Intern calls may not be transparent with respect
to reference equality. This is straightforward to implement but not currently
implemented (see Sect 3.4).

Our current AutoRand implementation satisfies propagation on all string
operations over full keywords. However, there are some possible issues: 1) Con-
verting strings to characters, bytes, or arrays thereof and back to strings. 2)
Character-level manipulations that construct strings with SQL keywords (e.g.,
"sel" + "ect"). None of these occurred in any of the evaluation programs.

Because characters extracted from strings are manipulated as individual char-
acters and not as strings, the randomization keys cannot be propagated for these
methods. AutoRand thus derandomizes the string before making the conversion
(preserving transparency). Fortunately, there is little reason to manipulate pro-
gram constants in this fashion.



AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 13

We evaluated this hypothesis experimentally by gathering information about
how many times each character method is called in the evaluation programs on
strings that contain randomization keys and the stack trace for each such call. We
then examined each call to determine if it would pose a problem for propagation.
Only strings that contain randomization keys are relevant to propagation.

The getBytes() method is called only in Ant and FTPS. In both cases it
is used to prepare a string to be written to a stream. Strings that are written
would be derandomized in any event (see Section 3.5) and are not an issue for
propagation.

The getChars() and toCharArray() methods are called only by JMeter in
a class that outputs XML (PrettyPrintWriter). Strings that are written out
would be derandomized in any event (see Section 3.5) and are not an issue for
propagation.

The charAt() method is called in 7 of the 8 evaluation applications. There
were 12 unique call sites for charAt() on randomized strings in the seven ap-
plications. We examined each of these to determine how charAt() was being
used and whether or not it was a problem for propagation. We found that these
use cases for charAt() query the string for information, but do not use the
resulting characters to build new strings. For example, the method Selectoru-
tils.tokenizePathAsArray in Ant uses charAt() to look for slashes in the path.
But the resultant array is built by normal string operations using the locations of
the slashes as indices. Since AutoRand uses indices relative to the derandomized
string, the offsets determined by querying charAt() are compatible.

The code point methods (e.g., codePointAt()) return full 32-bit character
representations. Their usage would be similar to charAt() in programs that
support the full Unicode set (and manipulate strings at the character level).
These methods were not called in any of the evaluation applications.

None of the character methods were used to create new strings that are later
used by the program. The examination of each use indicates that these do not
present a propagation problem as they are commonly used. This validates our
hypothesis that these calls are not used to manipulate strings but only to create
specific output formats or to obtain information about the string. Propagation
is not an issue in either case.

5 Experimental Evaluation

AutoRand has been experimentally evaluated using various Java programs.

5.1 Programs with Inserted Vulnerabilities

An independent test and evaluation (T&E) team hired by the government agency
that is the sponsor of this research identified a set of Java programs, ranging in
size up to 250k lines of Java source, not including common third-party libraries:

– Ant (256k LOC) —A build system.



14 Jeff Perkins, Jordan Eikenberry, Alessandro Coglio

Attack/
Test Var- Benign
Program iant Database Cnt inputs

Ant V01 MySQL 43 2/5
Ant V02 Postgres 1 2/5
Ant V03 MySQL 9 2/5
Ant V04 MySQL 1 2/5
FTPS V01 MySQL 41 2/5
FTPS V03 MySQL 1 2/5
FTPS V04 MySQL 13 2/5
FTPS V05 MySQL 1 2/5
PMD V01 MySQL 11 2/5
PMD V12 MySQL 14 2/5
PMD V13 MySQL 1 2/5
SchemaSpy V02 Postgres 1 2/4

Attack/
Test Var- Benign
Program iant Database Cnt inputs

JMeter V05 MySQL 1 2/5
JMeter V08 SQLServer 2 2/5
JMeter V10 SQLServer 1 2/5
JMeter V11 SQLServer 1 2/5
Barcode V05 MySQL 1 2/5
Barcode V06 Postgres 55 2/5
Barcode V07 Postgres 1 2/5
HtmlCleaner V06 Postgres 44 2/5
FindBugs V08 SQLServer 39 2/5
FindBugs V09 SQLServer 6 2/5
FindBugs V10 SQLServer 1 2/5

Fig. 3: Injected vulnerability programs and variants. Each variant is injected into the
base program at Cnt different locations creating Cnt versions of the program. The
attack and benign inputs are then applied to each version. For example, in the first
row, 43 versions of Ant are created with the V01 vulnerability code inserted in a
different location in each. Then 2 attack inputs and 5 benign inputs are applied to
each of the 43 versions of Ant. AutoRand detects each attack with no false positives
or semantic changes to the program.

