VIBRANCE

A new technology security tool
for Java applications

Contact:
Alessandro Coglio at Kestrel Institute

‘ rel)
|n§ﬁttut% vibrance@kestrel.edu

650-493-6871

I - S More information, including a demo video,
I I" KESTREL at http://vibrance.kestrel.edu

August 2014

Technical Overview

* VIBRANCE automatically hardens Java
bytecode to detect and automatically
remediate or block attacks.

* No source code is needed, so VIBRANCE can
be used on 3"-party code to protect servers.

 VIBRANCE can be deployed independently of
other security tools, adding an additional level

of security to existing systemes.

VIBRANCE project background

 Government funded software security
research

* Significant research program: many
researchers; many innovations

e At this time, VIBRANCE hardens against
injection vulnerabilities; work on other
vulnerabilities is ongoing.

The VIBRANCE Concept

The VIBRANCE tool starts with a vulnerable Java app and
automatically hardens it against important attacks.

SQL
injection sQL
injection
vulnerable 3 3 hardened
Java app VIBRANCE Java app
denial of other
service attacks
denial of other
service attacks

vulnerable — hardened

VIBRANCE addresses the security bugs
that “slip through” the development process.

Y U 4y

application N\

* e G G S
d b

et d ol e
functional & | static & | security

- & testi - :)

esting analysis testing
\ J

~

development process

VIBRANCE technology

* Advanced static analysis: sound abstract
interpretation identifies safe code

* Advanced dynamic analysis: taint is tracked
down to the individual character level

* Advanced hardening technology:
— detection
— remediation or confinement

— reporting

VIBRANCE protects Java applications from the following important
weaknesses, which lead to data theft/loss and denial of service:
* injection
 SQL-#1 of CWE/SANS Top 25
e OS command — #2 of CWE/SANS Top 25
 LDAP, XPath, XQuery
* tainted data
e unrestricted file upload — #9 of CWE/SANS Top 25
 file path traversal — #13 of CWE/SANS Top 25
* loop bound — Apache Tomcat CVE 2014-0050
* server crash
 number handling (e.g. integer overflow)
e error handling (e.g. uncaught exception)
* resource handling
* concurrency handling

VIBRANCE can also help Testing

* |n addition to making the code more secure, VIBRANCE

generates “forensic” information when attacks are caught
and blocked.

* This forensic knowledge can then be applied to the
development process, because this knowledge can be
useful to discover vulnerabilities in the original (i.e., not
VIBRANCE-hardened) applications, enabling a developer to
fix them.

 We can extend VIBRANCE to produce more information at
run time---even for benign inputs, not just attack inputs.
This additional information can provide insight into how
data flows inside the application.

How Well Does VIBRANCE Do?

* Inanindependent test and evaluation, VIBRANCE caught most
vulnerabilities with a very small number of false positives.

— False positives may be application-dependent, since they depend on policy. VIBRANCE
allows fine-tuning policies by editing a configuration file. Given an application of
interest, we believe that VIBRANCE’s configuration can be fine-tuned to eliminate all
false positives for that application.

* VIBRANCE scales to large applications (tested up to 500 kLOC so far).

Example

Blocked password attack

21:36:55 10/03/2013
WARN: CWE-89: check sglQuoteChk: directive gstring detected one or more protected quotes
Altered line to: "SELECT id FROM employees WHERE name='Abigail' AND password=''' OR 1=1 -- ';"

Executing: Jjava/sqgl/Statement.executeQuery (Ljava/lang/String;)
R R R R R D R AP A R D R R e AP AP AP AP R AP

SELECT id FROM employees WHERE name='Abigail' AND password='' OR 1=1 -- ';

Action: replace
pac.config.Notify.getApplicationStackTrace 1ine:295
pac.config.Notify.appendToLogFile 1line:345
pac.config.Notify.appendToLogFile 1line:365
pac.config.Notify.notifyAndRespond 1ine:286
pac.config.Notify.run checks 1line:574
pac.web.StoneSouplet.verifyPassword222 1line:255
pac.web.StoneSouplet.doGet222 1ine:292
javax.servlet.http.HttpServlet.service222 1line:621
javax.servlet.http.HttpServlet.service222 1line:728
org.apache.catalina.core.ApplicationFilterChain.internalDoFilter222 1line:305
org.apache.catalina.core.ApplicationFilterChain.doFilter222 1ine:210

Blocked password attack

MITRE “Common Weakness Enumeration”
“89” is SQL Injection

New, safer SQL
constructed by VIBRANCE at runtime

21:36:55 10/03/2013
WARN: |[CWE-89: check sglQuoteChk: directive gstring/detected one or more protected qgquotes
Altered line to: |["SELECT id FROM employees WHERE name='Abigail' AND password=''' OR 1=1 -- ';"

Executing: Jjava/sqgl/Statement.executeQuery (Ljava/lang/String;)

... . e o o underbars ShOW
SELECT id FROM employees WHERE name='Abigail' AND password='' OR 1=1 -- '; tainted regions

Action: replace \\\\\\\\\
Notify line:295

pac.config. .getApplicationStackTrace

Original SQL line

pac.config.Notify.appendToLogFile 1line:345

pac.config.Notify.appendToLogFile 1line:365
pac.config.Notify.notifyAndRespond 1ine:286

pac.config.Notify.run checks 1line:574

pac.web.StoneSouplet.verifyPassword222 1line:255
pac.web.StoneSouplet.doGet222 1ine:292
javax.servlet.http.HttpServlet.service222 1line:621
javax.servlet.http.HttpServlet.service222 1line:728
org.apache.catalina.core.ApplicationFilterChain.internalDoFilter222 1ine:305
org.apache.catalina.core.ApplicationFilterChain.doFilter222 1ine:210