– Barcode4J (28k LOC)—A barcode generator.
– FindBugs (208k LOC)—A bug finder.
– FTPS (40k LOC)—An FTP server.
– HtmlCleaner (9k LOC)—A reformatter of HTML files.
– JMeter (178k LOC)—A performance measuring tool.
– PMD (110k LOC)—A source code analyzer.
– SchemaSpy (16k LOC)—A database inspecting tool.

The T&E team introduced SQL vulnerabilities into each program, and pro-
duced a set of malicious inputs to exercise the vulnerabilities. The T&E team
also produced a set of benign inputs to exercise each program’s standard func-
tionality. They created 13 vulnerability variants to insert into the base programs.
Each test case inserts one of the variants into the base program. The same vari-
ant can be applied to multiple locations in a base program. See Fig 3 for details.
As the figure shows, there are a total of 289 distinct test cases (base program +
variant + injection location), 578 attack inputs, and 1444 benign inputs.

The malicious and benign inputs were sent to the program after hardening
with AutoRand and the results observed to determine if the vulnerability was
exploited in the case of malign inputs, and if functionality was preserved in the
case of benign inputs. The inputs were also sent to the unaltered programs as a
control. The AutoRand-hardened programs successfully blocked all of the attack
inputs (i.e., injection attacks) and preserved functionality for all of the benign
inputs.



AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 15

Lines Attack/
Test of Benign
Program code Database inputs

TC 1055 MySQL 3/1
TC-3008 1723 MySQL 1/2
TC-3010 1680 MySQL 1/2
TC-3014 1166 MySQL 1/2
TC-3015 1127 MySQL 3/1
TC-3016 1055 MySQL 1/1
TC-3017 1780 MySQL 1/2
TC-3044 1054 MySQL 3/1
TC-3045 1730 Postgres 4/1

Lines Attack/
Test of Benign
Program code Database inputs

TC-3073 198 Hibernate 2/2
TC-3078 192 Hibernate 1/3
TC-3104 197 Hibernate 1/3
TC-3105 199 Hibernate 1/3
TC-3106 194 Hibernate 1/3
TC-3166 1221 MySQL 2/1
TC-3174 1298 MySQL 1/1
TC-3177 370 MySQL 1/1
TC-3178 315 MySQL 1/1

Fig. 4: SQL injection tests written by the T&E team. Each test applies the benign and
attack inputs to the same SQL statement. AutoRand detected each attack with no
false positives.

The experiments were run using the Test and Evaluation Workbench (TEW)
developed by the T&E team. The TEW works on an interconnected set of vir-
tual machines where variant creation, compilation, and instrumentation are per-
formed on one machine and execution of test cases performed on separate ma-
chine(s). The tests were performed on Debian 6.03 and the virtual machines were
run on a 12 core machine using Xeon 3.47Ghz processors. The TEW also includes
support services such as the MySQL, PostgreSQL, SQLServer (Microsoft) and
Hibernate database systems.

5.2 SQL Injection Test Programs

The same T&E team also wrote 17 small programs (see Fig 4) for the pur-
pose of testing systems like AutoRand that protect against SQL injection. Each
program reads inputs and uses them in SQL queries. The programs work as
expected with benign inputs but are subject to SQL injection with malicious
inputs. The tests covered the MySQL, Hibernate, and PostgreSQL database
engines, a variety of SQL query syntax, and the Statement.execute(), and
Connection.prepareStatement() Java SQL API calls.

Several different types of attack inputs were used across the tests including:

– String Tautology - Closing the application’s quote of a string input early
and then adding a tautology. For example one attack input is: ’OR’1’=’1.
The resulting SQL is: ...password=’’OR’1’=’1’... which will always be
true (thus evading the password check).

– Adding Code - After a valid string or numeric input, additional code is
added.

– Comment out code - After a valid string or numeric input, comment
characters are added that stop processing of any remaining characters in
the command. This can be combined with Adding Code to execute arbitrary
commands.