Java Source for Password Query Webapp

Note: this toy example is for illustrative purposes only. Vibrance is capable of
protecting much more complicated code that is hard to analyze statically.

public String verifyPasswordQuery(final String TEST_NAME, final String TEST_PASSWORD) {
return String.format(
"SELECT id FROM %s WHERE name='%s' AND password='%s';",
TEST_TABLE_NAME, TEST_NAME, TEST_PASSWORD);

}

public String verifyPassword(final String TEST_NAME,final String TEST_PASSWORD)
throws SQLException {

String resultString = null;

Statement stmt = null;

ResultSet rs = null;

stmt = connection.createStatement();
String query = verifyPasswordQuery(TEST_NAME, TEST_PASSWORD);
rs = stmt.executeQuery(query);
if (rs.next()) {
resultString = rs.getString(l);
}

stmt.close();
return resultString;

Additional Details

Where does VIBRANCE fit into the
development cycle?

After functional testing, the developer uses VIBRANCE to harden the
compiled code.

Then functional testing is repeated, to fine-tune the security policies
so that VIBRANCE does not affect code functionality.

When the code is in production, VIBRANCE will automatically detect
and prevent attacks against a variety of vulnerabilities.

When an attack is detected/prevented, VIBRANCE reports information
on the attack. This report can be used like a bug report, but under
most circumstances the application can remain in production until the
regular development cycle permanently fixes the vulnerability.

How can VIBRANCE benefit your
organization?

* improve code security and reliability
* save time and money
e give more confidence in vendor-supplied code

Today's application developer has a wealth of tools and procedures available,
but for a variety of reasons, vulnerabilities can still arise in production code.
VIBRANCE can catch some of those vulnerabilities at runtime, increasing
security and reliability.

Developer time is a limited and expensive resource. When VIBRANCE is seen
to block an attack, you can fix the problem during your regular development
cycle rather than dropping everything to rush out an urgent fix.

VIBRANCE can also be used to harden code received from vendors and
contractors, reducing the risk of putting that code into production.

How can VIBRANCE benefit your organization?

Dynamic Analysis improves the results
of Static analysis tools.

Commercial static analysis tools typically have settings that let the developer
see more or fewer potential vulnerabilities. If the developer tells a tool to
show everything, they often get so many False Positives that it is

impractical to review them all. Common responses are:

* ask the tool to show only high-confidence potential vulnerabilities
* similarly, ignore reported low-ranked potential vulnerabilities

e find classes of seemingly-similar vulnerabilities, and if a sample of a class are all
false positives, assume all instances of the class are FP

All of these responses can and do result in missed vulnerabilities.

Solution: If the code has been hardened with VIBRANCE, it will block attacks
on vulnerabilities missed by the static analysis process.

How can VIBRANCE benefit your organization?

Problem: Static analyzers are not perfect.

Even if the developer runs several static analyzers, and perfectly
examines all the potential vulnerabilities, some real vulnerabilities can
be missed. This is because all commercial static analyzers take
shortcuts of one kind or another. Programs often have complex
control flow or difficult-to-analyze operations, so analyzers have to
prune the search in order to perform acceptably. An example is a
regular expression used to construct a query.

Solution: VIBRANCE hardening can protect an
application from vulnerabilities that static
analyzers can not find.

How can VIBRANCE benefit your organization?

Problem: People are not perfect.

A mistake might not be caught by the regular development process, by
unit testing, peer review, static analysis, or dynamic testing.

A vulnerability reported by static analysis or caught by functional testing

might be fixed incorrectly, or an exclusion rule might accidentally be
made too broad.

Solution: VIBRANCE hardening can catch attacks

on vulnerabilities that may slip through the
development process.

How can VIBRANCE benefit your organization?

Problem: Dynamic testing cannot test
every input combination.

Even fuzzers can fail to find bad combinations of
inputs. The limits to functional testing are a major
reason why developers do static analysis.

Solution: VIBRANCE hardened code catches
attacks on low-frequency paths and unlikely
inputs just as easily as on high-frequency paths
or common inputs.

How can VIBRANCE benefit your organization?

Problem: Receiving code from a vendor that is supposed to be
production-ready, but not really knowing how well they
practiced good software engineering.

Vendors and contractors will claim to have done everything right, but if a
developer is integrating the code, the developer will have some responsibility
for it. But the developer’s budget for static analysis and testing might not be
sufficient for the full treatment. Worse, the developer might not be getting
source code, just binary or jar files.

Solution: VIBRANCE hardening can reduce the
developer’s worry about vendor-supplied code,
including compiled code.

How can VIBRANCE benefit your organization?

Problem: Other runtime protection systems have holes and are
limited to specific attack vectors.

There are a number of dynamic security tools available, but they have a less deep
understanding of the application, and hence suffer from holes (false negatives)

and false positives. They also only block attacks over a particular channel.

For example, a WAF (Web Application Firewall) such as ModSecurity can block
many attack patterns that use HTTP. However, they are difficult to set up
correctly and they can be prone to false positives. Also, they cannot handle taint
that comes from files or databases, or attacks that are constructed in the
application from inputs that do not match the attack patterns.

Solution: VIBRANCE hardened code can block attacks that
other runtime protection systems miss.

VIBRANCE

A new technology security tool
for Java applications

Contact:
Alessandro Coglio at Kestrel Institute

‘ rel)
|n§ﬁttut% vibrance@kestrel.edu

650-493-6871

I - S More information, including a demo video,
I I" KESTREL at http://vibrance.kestrel.edu

August 2014