16 Jeff Perkins, Jordan Eikenberry, Alessandro Coglio

Test Overhead
Program Variant Runs Percent

Ant V01 25 4.6
Ant V02 25 0.5
Ant V03 25 2.2
Ant V04 25 2.7
Ant All 100 2.5
Barcode V05 25 3.5
Barcode V06 25 3.4
Barcode V07 25 17.2
Barcode All 75 8.1
FindBugs V08 25 10.3
FindBugs V09 25 11.1
FindBugs V10 25 23.8
FindBugs All 75 15.1
FTPS V01 25 0.0
FTPS V03 25 0.0
FTPS V04 25 0.0

Test Overhead
Program Variant Runs Percent

FTPS V05 25 0.0
FTPS All 100 0.0
HtmlCleaner V06 25 6.8
HtmlCleaner All 25 6.8
JMeter V05 25 2.7
JMeter V08 25 0.3
JMeter V10 25 0.3
JMeter V11 25 0.4
JMeter All 100 0.9
PMD V01 25 6.1
PMD V12 25 7.2
PMD V13 25 8.6
PMD All 75 7.3
SchemaSpy V02 20 3.4
SchemaSpy All 20 3.4
All All 570 4.9

Fig. 5: Overhead for test programs. One example of each program/variant was run
(native and instrumented) five times over each of its inputs.

We hardened each program using AutoRand and executed the programs with
each of their benign and attack inputs. The AutoRand-hardened programs suc-
cessfully blocked every attack input while leaving behavior unchanged for every
benign input.

5.3 Overhead

To measure the overhead incurred by randomization, we randomly chose one
example test case from each program/variant combination (Fig 3) for a total
of 23 applications.6 We ran each over each of its benign inputs five times and
measured the total wall clock time. We repeated this process with the hardened
version of each variant and compared the times. The average overhead ranged
from 0% for FTPS to 15.1% for FindBugs with an average of 4.9%. See Fig 5.

We also measured server overhead (a common use case for SQL injection
defenses). OpenCMS [1] is an open-source Java program (consisting of over 100k
lines of code) for managing web sites. It runs as a web application in the Apache
Software Foundation’s Tomcat framework [2]. It uses a database to store web
site content and configurations. SQL injection attacks might thus be possible by
sending customized URLs to the OpenCMS web application.

To measure the overhead incurred by randomization, a script was developed
to send 1,000 benign URLs to an OpenCMS installation and record the resulting

6 The full test suite runs in a special environment and is difficult to instrument. The
subset allowed for more manageable experiments.



AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 17

HTML responses. (The URLs were captured while interacting with the installa-
tion to manage a web site.) The total time required to process all of the URLs
was measured both before and after hardening of the OpenCMS code by Au-
toRand. The average overhead was 4.5%. The recorded HTML responses were
also compared to ensure that functionality was not altered.

The OpenCMS test was performed on a virtual machine running Ubuntu
12.04 on a 3.6Ghz 4 core iMac with 32 GBytes of memory. Both the client
and the server ran on the same machine using localhost with negligible network
delays.

6 Related Work

6.1 Manual Prevention

The most common approach to preventing SQL injection attacks is defensive
coding practices such as carefully validating all inputs and using parameterized
query APIs [26, 20]. Unfortunately, as evidenced by the continuing prevalence of
successful SQL attacks [9], these practices have not been sufficient to prevent
attacks.

Defensive coding practices require trained developers that always follow the
correct approach. A single shortcut can lead to a vulnerability. And they can be
very expensive and time consuming to apply to legacy code. And they provide
no protection without access to developers and source.

AutoRand, by contrast, allows code to be immediately protected without
source code modifications or developer involvement.

6.2 Randomization

SQLRand [5] introduced a manual method to randomize SQL queries. To apply
the method, a developer finds each string containing SQL keywords, determines
whether or not that string is used to build an SQL command, runs the string
through the SQLRand tool, and copies the result back into their program. SQL
requests are checked by a database proxy. Requests that do not contain the
correctly randomized keywords will result in an exception. SQLRand does not
derandomize SQL keywords except in the proxy. Thus, if the modified strings are
used for any other purpose, changes to program semantics may result (including
accidental disclosure of the randomization key). SQLRand does not support
strings that are used for multiple purposes (e.g., SQL and error messages)

AutoRand automatically transforms the program to randomize SQL key-
words and ensure semantic correctness (e.g., string length, accidental disclosures,
etc.). In addition, AutoRand does not require any additional network compo-
nents (i.e., a proxy).

6.3 Dynamic Tainting

A popular technique for preventing SQL injection attacks is dynamic taint track-
ing [14, 7, 19, 22, 24]. Taint-tracking systems instrument applications with the



18 Jeff Perkins, Jordan Eikenberry, Alessandro Coglio

ability to track the provenance of inputs and are thus able to determine if an
SQL query contains any untrusted inputs. Unfortunately, most taint tracking
systems have either (a) non-negligible performance overhead [14, 7] or (b) re-
duce the scope of tracking they perform (i.e., they do not track character level
information) that can lead to false positives and false negatives [19, 22].

Chin et al [7] implement a comprehensive taint tracking system (using character-
level tainting), through modifications to the Java string library, that reports
a modest overhead of about 15%. Unfortunately, their performance evaluation
numbers do not include any safety checks using the taint information. Safety
checks typically contribute significantly to the overhead of taint tracking sys-
tems. Furthermore, their evaluation does not test the system on real-world ap-
plications; they focus on unit tests designed to test taint propagation. Their
implementation requires changes to the string library that are only compatible
with the IBM JVM and does not support common string related functions, such
as regular expressions and String.format().

WASP [14] is a taint tracking system that tracks trusted, rather than un-
trusted, data. WASP uses its MetaStrings library to mimic and extend the be-
havior of Java’s standard string classes. It replaces strings allocated in the ap-
plication with the MetaStrings equivalent. WASP does not, however, instrument
the Java libraries (except to remove the final flag from the string classes).
Strings allocated within the Java library will thus not include meta-data. Any
operations within the library that creates a new string based on application
strings (such as those in Pattern, Matcher, and Formatter) will not propagate
taint. Also, the string classes contain methods (e.g., format() and split()) that
are implemented using these classes. Unless MetaStrings re-implemented these
without using the libraries these may suffer from the same propagation issues.
Propagation failures in WASP can lead to false positives. In contrast, AutoRand
propagates random keys through the Java libraries and has less overhead.

WASP could be extended to instrument the system libraries to avoid these
issues, but one would expect its overhead to be significantly increased.

Diglossia [24] tracks taint in PHP by modifying the interpreter to create a
shadow string that uses a mapped character set for trusted characters. It then
parses the shadow string and the original string to ensure that tainted input
doesn’t change the parse tree. PHP interpreter based approaches are not directly
applicable to Java as the complex Java JIT makes it significantly more difficult to
efficiently modify the interpreter. AutoRand’s bytecode transformation approach
is more portable and maintainable.

6.4 Parse Tree Structure
Another technique for detecting SQL injection attacks is based on the obser-
vations that most attacks modify the SQL query structure (i.e., parse tree) as
intended by the developer [6, 25, 3, 4].

SQLGuard [6] and SQLCheck [25] are developer tools that can be used to
statically define and dynamically check the integrity of SQL query structures.
While successful at detecting a number of SQL inject attacks, they require man-
ual modifications to the application. In contrast, AutoRand is fully automatic.



AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks 19

An alternative approach is to automatically learn query structure [13, 3, 4,
12]. AMNESIA [13] and Halder et al. [12] use static analysis to create a model
of query structure and a run-time system to detect structure violations. To scale
its static analysis to real-world applications, AMNESIA is context- and flow-
insensitive and thus susceptible to false-negatives and false-positives [3]. Au-
toRand is a dynamic technique and hence not susceptible to the imprecision
introduced by static analysis.

CANDID [3, 4] is a dynamic technique for extracting query structure. CAN-
DID automatically transforms the application code to create a parallel, shadow
data set for strings. Where the program assigns to a string variable, CANDID
inserts code to assign to a shadow variable which will be used in the reference
query. If the real variable is assigned a string constant, the shadow variable gets
the same value. If the real variable receives a value from user input, the shadow
variable gets a dummy value. String operations like concatenation are performed
on both data sets in parallel. CANDID’s published overhead is four times slower
than AutoRand, most likely due to its added complexity.

6.5 Static Analysis

Several methods use static analysis to detect SQL injection attack vulnerabili-
ties [16, 18, 11]. These systems identify unsanitized data flows from user input to
SQL queries (i.e., they check whether every flow from input to query is subject
to input validation). These techniques can verify that a sanitization technique is
called on unsanitized flows but not whether the sanitization is correct, which can
lead to false negatives. Given that static data-flow analysis must be conservative,
these techniques, inescapably, also suffer from false positives.

7 Conclusion

SQL injection vulnerabilities comprise a prominent, serious, and ongoing source
of security vulnerabilities. By delivering an automated, transparent, and effi-
cient implementation of SQL keyword randomization, AutoRand provides one
solution to this problem. Our results show that, on examples developed by an
independent evaluation team, AutoRand, as designed, successfully blocked all
SQL injection attacks and provided transparent execution for benign inputs, all
with low overhead in large production Java applications.

Acknowledgements: We thank the MITRE Corporation test and evaluation
team for creating an automatic and thorough testing apparatus. We thank
Stephen Fitzpatrick and Eric McCarthy of Kestrel Institute for their contri-
butions to the project. We thank Michael Gordon of Aarno Labs for comments
that greatly improved the manuscript.

References

1. Alkacon Software: OpenCms. http://www.opencms.org (May 2012)



20 Jeff Perkins, Jordan Eikenberry, Alessandro Coglio

2. Apache Foundation: Apache Tomcat. http://tomcat.apache.org/ (January 2012)
3. Bandhakavi, S., Bisht, P., Madhusudan, P., Venkatakrishnan, V.N.: Candid: Pre-

venting sql injection attacks using dynamic candidate evaluations. CCS ’07 (2007)
4. Bisht, P., Madhusudan, P., Venkatakrishnan, V.N.: Candid: Dynamic candidate

evaluations for automatic prevention of sql injection attacks. ACM Trans. Inf.
Syst. Secur. 13(2), 14:1–14:39 (Mar 2010)

5. Boyd, S.W., Keromytis, A.D.: SQLrand: Preventing SQL injection attacks. In:
ACNS 2. Lecture Notes in Computer Science, vol. 3089, pp. 292–302 (2004)

6. Buehrer, G., Weide, B.W., Sivilotti, P.A.G.: Using parse tree validation to prevent
sql injection attacks. SEM ’05 (2005)

7. Chin, E., Wagner, D.: Efficient character-level taint tracking for Java. In: Proceed-
ings of the 2009 ACM Workshop on Secure Web Services (2009)

8. Clarke, J.: SQL Injection Attacks and Defenses. Syngress, second edn. (2012)
9. Code Curmudgeon: SQL injection hall of shame. http://codecurmudgeon.com/

wp/sql-injection-hall-of-shame/, fetched on 2014-06-24
10. Common Weakness Enumeration (CWE) 89: Improper neutralization of special

elements used in an SQL command (’SQL injection’). http://cwe.mitre.org
11. Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., Tao, L.: A static analysis

framework for detecting sql injection vulnerabilities. COMPSAC 2007 (2007)
12. Halder, R., Cortesi, A.: Obfuscation-based analysis of sql injection attacks. pp.

931–938. ISCC ’10 (2010)
13. Halfond, W.G.J., Orso, A.: Amnesia: Analysis and monitoring for neutralizing sql-

injection attacks. pp. 174–183. ASE ’05 (2005)
14. Halfond, W.G.J., Orso, A., Manolios, P.: Using positive tainting and syntax-aware

evaluation to counter sql injection attacks. SIGSOFT ’06/FSE-14 (2006)
15. ISO/IEC 9075:2011 – Information technology – Database languages – SQL
16. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting web

application vulnerabilities (short paper). SP ’06 (2006)
17. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with

instruction-set randomization. pp. 272–280. CCS ’03 (2003)
18. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications with

static analysis. pp. 18–18. SSYM’05 (2005)
19. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically

hardening web applications using precise tainting (2005)
20. OWASP: Sql injection prevention cheat sheet. https://www.owasp.org/index.

php/SQL_Injection_Prevention_Cheat_Sheet, fetched on 2014-08-01
21. OWASP Foundation: OWASP Top Ten Project.

https://www.owasp.org/index.php/Top_10_2013-Top_10 (Jun 2013)
22. Pietraszek, T., Berghe, C.V.: Defending against injection attacks through context-

sensitive string evaluation (2006)
23. SANS Institute, MITRE, et al.: CWE/SANS Top 25 Most Dangerous Software

Errors. http://cwe.mitre.org/top25 (Sep 2011)
24. Son, S., McKinley, K.S., Shmatikov, V.: Diglossia: detecting code injection attacks

with precision and efficiency. pp. 1181–1192. CCS ’13 (2013)
25. Su, Z., Wassermann, G.: The essence of command injection attacks in web appli-

cations. pp. 372–382. POPL ’06 (2006)
26. Veracode: Sql injection cheat sheet and tutorial. http://www.veracode.com/

security/sql-injection, fetched on 2014-08-01


